E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	81
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	128К х 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f446vet7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 92.	Asynchronous multiplexed PSRAM/NOR write timings
Table 93.	Asynchronous multiplexed PSRAM/NOR write-NWAIT timings
Table 94.	Synchronous multiplexed NOR/PSRAM read timings
Table 95.	Synchronous multiplexed PSRAM write timings
Table 96.	Synchronous non-multiplexed NOR/PSRAM read timings
Table 97.	Synchronous non-multiplexed PSRAM write timings
Table 98.	Switching characteristics for NAND Flash read cycles
Table 99.	Switching characteristics for NAND Flash write cycles
Table 100.	SDRAM read timings
Table 101.	LPSDR SDRAM read timings
Table 102.	SDRAM write timings
Table 103.	LPSDR SDRAM write timings
Table 104.	DCMI characteristics
Table 105.	Dynamic characteristics: SD / MMC characteristics
Table 106.	Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V
Table 107.	RTC characteristics
Table 108.	LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data
Table 109.	LQPF100, 14 x 14 mm 100-pin low-profile quad flat
	package mechanical data
Table 110.	LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data 183
Table 111.	UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
	grid array package mechanical data
Table 112.	UFBGA144 recommended PCB design rules (0.50 mm pitch BGA)
Table 113.	UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
	grid array package mechanical data
Table 114.	UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) 190
Table 115.	WLCSP81- 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale
	package mechanical data
Table 116.	WLCSP81 recommended PCB design rules (0.4 mm pitch) 193
Table 117.	Package thermal characteristics
Table 118.	Ordering information scheme
Table 119.	Document revision history

Figure 6. Power supply supervisor interconnection with internal reset OFF

The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V.

A comprehensive set of power-saving mode allows to design low-power applications.

When the internal reset is OFF, the following integrated features are no more supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD}.

All packages, except for the LQFP100/LQFP64, allow to disable the internal reset through the PDR_ON signal.

3.17 Voltage regulator

The regulator has four operating modes:

- Regulator ON
 - Main regulator mode (MR)
 - Low power regulator (LPR)
 - Power-down
- Regulator OFF

3.17.1 Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.

There are three power modes configured by software when the regulator is ON:

- MR mode used in Run/sleep modes or in Stop modes
 - In Run/Sleep mode

The MR mode is used either in the normal mode (default mode) or the over-drive mode (enabled by software). Different voltages scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. The over-drive mode allows operating at a higher frequency than the normal mode for a given voltage scaling.

In Stop modes

The MR can be configured in two ways during stop mode:

- MR operates in normal mode (default mode of MR in stop mode)
- MR operates in under-drive mode (reduced leakage mode).
- LPR is used in the Stop modes:

The LP regulator mode is configured by software when entering Stop mode.

Like the MR mode, the LPR can be configured in two ways during stop mode:

- LPR operates in normal mode (default mode when LPR is ON)
- LPR operates in under-drive mode (reduced leakage mode).
- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Refer to *Table 3* for a summary of voltage regulator modes versus device operating modes.

Two external ceramic capacitors should be connected on V_{CAP 1} and V_{CAP 2} pin.

All packages have the regulator ON feature.

Voltage regulator configuration	Run mode	Sleep mode	Stop mode	Standby mode	
Normal mode	MR	MR	MR or LPR	-	
Over-drive mode ⁽²⁾	MR	MR	-	-	
Under-drive mode	-	-	MR or LPR	-	
Power-down mode	-	-	-	Yes	

Table 3. Voltage regulator configuration mode versus device operating mode⁽¹⁾

1. '-' means that the corresponding configuration is not available.

2. The over-drive mode is not available when V_{DD} = 1.7 to 2.1 V.

3.17.2 Regulator OFF

This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V₁₂ voltage source through V_{CAP 1} and V_{CAP 2} pins.

