

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f446ret6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 92.	Asynchronous multiplexed PSRAM/NOR write timings
Table 93.	Asynchronous multiplexed PSRAM/NOR write-NWAIT timings
Table 94.	Synchronous multiplexed NOR/PSRAM read timings
Table 95.	Synchronous multiplexed PSRAM write timings
Table 96.	Synchronous non-multiplexed NOR/PSRAM read timings
Table 97.	Synchronous non-multiplexed PSRAM write timings
Table 98.	Switching characteristics for NAND Flash read cycles
Table 99.	Switching characteristics for NAND Flash write cycles
Table 100.	SDRAM read timings
Table 101.	LPSDR SDRAM read timings
Table 102.	SDRAM write timings
Table 103.	LPSDR SDRAM write timings
Table 104.	DCMI characteristics
Table 105.	Dynamic characteristics: SD / MMC characteristics
Table 106.	Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V
Table 107.	RTC characteristics
Table 108.	LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data
Table 109.	LQPF100, 14 x 14 mm 100-pin low-profile quad flat
	package mechanical data
Table 110.	LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data 183
Table 111.	UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
	grid array package mechanical data
Table 112.	UFBGA144 recommended PCB design rules (0.50 mm pitch BGA)
Table 113.	UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
	grid array package mechanical data
Table 114.	UFBGA144 recommended PCB design rules (0.80 mm pitch BGA)
Table 115.	WLCSP81- 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale
	package mechanical data
Table 116.	WLCSP81 recommended PCB design rules (0.4 mm pitch) 193
Table 117.	Package thermal characteristics
Table 118.	Ordering information scheme
Table 119.	Document revision history

3 Functional overview

3.1 **ARM[®] Cortex[®]-M4 with FPU and embedded Flash and SRAM**

The ARM[®] Cortex[®]-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM[®] Cortex[®]-M4 with FPU core is a 32-bit RISC processor that features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

The STM32F446xC/E family is compatible with all ARM tools and software.

Figure 3 shows the general block diagram of the STM32F446xC/E family.

Note: Cortex-M4 with FPU core is binary compatible with the Cortex-M3 core.

3.2 Adaptive real-time memory accelerator (ART Accelerator[™])

The ART Accelerator[™] is a memory accelerator which is optimized for STM32 industrystandard ARM[®] Cortex[®]-M4 with FPU processors. It balances the inherent performance advantage of the ARM[®] Cortex[®]-M4 with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor full 225 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 180 MHz.

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDIO
- Camera interface (DCMI)
- ADC
- SAI1/SAI2
- SPDIF Receiver (SPDIFRx)
- QuadSPI

3.9 Flexible memory controller (FMC)

All devices embed an FMC. It has seven Chip Select outputs supporting the following modes: SDRAM/LPSDR SDRAM, SRAM, PSRAM, NOR Flash and NAND Flash. With the possibility to remap FMC bank 1 (NOR/PSRAM 1 and 2) and FMC SDRAM bank 1/2 in the Cortex-M4 code area.

Functionality overview:

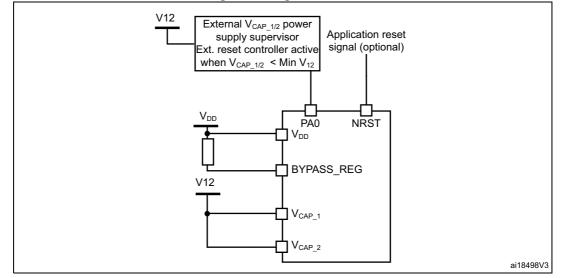
- 8-,16-bit data bus width
- Read FIFO for SDRAM controller
- Write FIFO
- Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is 90 MHz.

LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

3.10 Quad SPI memory interface (QUADSPI)

All devices embed a Quad SPI memory interface, which is a specialized communication interface targeting Single, Dual or Quad SPI flash memories. It can work in direct mode through registers, external flash status register polling mode and memory mapped mode. Up to 256 Mbytes external flash are memory mapped, supporting 8, 16 and 32-bit access. Code execution is supported. The opcode and the frame format are fully programmable. Communication can be either in Single Data Rate or Dual Data Rate.



Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. The two 2.2 μ F ceramic capacitors should be replaced by two 100 nF decoupling capacitors.

When the regulator is OFF, there is no more internal monitoring on V_{12} . An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V₁₂ logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.
- The over-drive and under-drive modes are not available.

Figure 7. Regulator OFF

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V_{12} minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V_{12} minimum value and until V_{DD} reaches 1.7 V (see *Figure 8*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see *Figure 9*).
- If V_{CAP_1} and V_{CAP_2} go below V_{12} minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.

Note: The minimum value of V₁₂ depends on the maximum frequency targeted in the application.

3.21.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

3.21.2 General-purpose timers (TIMx)

There are ten synchronized general-purpose timers embedded in the STM32F446xC/E devices (see *Table 6* for differences).

• TIM2, TIM3, TIM4, TIM5

The STM32F446xC/E include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

3.21.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.

3.21.4 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

3.21.5 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.21.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

3.22 Inter-integrated circuit interface (I²C)

Four I²C bus interfaces can operate in multimaster and slave modes. Three I²C can support the standard (up to 100 KHz) and fast (up to 400 KHz) modes.

One I²C can support the standard (up to 100 KHz), fast (up to 400 KHz) and fast mode plus (up to 1MHz) modes.

They (all I²C) support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave).

A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

The devices also include programmable analog and digital noise filters (see Table 7).

-	Analog filter	Digital filter				
Pulse width of suppressed spikes		Programmable length from 1 to 15 I2C peripheral clocks				

Table 7. Comparison of I2C analog and digital filters

	Pin Number									
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
51	78	D3	B11	111	PC10	I/O	FT	-	SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, QUADSPI_BK1_IO1, SDIO_D2, DCMI_D8, EVENTOUT	-
52	79	D4	B10	112	PC11	I/O	FT	-	SPI3_MISO, USART3_RX, UART4_RX, QUADSPI_BK2_NCS, SDIO_D3, DCMI_D4, EVENTOUT	-
53	80	A2	C10	113	PC12	I/O	FT	Ι	I2C2_SDA, SPI3_MOSI/I2S3_SD, USART3_CK, UART5_TX, SDIO_CK, DCMI_D9, EVENTOUT	-
-	81	В3	E10	114	PD0	I/O	FT	-	SPI4_MISO, SPI3_MOSI/I2S3_SD, CAN1_RX, FMC_D2, EVENTOUT	-
-	82	C4	D10	115	PD1	I/O	FT	-	SPI2_NSS/I2S2_WS, CAN1_TX, FMC_D3, EVENTOUT	-
54	83	D5	E9	116	PD2	I/O	FT	-	TIM3_ETR, UART5_RX, SDIO_CMD, DCMI_D11, EVENTOUT	-
-	84	-	D9	117	PD3	I/O	FT	-	TRACED1, SPI2_SCK/I2S2_CK, USART2_CTS, QUADSPI_CLK, FMC_CLK, DCMI_D5, EVENTOUT	-
-	85	A3	C9	118	PD4	I/O	FT	-	USART2_RTS, FMC_NOE, EVENTOUT	-
-	86	-	B9	119	PD5	I/O	FT	-	USART2_TX, FMC_NWE, EVENTOUT	-
-	-	-	E7	120	VSS	S	-	-	-	-
-	-	-	F7	121	VDD	S	-	-	-	-

Table 10. STM32F446xx pin and ball descriptions (continued)

