STMicroelectronics - STM32F446VET6TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	81
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f446vet6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 Embedded Flash memory

The devices embed a Flash memory of 512KB available for storing programs and data.

3.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.6 Embedded SRAM

All devices embed:

- Up to 128Kbytes of system SRAM.
 RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
- 4 Kbytes of backup SRAM

This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

3.7 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, USB HS) and the slaves Flash memory, RAM, QuadSPI, FMC, AHB and APB peripherals and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

3.19 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see *Table 5: Voltage regulator modes in stop mode*):

- Normal mode (default mode when MR or LPR is enabled)
- Under-drive mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup).

Voltage regulator configuration	Main regulator (MR)	Low-power regulator (LPR)
Normal mode	MR ON	LPR ON
Under-drive mode	MR in under-drive mode	LPR in under-drive mode

Table 5. Voltage regulator modes in stop mode

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

The standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

3.20 V_{BAT} operation

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present.

 V_{BAT} operation is activated when V_{DD} is not present.

The V_{BAT} pin supplies the RTC, the backup registers and the backup SRAM.

DocID027107 Rev 6

3.21 Timers and watchdogs

The devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 6 compares the features of the advanced-control, general-purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary output	Max interface clock (MHz)	Max timer clock (MHz) ⁽¹⁾
Advanced- control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	90	180
	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	45	90/180
	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	45	90/180
General	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	90	180
purpose	TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	90	180
	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	45	90/180
	TIM13, TIM14	16-bit	-bit Up Any integer and 65536		No	1	No	45	90/180
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	45	90/180

Table 6. Timer feature comparison

1. The maximum timer clock is either 90 or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

Name	Abbreviation	Definition					
Pin name	Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name						
	S	S Supply pin					
Pin type	I	Input only pin					
	I/O	Input / output pin					
	FT 5 V tolerant I/O						
	FTf	5V tolerant IO, I2C FM+ option					
I/O structure	ТТа	3.3 V tolerant I/O directly connected to ADC					
	B Dedicated BOOT0 pin						
	RST	Bidirectional reset pin with weak pull-up resistor					
Notes	Unless otherwise	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset					
Alternate functions	Functions selected	Functions selected through GPIOx_AFR registers					
Additional functions	Functions directly	Functions directly selected/enabled through peripheral registers					

Table 9. Legend/abbreviations used in the pinout table

	Pi	n Nun	nber							
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	1	D7	A3	1	PE2	I/O	FT	-	TRACECLK, SPI4_SCK, SAI1_MCLK_A, QUADSPI_BK1_IO2, FMC_A23, EVENTOUT	-
-	2	D6	A2	2	PE3	I/O	FT	-	TRACED0, SAI1_SD_B, FMC_A19, EVENTOUT	-
-	3	A9	B2	3	PE4	I/O	FT	-	TRACED1, SPI4_NSS, SAI1_FS_A, FMC_A20, DCMI_D4, EVENTOUT	-
-	4	-	В3	4	PE5	I/O	FT	-	TRACED2, TIM9_CH1, SPI4_MISO, SAI1_SCK_A, FMC_A21, DCMI_D6, EVENTOUT	-

