

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-UFBGA
Supplier Device Package	144-UFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f446zcj6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

These features make the STM32F446xC/E microcontrollers suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances

Table 2. STM32F446xC/E features and peripheral counts

Periph	erals	STM32F44 6MC	STM32F44 6ME	STM32F44 6RC	STM32F44 6RE	STM32F44 6VC	STM32F44 6VE	STM32F44 6ZC	STM32F44 6ZE					
Flash memory in	Kbytes	256	512	256	512	256	512	256	512					
SRAM in	System				128 (1	12+16)		•						
Kbytes	Backup				2	1								
FMC memory co	ntroller	No Yes ⁽¹⁾												
	General- purpose				1	0								
Timers	Advanced- control				2	2								
	Basic				2	2								
	SPI / I ² S				4/3 (sim	nplex) ⁽²⁾								
	I ² C				4/1 F	MP +								
	USART/UART		4/2											
	USB OTG FS	Yes (6-Endpoints)												
	USB OTG HS				Yes (8-E	ndpoints)								
Communication interfaces	CAN		2											
	SAI	2												
	SDIO	Yes												
	SPDIF-Rx	1												
	HDMI-CEC	1												
	Quad SPI ⁽³⁾					1								
Camera interface	9	Yes												
GPIOs		6	3	5	0	8	1	11	14					
12-bit ADC					:	3								
Number of chanr	nels	1	4	1	6	1	6	2	4					
12-bit DAC Number of chanr	nels	Yes 2												
Maximum CPU f	requency	180 MHz												
Operating voltag	e	1.8 to 3.6 V ⁽⁴⁾												
.				Ambient tem	peratures: -40) to +85 °C /–4	0 to +105 °C							
Operating tempe	ratures			Junc	tion temperatu	re: -40 to + 12	25 °C							
Packages		WLC	SP81	LQF	P64	LQF	P100	LQFI UFBG	P144 GA144					

Figure 3. STM32F446xC/E block diagram

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. The two 2.2 μ F ceramic capacitors should be replaced by two 100 nF decoupling capacitors.

When the regulator is OFF, there is no more internal monitoring on V_{12} . An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V₁₂ logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.
- The over-drive and under-drive modes are not available.

Figure 7. Regulator OFF

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V₁₂ minimum value and until V_{DD} reaches 1.7 V (see *Figure 8*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see *Figure 9*).
- If V_{CAP_1} and V_{CAP_2} go below V_{12} minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.

Note: The minimum value of V₁₂ depends on the maximum frequency targeted in the application.

3.21 Timers and watchdogs

The devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 6 compares the features of the advanced-control, general-purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary output	Max interface clock (MHz)	Max timer clock (MHz) ⁽¹⁾
Advanced- control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	90	180
Timer type Advanced- control General purpose Basic	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	45	90/180
	TIM3, TIM4	16-bit	Up, Any inte 16-bit Down, betwee Up/down and 65		Yes	4	No	45	90/180
	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	90	180
purpose	TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	90	180
	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	45	90/180
	TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	45	90/180
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	45	90/180

Table 6. Timer feature comparison

1. The maximum timer clock is either 90 or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer.

3.38 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as V_{BAT}, ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and V_{BAT} conversion are enabled at the same time, only V_{BAT} conversion is performed.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

3.39 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 10-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