STM32F446xC/E

Pinout and pin description

_							1	Table 11.	Alterna	te funct	ion (cor	tinued)						
			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF1
•	Ро	rt	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11/ CEC	I2C1/2/3 /4/CEC	SPI1/2/3/ 4	SPI2/3/4/ SAI1	SPI2/3/ USART1/ 2/3/UART 5/SPDIFR X	SAI/ USART6/ UART4/5/ SPDIFRX	CAN1/2 TIM12/13/ 14/ QUADSPI	SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS	OTG1_FS	FMC/ SDIO/ OTG2_FS	DCMI	-	SYS
		PG0	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A10	-	-	EVEN OUT
		PG1	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A11	-	-	EVEN OUT
		PG2	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A12	-	-	EVEN OUT
		PG3	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A13	-	-	EVEN OUT
		PG4	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A14/ FMC_BA0	-	-	EVEN ⁻ OUT
		PG5	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A15/ FMC_BA1	-	-	EVEN OUT
		PG6	-	-	-	-	-	-	-	-	-	-	QUADSPI_ BK1_NCS	-	-	DCMI_ D12	-	EVEN OUT
		PG7	-	-	-	-	-	-	-	-	USART6_C K	-	-	-	FMC_INT	DCMI_ D13	-	EVEN OUT
F	Port G	PG8	-	-	-	-	-	-	-	SPDIFRX_ IN2	USART6_R TS	-	-	-	FMC_ SDCLK	-	-	EVEN OUT
		PG9	-	-	-	-	-	-	-	SPDIFRX_ IN3	USART6_R X	QUADSPI_ BK2_IO2	SAI2_FS_B	-	FMC_NE2/ FMC_NCE3	DCMI_ VSYNC ⁽¹⁾	-	EVEN OUT
		PG10	-	-	-	-	-	-	-	-	-	-	SAI2_SD_B	-	FMC_NE3	DCMI_D2	-	EVEN OUT
		PG11	-	-	-	-	-	-	SPI4_ SCK	SPDIFRX_ IN0	-	-	-	-	-	DCMI_D3	-	EVEN OUT
		PG12	-	-	-	-	-	-	SPI4_ MISO	SPDIFRX_ IN1	USART6_R TS	-	-	-	FMC_NE4	-	-	EVEN OUT
		PG13	TRACE D2	-	-	-	-	-	SPI4_ MOSI	-	USART6_C TS	-	-	-	FMC_A24	-	-	EVEN OUT
		PG14	TRACE D3	-	-	-	-	-	SPI4_ NSS	-	USART6_T X	QUADSPI_ BK2_IO3	-	-	FMC_A25	-	-	EVEN OUT
		PG15	-	-	-	-	-	-	-	-	USART6_C TS	-	-	-	FMC_ SDNCAS	DCMI_ D13	-	EVEN OUT

65/202

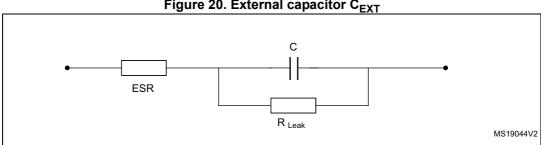


Figure 20. External capacitor C_{EXT}

1. Legend: ESR is the equivalent series resistance.

Symbol	Parameter	Conditions
C _{EXT}	Capacitance of external capacitor	2.2 μF
ESR	ESR of external capacitor	< 2 Ω
C _{EXT}	Capacitance of external capacitor with a single V_{CAP} pin available	4.7 µF
ESR	ESR of external capacitor with a single $V_{\mbox{CAP}}$ pin available	< 1 Ω

Table 18. VCAP_1/VCAP_2 operating conditions⁽¹⁾

When bypassing the voltage regulator, the two 2.2 μF V_{CAP} capacitors are not required and should be replaced by two 100 nF decoupling capacitors. 1.

6.3.3 Operating conditions at power-up / power-down (regulator ON)

Subject to general operating conditions for T_A.

Table 19. Operating conditions at power-up/power-down (regulator ON)

Symbol	Parameter	Min	Max
4	V _{DD} rise time rate	20	∞
^L VDD	V _{DD} fall time rate	20	∞

Operating conditions at power-up / power-down (regulator OFF) 6.3.4

Subject to general operating conditions for T_A.