Table 10. STM32F446xx pin and ball descriptions

Bus	Boundary address	Peripheral
-	0x4000 8000- 0x4000 FFFF	
	0x4000 7C00 - 0x4000 7FFF	Reserved
	0x4000 7800 - 0x4000 7BFF	
	0x4000 7400 - 0x4000 77FF	DAC
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6C00 - 0x4000 6FFF	HDMI-CEC
	0x4000 6800 - 0x4000 6BFF	CAN2
	0x4000 6400 - 0x4000 67FF	CAN1
	0x4000 6000 - 0x4000 63FF	FMPI2C1
	0x4000 5C00 - 0x4000 5FFF	I2C3
	0x4000 5800 - 0x4000 5BFF	12C2
	0x4000 5400 - 0x4000 57FF	I2C1
	0x4000 5000 - 0x4000 53FF	UART5
	0x4000 4C00 - 0x4000 4FFF	UART4
	0x4000 4800 - 0x4000 4BFF	USART3
	0x4000 4400 - 0x4000 47FF	USART2
APB1	0x4000 4000 - 0x4000 43FF	SPDIFRX
APDI	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2
	0x4000 3400 - 0x4000 37FF	Reserved
	0x4000 3000 - 0x4000 33FF	IWDG
	0x4000 2C00 - 0x4000 2FFF	WWDG
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers
	0x4000 2400 - 0x4000 27FF	Reserved
	0x4000 2000 - 0x4000 23FF	TIM14
	0x4000 1C00 - 0x4000 1FFF	TIM13
	0x4000 1800 - 0x4000 1BFF	TIM12
	0x4000 1400 - 0x4000 17FF	TIM7
	0x4000 1000 - 0x4000 13FF	TIM6
	0x4000 0C00 - 0x4000 0FFF	TIM5
	0x4000 0800 - 0x4000 0BFF	TIM4
	0x4000 0400 - 0x4000 07FF	TIM3
	0x4000 0000 - 0x4000 03FF	TIM2

Table 12. STM32F446xC/E register boundary addresses⁽¹⁾ (continued)

1. The grey color is used for reserved boundary addresses.

Electrical characteristics

- 1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.
- V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF).
- 3. When the ADC is used, refer to *Table 74: ADC characteristics*.
- 4. If V_{REF+} pin is present, it must respect the following condition: $V_{DDA}-V_{REF+} < 1.2 \text{ V}$.
- 5. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and power-down operation.
- 6. The over-drive mode is not supported when the internal regulator is OFF.
- 7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
- 8. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} .
- 9. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax}.

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum HCLK frequency vs Flash memory wait states (1)(2)	I/O operation	Possible Flash memory operations
V _{DD} =1.7 to 2.1 V ⁽³⁾	Conversion time up to 1.2 Msps	20 MHz ⁽⁴⁾	168 MHz with 8 wait states and over-drive OFF	 No I/O compensation 	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1.2 Msps	22 MHz	180 MHz with 8 wait states and over-drive ON	 No I/O compensation 	16-bit erase and program operations
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2.4 Msps	24 MHz states and over-drive compensation		compensation	16-bit erase and program operations
$V_{DD} = 2.7 \text{ to}$ 3.6 V ⁽⁵⁾	Conversion time up to 2.4 Msps	30 MHz	180 MHz with 5 wait states and over-drive ON	 I/O compensation works 	32-bit erase and program operations

Table 17. Limitations depending on the operating power supply range

1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.

 Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

 V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF).

4. Prefetch is not available.

5. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V.

6.3.2 VCAP_1/VCAP_2 external capacitor

Stabilization for the main regulator is achieved by connecting external capacitor C_{EXT} to the V_{CAP_1} and V_{CAP_2} pin. For packages supporting only 1 V_{CAP} pin, the 2 C_{EXT} capacitors are replaced by a single capacitor. C_{EXT} is specified in *Table 18*.

						Max ⁽¹⁾											
Symbol P	Parameter	Conditions	f _{HCLK} (MHz)	Тур	TA= 25 °C	TA=85 °C	TA=105 °C	Unit									
			180	81	89.0	110.0	120.0										
			168 ⁽⁴⁾	74	80.2	105.7	112.0										
			150	69	74.9	99.5	105.6										
		External clock,	144 ⁽⁴⁾	63	69.3	92.4	98.1										
		PLL ON, all peripherals	120	51	56.3	76.1	81.1										
		enabled ⁽²⁾⁽³⁾	90	40	45.32	63.19	67.63										
			60	28	33.1	48.7	52.6										
			30	16	20.8	34.0	37.4										
			25	13	18.4	31.2	34.5										
		External clock, PLL ON, all Peripherals disabled ⁽²⁾⁽³⁾	16	8	13.8	25.0	28.2										
												8	5	10.8	21.1	24.2	
			4	3.0	9.1	19.0	22.0										
1	Supply current in		PLL ON,	PLL ON,	PLL ON,	PLL ON,	PLL ON,				2	2.1	8.1	17.9	20.9	m 4	
I _{DD}	RUN mode							180	41	47.0	69.0	79.0	mA				
			168	38	43.2	61.9	67.1										
				150	37	41.8	60.3	65.4									
					144 ⁽⁴⁾	34	39.3	56.9	61.6								
			120	29	34.3	50.2	54.4										
			90	24	28.8	43.6	47.5										
		HSI, PLL OFF, all peripherals disabled ⁽³⁾ HSI, PLL OFF,	60	17	22.0	35.6	39.2										
								30	10	14.8	27.0	30.1					
			25	8	13.51	25.36	28.47										
			16	5	11.1	21.8	24.9										
			8	3	9.5	19.4	22.5										
		all Peripherals disabled ⁽³⁾	4	2.3	8.35	18.12	21.17										
			2	1.8	7.78	17.42	20.51										

