

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f446rct7tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2. Compatible board for LQFP64 package

Figure 3 shows the STM32F446xx block diagram.

Figure 4. STM32F446xC/E and Multi-AHB matrix

3.8 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

The SPDIF-RX also offers a signal named spdifrx_frame_sync, which toggles at the S/PDIF sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.

3.28 Serial Audio interface (SAI)

The devices feature two serial audio interfaces (SAI1 and SAI2). Each serial audio interfaces based on two independent audio sub blocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub blocks can be configured in master or in slave mode. The SAIs use a PLL to achieve audio class accuracy.

In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency.

The two sub blocks can be configured in synchronous mode when full-duplex mode is required.

SAI1 and SA2 can be served by the DMA controller.

3.29 Audio PLL (PLLI²S)

The devices feature an additional dedicated PLL for audio I²S and SAI applications. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I²S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I^2S/SAI flow with an external PLL (or Codec output).

3.30 Serial Audio Interface PLL(PLLSAI)

An additional PLL dedicated to audio and USB is used for SAI1 and SAI2 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

The PLLSAI is also used to generate the 48MHz clock for USB FS and SDIO in case the system PLL is programmed with factors not multiple of 48MHz.

3.31 Secure digital input/output interface (SDIO)

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory Card Specification Version 2.0.

4 Pinout and pin description

1. The above figure shows the package top view.

Г

	Pi	n Nun	nber							
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
17	26	E6	M2	37	PA3	I/O	FT	-	TIM2_CH4, TIM5_CH4, TIM9_CH2, SAI1_FS_A, USART2_RX, OTG_HS_ULPI_D0, EVENTOUT	ADC123_IN3
18	27	-	G4	38	VSS	S	-	-	-	-
-	-	J8	H5	-	BYPASS_REG	Ι	FT	-	-	-
19	28	-	F4	39	VDD	S	-	-	-	-
20	29	H7	J3	40	PA4	I/O	тс	-	SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, OTG_HS_SOF, DCMI_HSYNC, EVENTOUT	ADC12_IN4, DAC_OUT1
21	30	F6	K3	41	PA5	I/O	тс	-	TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK/I2S1_CK, OTG_HS_ULPI_CK, EVENTOUT	ADC12_IN5, DAC_OUT2
22	31	G6	L3	42	PA6	I/O	FT	-	TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO, I2S2_MCK, TIM13_CH1, DCMI_PIXCLK, EVENTOUT	ADC12_IN6
23	32	E5	М3	43	PA7	I/O	FT	-	TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI/I2S1_SD, TIM14_CH1, FMC_SDNWE, EVENTOUT	ADC12_IN7
24	33	J7	J4	44	PC4	I/O	FT	-	I2S1_MCK, SPDIFRX_IN2, FMC_SDNE0, EVENTOUT	ADC12_IN14
25	34	-	K4	45	PC5	I/O	FT	-	USART3_RX, SPDIFRX_IN3, FMC_SDCKE0, EVENTOUT	ADC12_IN15

Table	10. STM32F446xx pi	n an	d ba	ll d	escriptions (continued)	

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted both to f_{HCLK} frequency and V_{DD} range (see *Table 17: Limitations depending on the operating power supply range*).
- Regulator ON
- The voltage scaling and over-drive mode are adjusted to f_{HCLK} frequency as follows:
 - Scale 3 for f_{HCLK} ≤120 MHz
 - Scale 2 for 120 MHz < f_{HCLK} ≤144 MHz
 - Scale 1 for 144 MHz < f_{HCLK} ≤180 MHz. The over-drive is only ON at 180 MHz.
- The system clock is HCLK, $f_{PCLK1} = f_{HCLK}/4$, and $f_{PCLK2} = f_{HCLK}/2$.
- External clock frequency is 8 MHz and PLL is ON when f_{HCLK} is higher than 16 MHz.
- Flash is enabled except if explicitly mentioned as disable.
- The maximum values are obtained for V_{DD} = 3.6 V and a maximum ambient temperature (T_A), and the typical values for T_A= 25 °C and V_{DD} = 3.3 V unless otherwise specified.