Table 20. Operating conditions at power-up / power-down (regulator OFF)⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
t	V _{DD} rise time rate	Power-up	20	~	
t _{VDD}	V _{DD} fall time rate	Power-down	20	8	µs/V
+	V_{CAP_1} and V_{CAP_2} rise time rate	Power-up	20	8	μ5/ ν
^t VCAP	V_{CAP_1} and V_{CAP_2} fall time rate	Power-down	20	8	

To reset the internal logic at power-down, a reset must be applied on pin PA0 when V_{DD} reach below 1.08 V. 1.

						Max ⁽¹⁾				
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	TA= 25 °C	TA=85 °C	TA=105 °C	Unit		
			180	81	89.0	110.0	120.0			
					168 ⁽⁴⁾	74	80.2	105.7	112.0	
			150	69	74.9	99.5	105.6			
		External clock,	144 ⁽⁴⁾	63	69.3	92.4	98.1			
		PLL ON, all peripherals	120	51	56.3	76.1	81.1			
		enabled ⁽²⁾⁽³⁾	90	40	45.32	63.19	67.63			
			60	28	33.1	48.7	52.6			
			30	16	20.8	34.0	37.4			
			25	13	18.4	31.2	34.5	- mA		
		External clock, PLL ON, all Peripherals disabled ⁽²⁾⁽³⁾	16	8	13.8	25.0	28.2			
			8	5	10.8	21.1	24.2			
			4	3.0	9.1	19.0	22.0			
1	Supply current in		2	2.1	8.1	17.9	20.9			
I _{DD}	RUN mode		180	41	47.0	69.0	79.0			
			168	38	43.2	61.9	67.1			
			150	37	41.8	60.3	65.4			
			144 ⁽⁴⁾	34	39.3	56.9	61.6			
			120	29	34.3	50.2	54.4			
			90	24	28.8	43.6	47.5			
		HSI, PLL OFF,	60	17	22.0	35.6	39.2			
		all peripherals disabled ⁽³⁾	30	10	14.8	27.0	30.1			
			25	8	13.51	25.36	28.47			
			16	5	11.1	21.8	24.9			
		HSI, PLL OFF,	8	3	9.5	19.4	22.5			
		all Peripherals disabled ⁽³⁾	4	2.3	8.35	18.12	21.17			
			2	1.8	7.78	17.42	20.51			

Table 25. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled)

1. Guaranteed based on test during characterization unless otherwise specified.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

4. Overdrive OFF

			Tvn		Max		
Symbol	Parameter	Conditions	Тур	v	Unit		
			T _A = 25 °C	T _A = 25 °C ⁽¹⁾	T _A = 85 °C	T _A = 105 °C ⁽¹⁾	
	Supply current in Stop mode with	Flash memory in Stop mode, all oscillators OFF, no independent watchdog	0.234	1.2	10	16	
I _{DD_STOP_NM} (normal	voltage regulator in main regulator mode	Flash memory in Deep power down mode, all oscillators OFF, no independent watchdog	0.205	1	9.5	15	
mode)	Supply current in Stop mode with	Flash memory in Stop mode, all oscillators OFF, no independent watchdog	0.15	0.95	8.5	14	
	voltage regulator in Low Power regulator mode	Flash memory in Deep power down mode, all oscillators OFF, no independent watchdog	0.121	0.9	6	12	mA
IDD STOP UD	Supply current in Stop mode with voltage regulator in main regulator and under-drive mode	Flash memory in Deep power down mode, main regulator in under-drive mode, all oscillators OFF, no independent watchdog	0.119	0.4	3	5	
M(under- drive mode)	Supply current in Stop mode with voltage regulator in Low Power regulator and under-drive mode	Flash memory in Deep power down mode, Low Power regulator in under-drive mode, all oscillators OFF, no independent watchdog	0.055	0.35	3	5	