Table 25. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled)

1. Guaranteed based on test during characterization unless otherwise specified.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

4. Overdrive OFF

				Typ ⁽¹⁾			Max ⁽²⁾		
Symbol	Parameter	eter Conditions		_ _A = 25 °	С	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			V _{DD} = 1.7 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	v	, _{DD} = 3.3	v	
		Backup SRAM ON, and LSE oscillator in low power mode	2.43	3.44	4.12	7	20	36	
		Backup SRAM OFF, RTC ON and LSE oscillator in low power mode	1.81	2.81	3.33	6	17	31	
I _{DD STBY}	Supply current in	Backup SRAM ON, RTC ON and LSE oscillator in high drive mode	3.32	4.33	4.95	8	21	37	μA
	Standby mode	Backup SRAM OFF, RTC ON and LSE oscillator in high drive mode	2.57	3.59	4.16	7	18	32	
		Backup SRAM ON, RTC and LSE OFF	2.03	2.73	3.5	6 ⁽³⁾	19	35 ⁽³⁾	
		Backup SRAM OFF, RTC and LSE OFF	1.28	1.97	2.03	5 ⁽³⁾	16	30 ⁽³⁾	

Table 28. Typical and maximum current consumptions in Standby mode
--

1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 μ A.

2. Guaranteed based on test during characterization unless otherwise specified.

3. Tested in production.

Symbol	Parameter	Conditions	f (MU-)	VDD=	=3.3 V	VDD:	=1.7 V	Unit
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	-
			180	47.605	1.2	NA	NA	
			168	44.35	1.0	41.53	0.8	
			150	40.58	0.9	39.96	0.8	
			144	35.68	0.9	34.60	0.7	
		All Peripherals enabled	120	27.30	0.9	29.11	0.7	
	Supply current in Sleep mode from V_{12} and V_{DD} supply		90	20.69	0.8	19.78	0.6	
			60	13.88	0.7	13.36	0.6	
			30	7.66	0.7	7.85	0.6	
1 /1			25	6.49	0.7	6.66	0.5	mA
I _{DD12} /I _{DD}			180	8.71	1.2	NA	NA	ma
	v _{DD} supply		168	7.00	0.9	8.42	0.8	
			150	6.88	0.9	7.61	0.8	
			144	6.29	0.9	6.99	0.7	
		All Peripherals disabled	120	4.87	0.9	5.95	0.7	
			90	3.78	0.8	3.96	0.6	
			60	2.66	0.7	2.80	0.6	
			30	1.65	0.7	1.74	0.6	
			25	1.45	0.7	1.52	0.5	

Table 33. Typical current consum	ption in Sleep mode, regulator OFF ⁽¹⁾

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 56: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Figure 29 and *Figure 30* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal.

 T_{mode} is the modulation period.

md is the modulation depth.

6.3.13 Memory characteristics

Flash memory

The characteristics are given at TA = - 40 to 105 $^{\circ}$ C unless otherwise specified. The devices are shipped to customers with the Flash memory erased.