3.40 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

	Pi	n Nun	nber							
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	5	-	B4	5	PE6 I/O FT - TRACED3, TIM9_CH2, SPI4_MOSI, SAI1_SD_A, FMC_A22, DCMI_D7, EVENTOUT		-			
1	6	B9	C2	6	VBAT	S	-	-	-	-
2	7	C8	A1	7	PC13	I/O	FT	-	EVENTOUT	TAMP_1/WKUP1
3	8	C9	B1	8	PC14- OSC32_IN(PC14)	I/O	FT	-	EVENTOUT	OSC32_IN
4	9	D9	C1	9	PC15- OSC32_OUT(PC15)	I/O	FT	-	EVENTOUT	OSC32_OUT
-	-	-	C3	10	PF0	I/O	FT	-	I2C2_SDA, FMC_A0, EVENTOUT	-
-	-	-	C4	11	PF1	I/O	FT	-	I2C2_SCL, FMC_A1, EVENTOUT	-
-	-	-	D4	12	PF2	I/O	FT	-	I2C2_SMBA, FMC_A2, EVENTOUT	-
-	-	-	E2	13	PF3	I/O	FT	-	FMC_A3, EVENTOUT	ADC3_IN9
-	-	-	E3	14	PF4	I/O	FT	-	FMC_A4, EVENTOUT	ADC3_IN14
-	-	-	E4	15	PF5	I/O	FT	-	FMC_A5, EVENTOUT	ADC3_IN15
-	10	-	D2	16	VSS	S	-	-	-	-
-	11	-	D3	17	VDD	S	-	-	-	-
-	-	-	F3	18	PF6	I/O	FT	-	TIM10_CH1, SAI1_SD_B, QUADSPI_BK1_IO3, EVENTOUT	ADC3_IN4
-	-	-	F2	19	PF7	I/O	FT	-	TIM11_CH1, SAI1_MCLK_B, QUADSPI_BK1_IO2, EVENTOUT	ADC3_IN5
-	-	-	G3	20	PF8	I/O	FT	-	SAI1_SCK_B, TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT	ADC3_IN6
-	-	-	G2	21	PF9	I/O	FT	-	SAI1_FS_B, TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT	ADC3_IN7
-	-	-	G1	22	PF10	I/O	FT	-	DCMI_D11, EVENTOUT	ADC3_IN8
5	12	E9	D1	23	PH0-OSC_IN(PH0)	I/O	FT	-	EVENTOUT	OSC_IN

	Pi	n Nun	nber							
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type I/O structure Notes		Notes	Alternate functions	Additional functions
26	35	F5	L4	46	PB0 I/O FT - TIM1_CH2N, TIM3_CH3, TIM8_CH2N, SPI3_MOSI/I2S3_SD, UART4_CTS, OTG_HS_ULPI_D1, SDI0_D1, EVENTOUT TIM1_CH3N, TIM3_CH4,		ADC12_IN8			
27	36	H6	M4	47	PB1	I/O	FT	-	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, OTG_HS_ULPI_D2, SDIO_D2, EVENTOUT	ADC12_IN9
28	37	J6	J5	48	PB2-BOOT1 (PB2)	I/O	FT	-	TIM2_CH4, SAI1_SD_A, SPI3_MOSI/I2S3_SD, QUADSPI_CLK, OTG_HS_ULPI_D4, SDIO_CK, EVENTOUT	-
-	-	-	M5	49	PF11	PF11 I/O FT - SAI2_SD_B, PF11 I/O FT - FMC_SDNRAS, DCMI_D12, EVENTOUT		-		
-	-	-	L5	50	PF12	I/O	FT	-	FMC_A6, EVENTOUT	-
-	-	-	-	51	VSS	S	-	-	-	-
-	-	-	G5	52	VDD	S	-	-	-	-
-	-	-	K5	53	PF13	I/O	FT	-	FMPI2C1_SMBA, FMC_A7, EVENTOUT	-
-	-	-	M6	54	PF14	I/O	FTf	-	FMPI2C1_SCL, FMC_A8, EVENTOUT	-
-	-	-	L6	55	PF15	I/O	FTf	-	FMPI2C1_SDA, FMC_A9, EVENTOUT	-
-	-	-	K6	56	PG0	I/O	FT	-	FMC_A10, EVENTOUT	-
-	-	-	J6	57	PG1	I/O	FT	-	FMC_A11, EVENTOUT	-
-	38	J5	M7	58	PE7	I/O	FT	-	TIM1_ETR, UART5_RX, QUADSPI_BK2_IO0, FMC_D4, EVENTOUT	-
-	39	H5	L7	59	PE8	I/O FT - QUADSPI_BK2_IO1, FMC_D5, EVENTOUT		TIM1_CH1N, UART5_TX, QUADSPI_BK2_IO1, FMC_D5, EVENTOUT	-	
-	40	G5	K7	60	PE9	I/O	FT	-	TIM1_CH1, QUADSPI_BK2_IO2, FMC_D6, EVENTOUT	-