1. Data based on characterization, tested in production.

						Мах		
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			168	65.11	70.0	79.7	90.0	
		All Peripherals enabled	150	58.31	62.8	73.4	79.9	
			144	53.14	57.1	69.9	75.3	
			120	39.58	47.2	60.7	71.4	
			90	29.99	34.70	45.23	49.34	-
			60	20.37	25.2	35.2	38.2	
			30	11.37	12.9	28.4	33.2	
	Supply current in Run mode from			25	9.65	10.9	17.8	24.3
I _{DD}	V _{DD} supply		168	29.74	32.43	42.4	48.5	-
			150	25.81	29.12	39.4	43.8	
			144	24.57	26.61	36.0	41.9	
		All Peripherals	120	17.69	22.09	32.9	40.8	
		disabled	90	13.58	15.92	30.0	36.5	
			60	9.41	11.05	24.4	30.2	
			30	5.44	6.64	15.0	22.0	
			25	4.73	5.72	12.57	19.06	

Table 30. Typical current consumption in Run mode, code with data processing running from Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch), VDD=1.7 V⁽¹⁾

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
f _{OSC_IN}	Oscillator frequency	-	4	-	26	MHz			
R _F	Feedback resistor	-	-	200	-	kΩ			
	HSE current consumption	V _{DD} =3.3 V, ESR= 30 Ω, C _L =5 pF@25 MHz	-	450	-				
IDD		V _{DD} =3.3 V, ESR= 30 Ω, C _L =10 pF@25 MHz	-	530	-	μA			
ACC _{HSE} ⁽²⁾	HSE accuracy	-	-500	-	500	ppm			
G _m _crit_max	Maximum critical crystal g _m	Startup	-	-	1	mA/V			
t _{SU(HSE} ⁽³⁾	Startup time	V_{DD} is stabilized	-	2	-	ms			

Table 39 HSF 4-26 MHz oscillator characteristics ⁽¹⁾

1. Guaranteed by design.

This parameter depends on the crystal used in the application. The minimum and maximum values must 2. be respected to comply with USB standard specifications.

 $t_{{\sf SU}({\sf HSE})}$ is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is Guaranteed based on test during characterization. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. 3.

For C_{L1} and C_{L2}, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 25). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{I 1} and C_{I 2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing $C_{l,1}$ and $C_{l,2}$.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

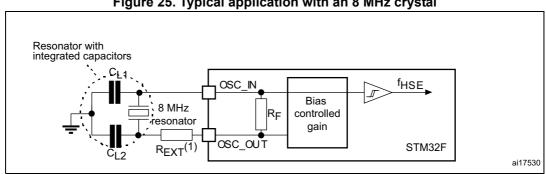


Figure 25. Typical application with an 8 MHz crystal

R_{EXT} value depends on the crystal characteristics. 1.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 40. In the application, the resonator and the load capacitors have to be placed as close as

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f _{Mod}	Modulation frequency	-	-	10	KHz
md	Peak modulation depth	0.25	-	2	%
MODEPER * INCSTEP	-	-	-	2 ¹⁵ –1	-

Table 46. SSCG parameters constraint

1. Guaranteed by design.

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

 $MODEPER = round[f_{PLL IN} / (4 \times f_{Mod})]$

 $f_{\text{PLL}\ \text{IN}}$ and f_{Mod} must be expressed in Hz.

As an example:

If $f_{PLL_IN} = 1$ MHz, and $f_{MOD} = 1$ kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER = round $[10^{6}/(4 \times 10^{3})] = 250$

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

. -

INCSTEP = round[
$$((2^{15} - 1) \times md \times PLLN)/(100 \times 5 \times MODEPER)$$
]

 $f_{VCO\ OUT}$ must be expressed in MHz.

With a modulation depth (md) = ± 2 % (4 % peak to peak), and PLLN = 240 (in MHz):

INCSTEP = round[
$$((2^{15}-1) \times 2 \times 240)/(100 \times 5 \times 250)$$
] = 126md(quantitazed)%

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

$$md_{quantized}$$
% = (MODEPER × INCSTEP × 100 × 5)/ ((2¹⁵ - 1) × PLLN)

As a result:

$$md_{quantized}$$
% = $(250 \times 126 \times 100 \times 5)/((2^{15} - 1) \times 240) = 2.002\%$ (peak)