Table 47. Flash memory characteristics

		-				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Write / Erase 8-bit mode, V_{DD} = 1.7 V	-	5	-	
I _{DD} Suppl	Supply current	Write / Erase 16-bit mode, V_{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode, V_{DD} = 3.3 V	-	12	-	

DocID027107 Rev 6

Electrical characteristics

OSPEEDR y[1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
value			C _L = 50 pF, V _{DD} ≥ 2.7 V	-	-	25		
			C _L = 50 pF, V _{DD} ≥ 1.8 V	-	-	12.5		
	_	(2)	C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	10	 	
	f _{max(IO)} out	Maximum frequency ⁽³⁾	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	50	MHz	
04			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	20		
01			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	12.5	-	
			C _L = 50 pF, V _{DD} ≥ 2.7 V	-	-	10		
	t _{f(IO)out} /	Output high to low level fall	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	6		
	t _{r(IO)out}	time and output low to high level rise time	C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	20	ns	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	10		
			C _L = 40 pF, V _{DD} ≥ 2.7 V	-	-	50 ⁽⁴⁾		
10			C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	100 ⁽⁴⁾		
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 40 pF, V _{DD} ≥ 1.7 V	-	-	25	MHz	
			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	50	-	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	42.5		
	t _{f(IO)out} /	Output high to low level fall time and output low to high level rise time	C _L = 40 pF, V _{DD} ≥2.7 V	-	-	6	- ns	
			C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	4		
	t _{r(IO)out}		C _L = 40 pF, V _{DD} ≥ 1.7 V	-	-	10		
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	6		
			C _L = 30 pF, V _{DD} ≥ 2.7 V	-	-	100 ⁽⁴⁾		
			C _L = 30 pF, V _{DD} ≥ 1.8 V	-	-	- 50		
	£	Maximum fraguescu (3)	C _L = 30 pF, V _{DD} ≥ 1.7 V	42	42.5			
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	180 ⁽⁴⁾	MHz	
			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	100	-	
44			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	72.5		
11			C _L = 30 pF, V _{DD} ≥ 2.7 V	-	-	4		
			C _L = 30 pF, V _{DD} ≥1.8 V	-	-	6		
	t _{f(IO)out} /	Output high to low level fall	C _L = 30 pF, V _{DD} ≥1.7 V	-	-	7		
	t _{r(IO)out}	time and output low to high level rise time	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	2.5	ns	
			C _L = 10 pF, V _{DD} ≥1.8 V	-	-	3.5		
			C _L = 10 pF, V _{DD} ≥1.7 V	-	-	4	1	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	-	ns	

Table 58. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

DocID027107 Rev 6

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit					
t _{w(CKH)}	QSPI clock high and low		(T _(CK) /2)-2	-	T _(CK) / 2						
t _{w(CKL)}				-	(T _(CK) /2)+2						
t _{s(IN)}	Data input setup time	-	0	-	-						
t _{h(IN)}	Data input hold time	-	5.5	-	-	ns					
+	Data output valid time	2.7V <vdd< 3.6v<="" td=""><td>-</td><td>5.5</td><td>6.5</td><td></td></vdd<>	-	5.5	6.5						
t _{v(OUT)}		1.71V <vdd< 3.6v<="" td=""><td>-</td><td>8</td><td>9.5</td><td></td></vdd<>	-	8	9.5						
t _{h(OUT)}	Data output hold time	-	3.5	-	-						

 Table 65. QSPI dynamic characteristics in DDR Mode⁽¹⁾ (continued)

1. Guaranteed based on test during characterization.

I²S interface characteristics

Unless otherwise specified, the parameters given in *Table 66* for the I²S interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 16*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{MCK}	I2S Main clock output	-	256 x 8K	256 x Fs ⁽²⁾	MHz	
f	I2S clock frequency	Master data	-	64 x Fs	MHz	
f _{CK}		Slave data	-	64 x Fs		
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%	