Table 10	. STM32F446xx	pin and ball	descriptions	(continued)
----------	---------------	--------------	--------------	-------------

STM32F446xC/E

Pinout and pin description

							Т	able 11.	Alterna	te funct	ion (con	tinued)						
Y			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Po	Port		TIM1/2	TIM3/4/5	TIM8/9/ 10/11/ CEC	I2C1/2/3 /4/CEC	SPI1/2/3/ 4	SPI2/3/4/ SAI1	SPI2/3/ USART1/ 2/3/UART 5/SPDIFR X	SAI/ USART6/ UART4/5/ SPDIFRX	CAN1/2 TIM12/13/ 14/ QUADSPI	SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS	OTG1_FS	FMC/ SDIO/ OTG2_FS	DCMI	-	SYS
		PG0	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A10	-	-	EVENT OUT
		PG1	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A11	-	-	EVENT OUT
		PG2	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A12	-	-	EVENT OUT
		PG3	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A13	-	-	EVENT OUT
		PG4	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A14/ FMC_BA0	-	-	EVENT OUT
Doc		PG5	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A15/ FMC_BA1	-	-	EVENT OUT
D02		PG6	-	-	-	-	-	-	-	-	-	-	QUADSPI_ BK1_NCS	-	-	DCMI_ D12	-	EVENT OUT
7107		PG7	-	-	-	-	-	-	-	-	USART6_C K	-	-	-	FMC_INT	DCMI_ D13	-	EVENT OUT
Rev 6	Port G	PG8	-	-	-	-	-	-	-	SPDIFRX_ IN2	USART6_R TS	-	-	-	FMC_ SDCLK	-	-	EVENT OUT
0,		PG9	-	-	-	-	-	-	-	SPDIFRX_ IN3	USART6_R X	QUADSPI_ BK2_IO2	SAI2_FS_B	-	FMC_NE2/ FMC_NCE3	DCMI_ VSYNC ⁽¹⁾	-	EVENT OUT
		PG10	-	-	-	-	-	-	-	-	-	-	SAI2_SD_B	-	FMC_NE3	DCMI_D2	-	EVENT OUT
		PG11	-	-	-	-	-	-	SPI4_ SCK	SPDIFRX_ IN0	-	-	-	-	-	DCMI_D3	-	EVENT OUT
		PG12	-	-	-	-	-	-	SPI4_ MISO	SPDIFRX_ IN1	USART6_R TS	-	-	-	FMC_NE4	-	-	EVENT OUT
		PG13	TRACE D2	-	-	-	-	-	SPI4_ MOSI	-	USART6_C TS	-	-	-	FMC_A24	-	-	EVENT OUT
		PG14	TRACE D3	-	-	-	-	-	SPI4_ NSS	-	USART6_T X	QUADSPI_ BK2_IO3	-	-	FMC_A25	-	-	EVENT OUT
		PG15	-	-	-	-	-	-	-	-	USART6_C TS	-	-	-	FMC_ SDNCAS	DCMI_ D13	-	EVENT OUT