DocID027107 Rev 6

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

3.32 Controller area network (bxCAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN.

3.33 Universal serial bus on-the-go full-speed (OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The USB has dedicated power rails allowing its use throughout the entire power range. The major features are:

- Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 6 bidirectional endpoints
- 12 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

3.34 Universal serial bus on-the-go high-speed (OTG_HS)

The devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The USB has dedicated power rails allowing its use throughout the entire power range.

Bus	Boundary address	Peripheral
-	0x4000 8000- 0x4000 FFFF	
	0x4000 7C00 - 0x4000 7FFF	Reserved
	0x4000 7800 - 0x4000 7BFF	-
	0x4000 7400 - 0x4000 77FF	DAC
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6C00 - 0x4000 6FFF	HDMI-CEC
	0x4000 6800 - 0x4000 6BFF	CAN2
	0x4000 6400 - 0x4000 67FF	CAN1
	0x4000 6000 - 0x4000 63FF	FMPI2C1
	0x4000 5C00 - 0x4000 5FFF	I2C3
	0x4000 5800 - 0x4000 5BFF	I2C2
	0x4000 5400 - 0x4000 57FF	I2C1
	0x4000 5000 - 0x4000 53FF	UART5
	0x4000 4C00 - 0x4000 4FFF	UART4
	0x4000 4800 - 0x4000 4BFF	USART3
	0x4000 4400 - 0x4000 47FF	USART2
	0x4000 4000 - 0x4000 43FF	SPDIFRX
APB1	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2
	0x4000 3400 - 0x4000 37FF	Reserved
	0x4000 3000 - 0x4000 33FF	IWDG
	0x4000 2C00 - 0x4000 2FFF	WWDG
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers
	0x4000 2400 - 0x4000 27FF	Reserved
	0x4000 2000 - 0x4000 23FF	TIM14
	0x4000 1C00 - 0x4000 1FFF	TIM13
	0x4000 1800 - 0x4000 1BFF	TIM12
	0x4000 1400 - 0x4000 17FF	TIM7
	0x4000 1000 - 0x4000 13FF	TIM6
	0x4000 0C00 - 0x4000 0FFF	TIM5
	0x4000 0800 - 0x4000 0BFF	TIM4
	0x4000 0400 - 0x4000 07FF	TIM3
	0x4000 0000 - 0x4000 03FF	TIM2

Table 12. STM32F446xC/E register boundary addresses⁽¹⁾ (continued)

1. The grey color is used for reserved boundary addresses.

Figure 20. External capacitor C_{EXT}

1. Legend: ESR is the equivalent series resistance.

Symbol	Parameter	Conditions
C _{EXT}	Capacitance of external capacitor	2.2 µF
ESR	ESR of external capacitor	< 2 Ω
C _{EXT}	Capacitance of external capacitor with a single V_{CAP} pin available	4.7 µF
ESR	ESR of external capacitor with a single V_{CAP} pin available	< 1 Ω

Table 18. VCAP_1/VCAP_2 operating conditions⁽¹⁾

When bypassing the voltage regulator, the two 2.2 μF V_{CAP} capacitors are not required and should be replaced by two 100 nF decoupling capacitors. 1.

6.3.3 Operating conditions at power-up / power-down (regulator ON)

Subject to general operating conditions for T_A.

Table 19. Operating conditions at power-up/power-down (regulator ON)

Symbol	Parameter	Min	Мах
+	V _{DD} rise time rate	20	∞
۲VDD	V _{DD} fall time rate	20	~

Operating conditions at power-up / power-down (regulator OFF) 6.3.4

Subject to general operating conditions for T_A.