			I _{DD} (Typ Appli)		Unit	
F	Peripheral	Scale 1 + OverDrive	Scale 2	Scale 3		
	TIM1	17.51	16.28	14.43		
	TIM8	18.40	17.10	15.22		
	USART1	4.53	4.21	3.72		
	USART6	4.53	4.21	3.72		
	ADC1	4.69	4.35	3.85		
	ADC2	4.70	4.35	3.87		
	ADC3	4.66	4.31	3.82		
4002	SDIO	9.06	8.38	7.47		
APDZ	SPI1	1.97	1.89	1.67	µA/MHz	
	SPI4	1.88	1.75	1.57		
	SYSCFG	1.51	1.40	1.23		
	TIM9	8.17	7.64	6.77		
	TIM10	5.07	4.75	4.22		
	TIM11	5.37	5.06	4.50		
	SAI1	3.89	3.64	3.17		
	SAI2	3.74	3.49	3.10	-	
E	Bus Matrix	8.15	8.10	7.13		

Table 35. Peripheral current consumption (continued)

1. N = Number of strean enable (1..8)

2. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.

6.3.8 Wakeup time from low-power modes

The wakeup times given in *Table 36* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep modes: the wakeup event is WFE.
- WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} =3.3 V.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{CPU}]	Unit
			nequency band	8/180 MHz	
		$V_{1} = 2.2 V_{1} T_{2} = 25 \circ C_{1} OED144$	0.1 to 30 MHz	11	
		$v_{DD} = 3.3 v$, $T_A = 23 C$, LQFP 144 package, conforming to SAE J1752/3 EEMBC, ART ON, all peripheral clocks	30 to 130 MHz	10	dBµV
			130 MHz to 1GHz	11	
e	Poak loval		SAE EMI Level	3	-
SEMI	Feak level	$V_{-} = 2.2 V T_{-} = 25 \circ C_{-} L OED144$	0.1 to 30 MHz	24	
	$V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ C}, LQFP144$ package, conforming to SAE J1752/3	30 to 130 MHz	25	dBµV	
		EEMBC, ART ON, all peripheral clocks	130 MHz to 1GHz	20	
			SAE EMI level	4	-

Table 52. EMI characteristics

6.3.15 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = + 25 \text{ °C conforming to ANSI/JEDEC JS-001}$	2	2000	
	Electrostatic	$T_A = + 25$ °C conforming to ANSI/ESD STM5.3.1, LQFP64, LQFP100, WLCSP81 packages	C4	500	V
V _{ESD(CDM)}	discharge voltage (charge device model)	$T_A = +25$ °C conforming to ANSI/ESD STM5.3.1, LQFP144, UFBGA144 (7 x 7), UFBGA144 (10 x 10) packages	C3	250	

Table 53. ESI) absolute	maximum	ratings
---------------	------------	---------	---------

1. Guaranteed based on test during characterization.

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

Symbol	Para	meter	Conditions	Min	Тур	Мах	Unit
R _{PU}	Weak pull-up equivalent	All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	V _{IN} = V _{SS}	30	40	50	
		PA10/PB12 (OTG_FS_ID, OTG_HS_ID)		7	10	14	kO
R _{PD}	Weak pull- down equivalent	All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	V _{IN} = V _{DD}	30	40	50	K22
	resistor ⁽⁶⁾	PA10/PB12 (OTG_FS_ID, OTG_HS_ID)		7	10	14	
$\overline{C_{IO}^{(7)}}$	I/O pin capaci	tance	-	-	5	-	pF

Table 56. I/O static characteristics (continued)

1. Guaranteed by design.

2. Tested in production.

3. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 55: I/O current injection susceptibility

- To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 55: I/O current injection susceptibility
- 5. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order).
- 6. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order).
- 7. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed based on test during characterization.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in *Figure 31*.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V ≤V _{DD} ≤3.6 V	V _{DD} -0.4	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} =+ 8mA 2.7 V ≤V _{DD} ≤3.6 V	2.4	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA	-	1.3 ⁽⁴⁾	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	2.7 V ≤V _{DD} ≤3.6 V	V _{DD} -1.3 ⁽⁴⁾	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +6 mA	-	0.4 ⁽⁴⁾	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.8 V ≤V _{DD} ≤3.6 V	V _{DD} -0.4 ⁽⁴⁾	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +4 mA	-	0.4 ⁽⁵⁾	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.7 V ≤V _{DD} ≤3.6V	V _{DD} -0.4 ⁽⁵⁾	-	

Table 57. Output voltage characteristics

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 14*. and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 14 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

- 4. Based on characterization data.
- 5. Guaranteed by design.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 32* and *Table 58*, respectively.