65/202

Bus	Boundary address	Peripheral
-	0x4000 8000- 0x4000 FFFF	
	0x4000 7C00 - 0x4000 7FFF	Reserved
	0x4000 7800 - 0x4000 7BFF	-
	0x4000 7400 - 0x4000 77FF	DAC
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6C00 - 0x4000 6FFF	HDMI-CEC
	0x4000 6800 - 0x4000 6BFF	CAN2
	0x4000 6400 - 0x4000 67FF	CAN1
	0x4000 6000 - 0x4000 63FF	FMPI2C1
	0x4000 5C00 - 0x4000 5FFF	I2C3
	0x4000 5800 - 0x4000 5BFF	I2C2
	0x4000 5400 - 0x4000 57FF	I2C1
	0x4000 5000 - 0x4000 53FF	UART5
	0x4000 4C00 - 0x4000 4FFF	UART4
	0x4000 4800 - 0x4000 4BFF	USART3
	0x4000 4400 - 0x4000 47FF	USART2
	0x4000 4000 - 0x4000 43FF	SPDIFRX
AFDI	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2
	0x4000 3400 - 0x4000 37FF	Reserved
	0x4000 3000 - 0x4000 33FF	IWDG
	0x4000 2C00 - 0x4000 2FFF	WWDG
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers
	0x4000 2400 - 0x4000 27FF	Reserved
	0x4000 2000 - 0x4000 23FF	TIM14
	0x4000 1C00 - 0x4000 1FFF	TIM13
	0x4000 1800 - 0x4000 1BFF	TIM12
	0x4000 1400 - 0x4000 17FF	TIM7
	0x4000 1000 - 0x4000 13FF	TIM6
	0x4000 0C00 - 0x4000 0FFF	TIM5
	0x4000 0800 - 0x4000 0BFF	TIM4
	0x4000 0400 - 0x4000 07FF	TIM3
	0x4000 0000 - 0x4000 03FF	TIM2

Table 12. STM32F446xC/E register boundary addresses⁽¹⁾ (continued)

1. The grey color is used for reserved boundary addresses.

Table	51.	EMS	characteristics
	• • •	_	

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, LQFP144, T _A = +25 °C, f _{HCLK} = 168 MHz, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, \text{LQFP144},$ T _A = +25 °C, f _{HCLK} = 168 MHz, conforms to IEC 61000-4-2	4B

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

6.3.17 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 56: I/O static characteristics* are derived from tests performed under the conditions summarized in *Table 16*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	FT, FTf, TTa and NRST I/O	1.7 V≤V _{DD} ≤3.6 V	-	-	$0.35V_{DD} - 0.04^{(1)}$	
Symbol V _{IL} FT Inf V _{IL} BC VO VO VIH BC VO VIH BC VO VIH BC VO VIH BC VO VIH BC VO VIH BC VO VIL VIH BC VO VO VIL VIL VIL VIL VIL VIL VIL VIL VIL VIL	BOOT0 I/O input low level voltage	$1.75 V \le V_{DD} \le$ 3.6 V, - 40 °C≤ T _A ≤ 105 °C	-	_	0.1V _{DD} +0.1 ⁽¹⁾	V
		$\begin{array}{l} 1.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 0 \ ^{\circ}C \leq T_A \leq 105 \ ^{\circ}C \end{array}$	-	-		
	FT, FTf, TTa and NRST I/O	17/10/ 26/1	0.45V _{DD} +0.3 ⁽¹⁾			
	input high level voltage ⁽⁴⁾	1.7 v≤v _{DD} ≤3.0 v	0.7V _{DD} ⁽²⁾	-	-	
V _{IH}	BOOT0 I/O input high level	1.75 V≤V _{DD} ≤3.6 V, – 40 °C≤T _A ≤105 °C	$0.171/ \pm 0.7(1)$	_		V
	voltage	1.7 V⊴V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	0.17 V _{DD} +0.7 V	-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	FT, FTf, TTa and NRST I/O input hysteresis	1.7 V≤V _{DD} ≤3.6 V	-	10%V _{DD}	-	
V _{HYS}	BOOTO I/O input hystoresis	1.75 V≤V _{DD} ≤3.6 V, –40 °C≤T _A ≤105 °C	-	100m	-	V
		1.7 V⊴V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	I/O input leakage current ⁽³⁾	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	
l _{lkg}	I/O FT input leakage current	V _{IN} = 5 V	-	-	3	μA