Table 20. Operating conditions at power-up / power-down (regulator OFF)⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
t	V _{DD} rise time rate	Power-up	20	8	
۲VDD	V _{DD} fall time rate	Power-down	20	8	ue/\/
ture	V_{CAP_1} and V_{CAP_2} rise time rate	Power-up	20	8	μ5/ ν
^I VCAP	V_{CAP_1} and V_{CAP_2} fall time rate	Power-down	20	8	

To reset the internal logic at power-down, a reset must be applied on pin PA0 when V_{DD} reach below 1.08 V. 1.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 35: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 $I_{\mbox{SW}}$ is the current sunk by a switching I/O to charge/discharge the capacitive load

 V_{DD} is the MCU supply voltage

 $f_{\mbox{SW}}$ is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Symbol	Parameter	Conditions	I/O toggling frequency (fsw)	Тур	Unit		
			2 MHz	0.0			
			8 MHz	0.2			
			25 MHz	0.6			
	I/O switching Current	$V_{DD} = 3.3 V$ C = C _{INT} ⁽²⁾	50 MHz	1.1			
				S SINT	60 MHz	1.3	
			84 MHz	1.8			
		I/O switching			90 MHz	1.9	m (
IDDIO		V _{DD} = 3.3 V C _{EXT} = 0 pF	2 MHz	0.1	ША		
			8 MHz	0.4			
			25 MHz	1.23			
			50 MHz	2.43			
		$+ C_S$	60 MHz	2.93			
			84 MHz	3.86			
			90 MHz	4.07			

Table 34. Switching output I/O current consumption ⁽¹⁾

6.3.10 Internal clock source characteristics

The parameters given in *Table 41* and *Table 42* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 16*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
ACC _{HSI}		User-trimmed with the RCC_CR register ⁽²⁾	-	-	1	%
	Accuracy of the HSI oscillator	T _A = - 40 to 105 °C ⁽³⁾	- 8	-	4.5	%
		$T_A = -10$ to 85 °C ⁽³⁾	- 4	-	4	%
		$T_{A} = 25 \ ^{\circ}C^{(4)}$	- 1	-	1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA

Table 41. HSI oscillator characteristics ⁽¹⁾

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed based on test during characterization.

4. Factory calibrated, parts not soldered.

^{1.} Guaranteed based on test during characterization.

Symbol Parameter		Min	Тур	Max ⁽¹⁾	Unit
f _{Mod}	Modulation frequency	-	-	10	KHz
md	Peak modulation depth	0.25	-	2	%
MODEPER * INCSTEP	-	-	-	2 ¹⁵ –1	-

Table 46. SSCG parameters constraint

1. Guaranteed by design.

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

 $MODEPER = round[f_{PLL IN} / (4 \times f_{Mod})]$

 $f_{\text{PLL}\ \text{IN}}$ and f_{Mod} must be expressed in Hz.

As an example:

If f_{PLL_IN} = 1 MHz, and f_{MOD} = 1 kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER = round $[10^{6}/(4 \times 10^{3})] = 250$

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

. -

. -

INCSTEP = round[
$$((2^{15} - 1) \times md \times PLLN)/(100 \times 5 \times MODEPER)$$
]

 $f_{VCO\ OUT}$ must be expressed in MHz.

With a modulation depth (md) = ± 2 % (4 % peak to peak), and PLLN = 240 (in MHz):

INCSTEP = round[
$$((2^{15}-1) \times 2 \times 240)/(100 \times 5 \times 250)$$
] = 126md(quantitazed)%

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

$$md_{quantized}$$
% = (MODEPER × INCSTEP × 100 × 5)/ ((2¹⁵ - 1) × PLLN)

As a result:

$$md_{quantized}$$
% = $(250 \times 126 \times 100 \times 5)/((2^{15} - 1) \times 240) = 2.002\%$ (peak)

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V _{PP}	V _{PP} voltage range	-	7	-	9	V
I _{PP}	Minimum current sunk on the V _{PP} pin	-	10	-	-	mA
t _{VPP} ⁽³⁾	Cumulative time during which V_{PP} is applied	-	-	-	1	hour

Table 49. Flash memory programming with V_{PP} (continued)

1. Guaranteed by design.

2. The maximum programming time is measured after 100K erase operations.

3. V_{PP} should only be connected during programming/erasing.

Symbol	Parameter	Conditions	Value	Unit			
-	-	Conditions	Min ⁽¹⁾	Unit			
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	Kcycles			
		1 kcycle ⁽²⁾ at T _A = 85 °C	30				
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years			
		10 kcycles ⁽²⁾ at T _A = 55 °C	20				

Table 50. Flash memory endurance and data retention

1. Guaranteed based on test during characterization.

2. Cycling performed over the whole temperature range.

6.3.14 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 51*. They are based on the EMS levels and classes defined in application note AN1709.