Unless otherwise specified, the parameters given in *Table 58* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 16*.

OSPEEDR y[1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
			C_L = 50 pF, $V_{DD} \ge 2.7 V$	-	-	4	
			$C_L = 50 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$	-	-	2	
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	8	MHz
00			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	4	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	3	
	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 50 pF, V _{DD} = 1.7 V to 3.6 V	-	-	100	ns

Table 58. I/O AC characteristics⁽¹⁾⁽²⁾

FMPI²C characteristics

The FMPI2C characteristics are described in Table 62.

Refer also to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

	Deveneter	Standa	rd mode	Fast	mode	Fast+	mode	Unit	
-	Parameter	Min	Max	Min	Max	Min	Max	Unit	
f _{FMPI2CC}	F _{MPI2CCLK} frequency	2	-	8	-	17 16 ⁽²⁾	-		
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	0.5	-		
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	0.26	-		
t _{su(SDA)}	SDA setup time	0.25	-	0.10	-	0.05	-		
t _{H(SDA)}	SDA data hold time	0	-	0	-	0	-		
t _{v(SDA,ACK)}	Data, ACK valid time	-	3.45	-	0.9	-	0.45		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	0.100	-	0.30	-	0.12		
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	0.30	-	0.30	-	0.12	us	
t _{h(STA)}	Start condition hold time	4	-	0.6	-	0.26	-		
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	0.26	-		
t _{su(STO)}	Stop condition setup time	4	-	0.6	-	0.26	-		
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	0.5	-		
t _{SP}	Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode	-	-	0.05	0.09	0.05	0.09		
C _b	Capacitive load for each bus Line	-	400	-	400	-	550 ⁽³⁾	pF	

Table 62. FMPI ² C characteris

1. Guaranteed based on test during characterization.

2. When tr(SDA,SCL)<=110ns.

3. Can be limited. Maximum supported value can be retrieved by referring to the following formulas: $t_{r(SDA/SCL)} = 0.8473 \times R_p \times C_{load}$ $R_{p(min)} = (V_{DD} - V_{OL(max)}) / I_{OL(max)}$

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit
ET	Total unadjusted error		±2	±5	
EO	Offset error	f _{ADC} = 30 MHz, R _{AIN} < 10 kΩ	±1.5	±2.5	
EG	Gain error	$V_{DDA} = 2.4$ to 3.6 V,	±1.5	±3	LSB
ED	Differential linearity error	$V_{REF} = 1.7$ to 3.6 V, $V_{DDA} - V_{REF} < 1.2$ V	±1	±2	
EL	Integral linearity error		±1.5	±3]

Table 76. ADC static accuracy at $f_{ADC} = 30 \text{ MHz}^{(1)}$

1. Better performance could be achieved in restricted V_{DD} , frequency and temperature ranges.

2. Guaranteed based on test during characterization.

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit
ET	Total unadjusted error		±4	±7	
EO	Offset error	$f_{ADC} = 36 \text{ MHz},$	±2	±3	
EG	Gain error	$V_{\text{DDA}} = 2.4 \text{ to } 3.6 \text{ V},$ $V_{\text{REE}} = 1.7 \text{ to } 3.6 \text{ V}$	±3	±6	LSB
ED	Differential linearity error	$V_{DDA} - V_{REF} < 1.2 V$	±2	±3	
EL	Integral linearity error		±3	±6	

Table 77. ADC static accuracy at $f_{ADC} = 36 \text{ MHz}^{(1)}$

1. Better performance could be achieved in restricted V_{DD} , frequency and temperature ranges.

2. Guaranteed based on test during characterization.

Table 78. ADC dynamic accuracy a	f _{ADC} = 18 MHz - limited test co	onditions ⁽¹⁾
----------------------------------	---	--------------------------

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	fade =18 MHz	10.3	10.4	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+} = 1.7 V$	64	64.2	-	
SNR	Signal-to-noise ratio	Input Frequency = 20 KHz	64	65	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	-67	-72	-	

1. Guaranteed based on test during characterization.

Table 79. ADC dynamic accuracy at f_{ADC} = 36 MHz - limited test conditions⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	fade =36 MHz	10.6	10.8	-	bits
SINAD	Signal-to noise and distortion ratio	$V_{DDA} = V_{REF+} = 3.3 V$ Input Frequency = 20 KHz	66	67	-	
SNR	Signal-to noise ratio		64	68	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	- 70	- 72	-	

1. Guaranteed based on test during characterization.

Note:

ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion

being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{\text{INJ}(\text{PIN})}$ and $\Sigma I_{\text{INJ}(\text{PIN})}$ in Section 6.3.17 does not affect the ADC accuracy.