Table 66. I²S dynamic characteristics⁽¹⁾

6.3.21 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 74* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 16*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Power supply	N N 101	1.7 ⁽¹⁾	-	3.6	
V_{REF} +	Positive reference voltage	V _{DDA} –V _{REF+} < 1.2 V	1.7 ⁽¹⁾	-	V _{DDA}	V
V _{REF-}	Negative reference voltage	-	-	0	-	
f	ADC clock frequency	V_{DDA} = 1.7 ⁽¹⁾ to 2.4 V	0.6	15	18	MHz
f _{ADC}	ADC clock frequency	V _{DDA} = 2.4 to 3.6 V	0.6	30	36	MHz
$f_{TRIG}^{(2)}$ External trigger frequency $\frac{f_A}{1}$		f _{ADC} = 30 MHz, 12-bit resolution	-	-	1764	kHz
		-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
$R_{AIN}^{(2)}$	External input impedance	See <i>Equation 1</i> for details	-	-	50	κΩ
$R_{ADC}^{(2)(4)}$	Sampling switch resistance	-	-	-	6	κΩ
$C_{ADC}^{(2)}$	Internal sample and hold capacitor	-	-	4	7	pF
t _{lat} (2)	Injection trigger conversion	f _{ADC} = 30 MHz	-	-	0.100	μs
'lat` '	latency	-	-	-	3 ⁽⁵⁾	1/f _{ADC}
t _{latr} (2)	Regular trigger conversion	f _{ADC} = 30 MHz	-	-	0.067	μs
'latr'	latency	-	-	-	2 ⁽⁵⁾	1/f _{ADC}
t _S ⁽²⁾	Sampling time	f _{ADC} = 30 MHz	0.100	-	16	μs
ις		-	3	-	480	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	-	2	3	μs
		f _{ADC} = 30 MHz 12-bit resolution	0.50	-	16.40	μs
t _{CONV} ⁽²⁾		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	μs
	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.30	-	16.20	μs
		9 to 492 (t _S for sampling approximation)	+n-bit resolution f	or succe	ssive	1/f _{ADC}

Figure 46. Typical connection diagram using the ADC

- 1. Refer to Table 74 for the values of R_{AIN} , R_{ADC} and C_{ADC} .
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high $C_{parasitic}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

Figure 48. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

6.3.22 Temperature sensor characteristics

Table 80. Temperature sense	or characteristics
-----------------------------	--------------------

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	-	2.5	-	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	-	0.76	-	V
t _{START} ⁽²⁾	Startup time	-	6	10	μs
T _{S_temp} ⁽²⁾	ADC sampling time when reading the temperature (1 °C accuracy)	10	-	-	μs

1. Guaranteed based on test during characterization.

2. Guaranteed by design.

Table 81. Temperature sensor calibration values

Symbol	Parameter	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V_{DDA} = 3.3 V	0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C, V_{DDA} = 3.3 V	0x1FFF 7A2E - 0x1FFF 7A2F

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	Comments
	Integral non linearity (difference	-	-	-	±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽⁴⁾	between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	-	±4	LSB	Given for the DAC in 12-bit configuration.
	Offset error (difference	-	-	-	±10	mV	Given for the DAC in 12-bit configuration
Offset ⁽⁴⁾	between measured value at Code (0x800) and	-	-	-	±3	LSB	Given for the DAC in 10-bit at V_{REF+} = 3.6 V
	the ideal value = V _{REF+} /2)	-	-	-	±12	LSB	Given for the DAC in 12-bit at V_{REF+} = 3.6 V
Gain error ⁽⁴⁾	Gain error	-	-	-	±0.5	%	Given for the DAC in 12-bit configuration
tsettfing ⁽⁴	Total Harmonic Distortion Buffer ON	-	-	3	6	μs	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
THD ⁽⁴⁾	-	-	-	-	-	dB	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	-	1	MS/ s	C _{LOAD} ≤50 pF, R _{LOAD} ≥ 5 kΩ
t _{WAKEUP} ⁽⁴⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	-	6.5	10	μs	$C_{LOAD} \le 50$ pF, $R_{LOAD} \ge 5$ k Ω input code between lowest and highest possible ones.
PSRR+ ⁽²⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement)	-	-	- 67	- 40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

Table 85. DAC characteristics (continued)

1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF).