The I²C characteristics are described in *Table 61*. Refer also to *Section 6.3.17: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C ⁽¹⁾⁽²⁾		Fast mode	Unit		
		Min	Мах	Min	Max		
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-		
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs	
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽⁴⁾		
t _{v(SDA, ACK)}	Data, ACK valid time	-	3.45	-	0.9		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300		
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-		
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs	
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs	
t _{SP}	Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode	-	-	0.05	0.09 ⁽⁵⁾	μs	
Cb	Capacitive load for each bus line	-	400	-	400	pF	

Table 61.	l ² C	characteristics
-----------	------------------	-----------------

1. Guaranteed based on test during characterization.

f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock.

3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal.

5. The minimum width of the spikes filtered by the analog filter is above $t_{SP}(max)$.

QSPI interface characteristics

Unless otherwise specified, the parameters given in *Table 64* for QSPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in *Table 16*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C=20pF
- Measurement points are done at CMOS levels: 0.5VDD

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{SCK} 1/t _{c(SCK)}		Write mode 1.71 V≤V _{DD} ≤3.6 V Cload = 15 pF	-	-	90	
	QSPI clock frequency	Read mode 2.7V <vdd< 3.6v<br="">Cload = 15 pF</vdd<>	-	-	90	MHz
		1.71 V≤V _{DD} ≤3.6 V	-	-	48	
t _{w(CKH)}	OSPI clock high and low	_	(T _(CK) /2)-2	-	T _(CK) / 2	
t _{w(CKL)}	Correlation high and low		Т _(СК) / 2	-	(T _(CK) / 2) +2	
t _{s(IN)}	Data input setup time	-	2	-	-	ne
t _{h(IN)}	Data input hold time	-	4.5	-	-	115
t _{v(OUT)}	Data output valid time	-	-	1.5	3	
t _{h(OUT)}	Data output hold time	-	0	-	-	

Table 64. QSPI dynamic characteristics in SDR Mode⁽¹⁾

1. Guaranteed based on test during characterization.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{SCK} 1/t _{c(SCK)}	QSPI clock frequency	Write mode 1.71 V≤V _{DD} ≤3.6 V Cload = 15 pF	-	-	60	
		Read mode 2.7V <vdd< 3.6v<br="">Cload = 15 pF</vdd<>	-	-	60	MHz
		1.71 V≤V _{DD} ≤3.6 V	-	-	48	1

Table 65. QSPI dynamic characteristics in DDR Mode⁽¹⁾

	Driver characteristics								
SymbolParameterConditionsMinMaxUnit									
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns				
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	20	ns				
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%				
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V				
Z _{DRV}	Output driver impedance ⁽³⁾	Driving high or low	28	44	Ω				

Table 70. USB OTG full speed electrical characteristics⁽¹⁾

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching impedance is included in the embedded driver.

USB high speed (HS) characteristics

Unless otherwise specified, the parameters given in *Table 73* for ULPI are derived from tests performed under the ambient temperature, f_{HCLK} frequency summarized in *Table 72* and V_{DD} supply voltage conditions summarized in *Table 71*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10, unless otherwise specified
- Capacitive load C = 30 pF, unless otherwise specified
- Measurement points are done at CMOS levels: 0.5V_{DD}.