. _

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs	
		Program/erase parallelism (PSIZE) = x 8	-	400	800		
t _{ERASE16KB}	Sector (16 KB) erase time	-	300	600	ms		
		Program/erase parallelism (PSIZE) = x 32	-	250	500		
		Program/erase parallelism (PSIZE) = x 8	-	1200	2400		
t _{ERASE64KB}	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 16	- 700 140			ms	
		Program/erase parallelism (PSIZE) = x 32	-	550	1100		
		Program/erase parallelism (PSIZE) = x 8	-	2	4		
t _{ERASE128KB}	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	1.3	2.6	s	
		Program/erase parallelism (PSIZE) = x 32	-	1	2		
		Program/erase parallelism (PSIZE) = x 8	-	8	16		
t _{ME}	Mass erase time	Program/erase parallelism (PSIZE) = x 16	-	5.5	11	s	
		Program/erase parallelism (PSIZE) = x 32	-	8	16		
		32-bit program operation	2.7	-	3.6	V	
V _{prog}	Programming voltage	16-bit program operation 2.1 -				V	
		8-bit program operation	1.7	-	3.6	V	

Table 48. Flash memory programming

1. Guaranteed based on test during characterization.

2. The maximum programming time is measured after 100K erase operations.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs
t _{ERASE16KB}	Sector (16 KB) erase time	T _A = 0 to +40 °C	-	230	-	
t _{ERASE64KB}	Sector (64 KB) erase time	V _{DD} = 3.3 V	-	490	-	ms
t _{ERASE128KB}	Sector (128 KB) erase time	V _{PP} = 8.5 V	-	875	-	
t _{ME}	Mass erase time		-	3.5	-	s
V _{prog}	Programming voltage	-	2.7	-	3.6	V

Symbol Para	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{CPU}]	Unit	
			noquonoy bana	8/180 MHz		
		$V_{1} = 2.2 V_{1} T_{2} = 25 \circ C_{1} OED144$	0.1 to 30 MHz	11		
		V_{DD} = 3.3 V, T_A = 25 °C, LQFP144 package, conforming to SAE J1752/3 EEMBC, ART ON, all peripheral clocks enabled, clock dithering disabled.	30 to 130 MHz	10	dBµV	
			130 MHz to 1GHz	11		
6			SAE EMI Level	3	-	
S _{EMI}	Feak level	$V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, LQFP144$ package, conforming to SAE J1752/3	0.1 to 30 MHz	24		
			30 to 130 MHz	25	dBµV	
		EEMBC, ART ON, all peripheral clocks enabled, clock dithering enabled	130 MHz to 1GHz	20]	
			SAE EMI level	4	-	

Table 52. EMI characteristics

6.3.15 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

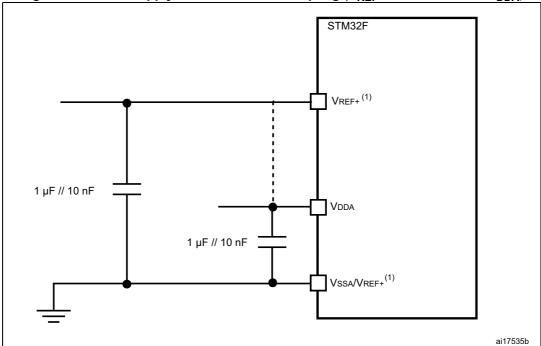
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

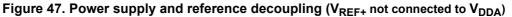
Symbol	Ratings Conditions		Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = + 25 \text{ °C conforming to ANSI/JEDEC JS-001}$	2	2000	
	Electrostatic	$T_A = +25$ °C conforming to ANSI/ESD STM5.3.1, LQFP64, LQFP100, WLCSP81 packages	C4	500	v
V _{ESD(CDM)}	discharge voltage (charge device model)	T_A = + 25 °C conforming to ANSI/ESD STM5.3.1, LQFP144, UFBGA144 (7 x 7), UFBGA144 (10 x 10) packages	C3	250	

Table 53. ESD) absolute	maximum	ratings
---------------	------------	---------	---------