Table 5	56. I	/O stat	ic char	acteristics

The I²C characteristics are described in *Table 61*. Refer also to *Section 6.3.17: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C ⁽¹⁾⁽²⁾		Fast mode	Unit		
		Min	Max	Min	Max		
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-		
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs	
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽⁴⁾		
t _{v(SDA, ACK)}	Data, ACK valid time	-	3.45	-	0.9		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300		
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-		
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs	
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs	
t _{SP}	Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode	-	-	0.05	0.09 ⁽⁵⁾	μs	
Cb	Capacitive load for each bus line	-	400	-	400	pF	

cs
i

1. Guaranteed based on test during characterization.

f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock.

3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal.

5. The minimum width of the spikes filtered by the analog filter is above $t_{SP}(max)$.

Symbol	Symbol Parameter Conditions Min Max Unit								
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns				
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	20	ns				
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%				
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V				
Z _{DRV}	Output driver impedance ⁽³⁾	Driving high or low	28	44	Ω				

Table 70. USB OTG full speed electrical characteristics⁽¹⁾

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching impedance is included in the embedded driver.

USB high speed (HS) characteristics

Unless otherwise specified, the parameters given in *Table 73* for ULPI are derived from tests performed under the ambient temperature, f_{HCLK} frequency summarized in *Table 72* and V_{DD} supply voltage conditions summarized in *Table 71*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10, unless otherwise specified
- Capacitive load C = 30 pF, unless otherwise specified
- Measurement points are done at CMOS levels: 0.5V_{DD}.

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

Symbol		Parameter	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input level	Input level V _{DD} USB OTG HS operating voltage		1.7	3.6	V

1. All the voltages are measured from the local ground potential.

		• •				
Symbol	Parameter		Min	Тур	Мах	Unit
-	f _{HCLK} value to guarantee proper operation of USB HS interface		30	-	-	MHz
F _{START_8BIT}	Frequency (first transition)	8-bit ±10%	54	60	66	MHz
F _{STEADY}	Frequency (steady state) ±500 ppm		59.97	60	60.03	MHz
D _{START_8BIT}	Duty cycle (first transition)	8-bit ±10%	40	50	60	%
D _{STEADY}	Duty cycle (steady state) ±500 ppm		49.975	50	50.025	%
t _{STEADY}	Time to reach the steady state frequency and duty cycle after the first transition		-	-	1.4	ms

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _S ⁽²⁾	Sampling rate (f_{ADC} = 30 MHz, and t_{S} = 3 ADC cycles)	12-bit resolution Single ADC	-	-	2	Msps
		12-bit resolution Interleave Dual ADC mode	-	-	3.75	Msps
		12-bit resolution Interleave Triple ADC mode	-	-	6	Msps
I _{VREF+} ⁽²⁾	ADC V _{REF} DC current consumption in conversion mode	-	-	300	500	μA
I _{VDDA} ⁽²⁾	ADC V _{DDA} DC current consumption in conversion mode	-	-	1.6	1.8	mA

Table 74. ADC characteristics (continued)

1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF).

2. Guaranteed based on test during characterization.

3. V_{REF+} is internally connected to V_{DDA} and V_{REF-} is internally connected to V_{SSA} .

- 4. R_{ADC} maximum value is given for V_{DD}=1.7 V, and minimum value for V_{DD}=3.3 V.
- 5. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in *Table 74*.