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

Symbol		Parameter	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input level	V _{DD}	USB OTG HS operating voltage	1.7	3.6	V

1. All the voltages are measured from the local ground potential.

		• •				
Symbol	Parameter	Min	Тур	Мах	Unit	
-	$f_{\mbox{HCLK}}$ value to guarantee proper operation of USB HS interface		30	-	-	MHz
F _{START_8BIT}	Frequency (first transition) 8-bit ±10%		54	60	66	MHz
F _{STEADY}	Frequency (steady state) ±500 ppm		59.97	60	60.03	MHz
D _{START_8BIT}	Duty cycle (first transition) 8-bit ±10%		40	50	60	%
D _{STEADY}	Duty cycle (steady state) ±500 ppm		49.975	50	50.025	%
t _{STEADY}	Time to reach the steady state frequency and duty cycle after the first transition		-	-	1.4	ms

6.3.21 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 74* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 16*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Power supply		1.7 ⁽¹⁾	-	3.6	
V _{REF+}	Positive reference voltage	$V_{\text{DDA}} - V_{\text{REF}+} < 1.2 V$	1.7 ⁽¹⁾	-	V _{DDA}	V
V _{REF-}	Negative reference voltage	-	-	0	-	
f	ADC clock frequency	$V_{DDA} = 1.7^{(1)}$ to 2.4 V	0.6	15	18	MHz
^I ADC		V _{DDA} = 2.4 to 3.6 V	0.6	30	36	MHz
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 30 MHz, 12-bit resolution	-	-	1764	kHz
		-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V_{REF^+}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> for details	-	-	50	κΩ
R _{ADC} ⁽²⁾⁽⁴⁾	Sampling switch resistance	-	-	-	6	κΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	4	7	pF
t. (2)	Injection trigger conversion latency	f _{ADC} = 30 MHz	-	-	0.100	μs
4at` /		-	-	-	3 ⁽⁵⁾	1/f _{ADC}
t. (2)	Regular trigger conversion latency	f _{ADC} = 30 MHz	-	-	0.067	μs
Hatr		-	-	-	2 ⁽⁵⁾	1/f _{ADC}
+_ (2)	Sampling time	f _{ADC} = 30 MHz	0.100	-	16	μs
^I S ¹		-	3	-	480	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	-	2	3	μs
	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 12-bit resolution	0.50	-	16.40	μs
t _{CONV} ⁽²⁾		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	μs
		f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.30	-	16.20	μs
		9 to 492 (t _S for sampling +n-bit resolution for successive approximation)				1/f _{ADC}

Figure 49. 12-bit buffered/non-buffered DAC

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Figure 50. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

In all timing tables, the T_{HCLK} is the HCLK clock period (with maximum FMC_CLK = 90 MHz).

Figure 55. Synchronous multiplexed PSRAM write timings

Figure 63. SDRAM write access waveforms

Table 102. SDRAM write t	iminas ⁽¹⁾⁽²⁾
--------------------------	--------------------------

Symbol	Parameter	Min	Мах	Unit
F _(SDCLK)	Frequency of operation	-	90	MHz
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} - 0.5	2T _{HCLK} + 0.5	
t _{d(SDCLKL _Data)}	Data output valid time	-	2	
t _{h(SDCLKL} _Data)	Data output hold time	0.5	-	
$t_{d(SDCLK _Add)}$	Address valid time	-	3	
$t_{d(SDCLKL _SDNWE))}$	SDNWE valid time	-	1.5	
t _{h(SDCLKL_SDNWE))}	SDNWE hold time	0	-	ns
t _{d(SDCLKL_SDNE))}	Chip select valid time	-	1.5	115
$t_{h(SDCLKL_SDNE)}$	Chip select hold time	0	-	
$t_{d(SDCLKL_SDNRAS)}$	SDNRAS valie time	-	1	
$t_{h(SDCLKL_SDNRAS)}$	SDNRAS hold time	0	-	
$t_{d(SDCLKL_SDNCAS)}$	SDNCAS valid time	-	1	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

1. $C_L = 10 \text{ pF}$ on data and address line. $C_L = 15 \text{ pF}$ on FMC_SDCLK.

2. Guaranteed based on test during characterization.

A.2 USB OTG high speed (HS) interface solutions

Figure 88. USB controller configured as peripheral, host, or dual-mode and used in high speed mode

 It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F446xx with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible connection.

2. The ID pin is required in dual role only.