1. Guaranteed based on test during characterization.

Static latchup


Two complementary static tests are required on six parts to assess the latchup performance:


- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 47* or *Figure 48*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

1. V_{REF+} and V_{REF-} inputs are both available on UFBGA144. V_{REF+} is also available on LQFP100, LQFP144, and WLCSP81. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA} .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	Comments
	Integral non linearity (difference	-	-	-	±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽⁴⁾	between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	-	±4	LSB	Given for the DAC in 12-bit configuration.
	Offset error (difference	-	-	-	±10	mV	Given for the DAC in 12-bit configuration
Offset ⁽⁴⁾	between measured value at Code (0x800) and	-	-	-	±3	LSB	Given for the DAC in 10-bit at V_{REF+} = 3.6 V
	the ideal value = V _{REF+} /2)	-	-	-	±12	LSB	Given for the DAC in 12-bit at V_{REF+} = 3.6 V
Gain error ⁽⁴⁾	Gain error	-	-	-	±0.5	%	Given for the DAC in 12-bit configuration
tsettfing ⁽⁴	Total Harmonic Distortion Buffer ON	-	-	3	6	μs	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
THD ⁽⁴⁾	-	-	-	-	-	dB	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	-	1	MS/ s	C _{LOAD} ≤50 pF, R _{LOAD} ≥ 5 kΩ
t _{WAKEUP} ⁽⁴⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	-	6.5	10	μs	$C_{LOAD} \le 50$ pF, $R_{LOAD} \ge 5$ k Ω input code between lowest and highest possible ones.
PSRR+ ⁽²⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement)	-	-	- 67	- 40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

Table 85. DAC characteristics (continued)

1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF).

2. Guaranteed by design.

3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.

4. Guaranteed based on test during characterization.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP64 package information

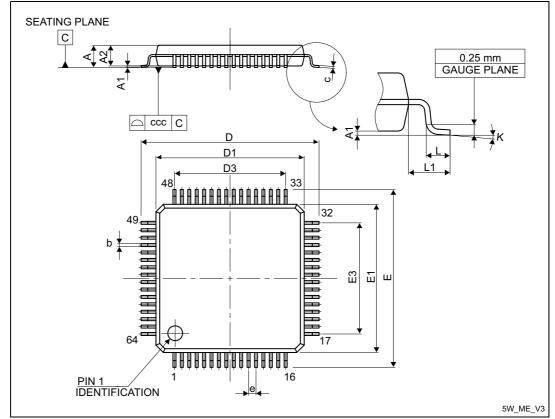
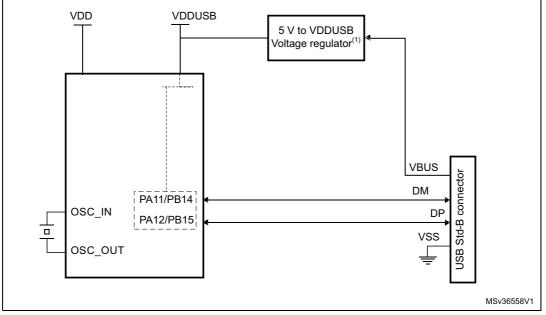


Figure 67. LQFP64-10x10 mm 64 pin low-profile quad flat package outline

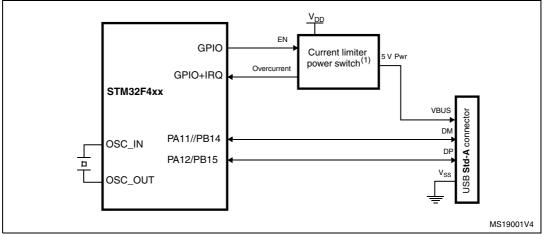
1. Drawing is not to scale

Table 108. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data


Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079

Appendix A Application block diagrams

A.1 USB OTG full speed (FS) interface solutions



1. External voltage regulator only needed when building a $V_{\mbox{BUS}}$ powered device.

2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

 The current limiter is required only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.

2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