2. Guaranteed by design.

3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.

4. Guaranteed based on test during characterization.

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} – 1	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2.5	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} – 0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	2	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	2	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	0	-	
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	3	– ns
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{HCLK} + 1	-	
t _{d(CLKL-Data)}	FMC_D[15:0] valid data after FMC_CLK low	-	2.5	
$t_{d(CLKL-NBLL)}$	FMC_CLK low to FMC_NBL low	3	-	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} + 1.5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	1.5	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0	-	

Table 97. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾

1. C_L = 30 pF.

2. Guaranteed based on test during characterization.

NAND controller waveforms and timings

Figure 58 through *Figure 61* represent synchronous waveforms, and *Table 98* and *Table 99* provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration:

- COM.FSMC_SetupTime = 0x01;
- COM.FMC_WaitSetupTime = 0x03;
- COM.FMC_HoldSetupTime = 0x02;
- COM.FMC_HiZSetupTime = 0x01;
- ATT.FMC_SetupTime = 0x01;
- ATT.FMC_WaitSetupTime = 0x03;
- ATT.FMC_HoldSetupTime = 0x02;
- ATT.FMC_HiZSetupTime = 0x01;
- Bank = FMC_Bank_NAND;
- MemoryDataWidth = FMC_MemoryDataWidth_16b;
- ECC = FMC_ECC_Enable;
- ECCPageSize = FMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime = 0.

In all timing tables, the T_{HCLK} is the HCLK clock period.

Figure 60. NAND controller waveforms for common memory read access

Figure 61. NAND controller waveforms for common memory write access

Table 98. Switching characteristics for NAND Flash read cycles⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(N0E)}	FMC_NOE low width 4T _{HCLK} - 0.5 41			
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	9	-	
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	2.5	-	ns
t _{d(ALE-NOE)}	FMC_ALE valid before FMC_NOE low	-	3T _{HCLK} - 0.5	
t _{h(NOE-ALE)}	FMC_NWE high to FMC_ALE invalid	3T _{HCLK} – 2	-	

1. C_L = 30 pF.

Symbol	millimeters		inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах
D	11.800	12.000	12.200	0.4646	0.4724	0.4803
D1	9.800	10.000	10.200	0.3858	0.3937	0.4016
D3	-	7.500	-	-	0.2953	-
Е	11.800	12.000	12.200	0.4646	0.4724	0.4803
E1	9.800	10.000	10.200	0.3858	0.3937	0.4016
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
К	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 108. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 68. LQFP64 Recommended footprint

1. Drawing is not to scale.

2. Dimensions are in millimeters.

Revision history

Date	Revision	Changes		
17-Feb-2015	1	Initial release.		
16-Mar-2015	2	Added note 2 inside Table 2 Updated Table 11, Table 23, Table 24, Table 25, Table 26, Table 30, Table 51, Table 52, Table 53, and Table 61 Added condition inside Typical and maximum current consumption and Additional current consumption Added FMPI2C characteristics Added Table 62 and Figure 35		
29-May-2015	3	 Updated: Section 6.3.15: Absolute maximum ratings (electrical sensitivity) Section 7: Package information Table 2: STM32F446xC/E features and peripheral counts Table 13: STM32F446xC/xE WLCSP81 ballout Figure 53: ESD absolute maximum ratings Figure 54: Synchronous multiplexed NOR/PSRAM read timings Added: Figure 78: UQFP144 7 x 7 mm marking example (package top view), Figure 81: UQFP144 10 x 10 mm marking example (package top view), Figure 84: WLCSP81 10 x 10 mm marking example (package top view) 		
10-Aug-2015	4	Updated: - Figure 14: STM32F446xC/xE UFBGA144 ballout - Table 10: STM32F446xx pin and ball descriptions - Table 18: VCAP_1/VCAP_2 operating conditions - Section 3.15: Power supply schemes - Section 6.3.2: VCAP_1/VCAP_2 external capacitor Added: - Figure 5: VDDUSB connected to an external independent power supply - Notes 3 and 4 below Figure 18: Power supply scheme		