Equation 1: R_{AIN} max formula

$$\mathsf{R}_{\mathsf{AIN}} = \frac{(\mathsf{k} - 0.5)}{\mathsf{f}_{\mathsf{ADC}} \times \mathsf{C}_{\mathsf{ADC}} \times \mathsf{ln}(2^{\mathsf{N}+2})} - \mathsf{R}_{\mathsf{ADC}}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit
ET	Total unadjusted error	((0.04))	±3	±4	
EO	Offset error	$T_{ADC} = 18 \text{ MHz}$ V D A = 1.7 to 3.6 V	±2	±3	
EG	Gain error	V_{REF} = 1.7 to 3.6 V	±1	±3	LSB
ED	Differential linearity error	V _{DDA} –V _{REF} < 1.2 V	±1	±2	
EL	Integral linearity error		±2	±3	

Table 75. ADC static accuracy at $f_{ADC} = 18 \text{ MHz}^{(1)}$

1. Better performance could be achieved in restricted V_{DD}, frequency and temperature ranges.

2. Guaranteed based on test during characterization.

Figure 48. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

6.3.22 Temperature sensor characteristics

Table 80.	Temperature	sensor	characteristics
-----------	-------------	--------	-----------------

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	<u>+2</u>	°C
Avg_Slope ⁽¹⁾	Average slope	-	2.5	-	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	-	0.76	-	V
t _{START} ⁽²⁾	Startup time	-	6	10	μs
T _{S_temp} ⁽²⁾	ADC sampling time when reading the temperature (1 °C accuracy)	10	-	-	μs

1. Guaranteed based on test during characterization.

2. Guaranteed by design.

Table of Temperature sensor campration values

Symbol	Parameter	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V_{DDA} = 3.3 V	0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C, V_{DDA} = 3.3 V	0x1FFF 7A2E - 0x1FFF 7A2F

Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings

Table 96. S [,]	vnchronous non-multi	plexed NOR/PS	RAM read	timinas ⁽¹⁾⁽²⁾
	,			

Symbol	Parameter N		Мах	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK}	-	
t _(CLKL-NExL)	FMC_CLK low to FMC_NEx low (x=02)	-	2.5	Ī
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} – 0.5	-	1
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625) -		2.5	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	ns
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	2	
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{HCLK} – 0.5	-	
t _{su(DV-CLKH)}	FMC_D[15:0] valid data before FMC_CLK high	1	-	
t _{h(CLKH-DV)}	FMC_D[15:0] valid data after FMC_CLK high	3.5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	1	-	1
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	3.5	-	1

7.2 LQFP100 package information

Figure 70. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 109. LQPF100, 14 x 14 mm 100-pin low-profile quad flat
package mechanical data

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
с	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.000	-	-	0.4724	-	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	

Device marking for LQFP100 package

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Table 111. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ballgrid array package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
ddd	-	-	0.100	-	-	0.0039	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.050	-	-	0.0020	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 77. UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint

A0AS FP V1 Table 112. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA) Dimension **Recommended values** Pitch 0.50 mm 0.280 mm Dpad 0.370 mm typ. (depends on the soldermask Dsm registration tolerance) Stencil opening 0.280 mm Stencil thickness Between 0.100 mm and 0.125 mm Pad trace width 0.120 mm

8 Part numbering

Table 118. Ordering informa	ation sche	eme					
Example:	STM32	F	446 V	С	т	6	ххх
Device family							
STM32 = ARM-based 32-bit microcontroller							
Product type							
F = general-purpose							
Device subfamily							
446= STM32F446xC/E,							
Pin count							
M = 81 pins							
R = 64 pins							
V = 100 pins							
Z = 144 pins							
Flash memory size							
C=256 Kbytes of Flash memory							
E=512 Kbytes of Flash memory							
Package							
H = UFBGA (7 x 7 mm)					_		
J = UFBGA (10 x 10 mm)							
T = LQFP							
Y = WLCSP							
Temperature range							
6 = Industrial temperature range, -40 to 85 °C.							
7 = Industrial temperature range, -40 to 105 °C.							
Options							

xxx = programmed parts

TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