- 1. See also Table 76.
- Example of an actual transfer curve. 2.
- 3. Ideal transfer curve.
- 4. End point correlation line.
- 5. E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one.

EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

Figure 63. SDRAM write access waveforms

Table 102. SDRAM write	timinas ⁽¹⁾⁽²⁾
------------------------	---------------------------

Symbol	Parameter	Min	Мах	Unit
F _(SDCLK)	Frequency of operation	-	90	MHz
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} - 0.5	2T _{HCLK} + 0.5	
t _{d(SDCLKL _Data)}	Data output valid time	-	2	
t _{h(SDCLKL} _Data)	Data output hold time	0.5	-	
$t_{d(SDCLK _Add)}$	Address valid time	-	3	
$t_{d(SDCLKL SDNWE)}$	SDNWE valid time	-	1.5	
t _{h(SDCLKL_SDNWE))}	SDNWE hold time	0	-	ns
t _{d(SDCLKL_SDNE))}	Chip select valid time	-	1.5	115
$t_{h(SDCLKL_SDNE)}$	Chip select hold time	0	-	
$t_{d(SDCLKL_SDNRAS)}$	SDNRAS valie time	-	1	
$t_{h(SDCLKL_SDNRAS)}$	SDNRAS hold time	0	-	
$t_{d(SDCLKL_SDNCAS)}$	SDNCAS valid time	-	1	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

1. $C_L = 10 \text{ pF}$ on data and address line. $C_L = 15 \text{ pF}$ on FMC_SDCLK.

2. Guaranteed based on test during characterization.

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
D	11.800	12.000	12.200	0.4646	0.4724	0.4803	
D1	9.800	10.000	10.200	0.3858	0.3937	0.4016	
D3	-	7.500	-	-	0.2953	-	
E	11.800	12.000	12.200	0.4646	0.4724	0.4803	
E1	9.800	10.000	10.200	0.3858	0.3937	0.4016	
E3	-	7.500	-	-	0.2953	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
К	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.080	-	-	0.0031	

Table 108. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 68. LQFP64 Recommended footprint

1. Drawing is not to scale.

2. Dimensions are in millimeters.

Figure 74. LQFP144 recommended footprint

1. Dimensions are expressed in millimeters.

Table 111. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ballgrid array package mechanical data (continued)

Symbol		millimeters			inches ⁽¹⁾	
	Min.	Тур.	Max.	Min.	Тур.	Max.
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 77. UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint

A0AS FP V1 Table 112. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA) Dimension **Recommended values** Pitch 0.50 mm 0.280 mm Dpad 0.370 mm typ. (depends on the soldermask Dsm registration tolerance) Stencil opening 0.280 mm Stencil thickness Between 0.100 mm and 0.125 mm Pad trace width 0.120 mm

Device marking for UFBGA144 10 x 10 mm package

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 81. UQFP144 10 x 10 mm marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Appendix A Application block diagrams

A.1 USB OTG full speed (FS) interface solutions

1. External voltage regulator only needed when building a $V_{\mbox{BUS}}$ powered device.

2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

 The current limiter is required only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.

2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

Date	Revision	Changes
03-Nov-2015	5	 Updated: Introduction; Table 2: STM32F446xC/E features and peripheral counts Table 43: Main PLL characteristics Title of Table 45: PLLISAI characteristics Table 109: LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data Table 118: Ordering information scheme Figure 10: STM32F446xC/xE LQFP64 pinout Figure 11: STM32F446xC/xE LQFP100 pinout Added: Figure 77: UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data
02-Sep-2016	6	 Updated: Section 7: Package information; Table 30: Typical current consumption in Run mode, code with data processing running from Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch), VDD=1.7 V Table 74: ADC characteristics Table 85: DAC characteristics Added: Note 3 in Figure 33: Recommended NRST pin protection Note 4 in Table 41: HSI oscillator characteristics

Table 119.	Document	revision	history	(continued)	١
	Document	104131011	matory	Continueu	,

