

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f446zet7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM32F446xC/E devices are based on the high-performance ARM[®] Cortex[®]-M4 32-bit RISC core operating at a frequency of up to 180 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM[®] single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32F446xC/E devices incorporate high-speed embedded memories (Flash memory up to 512 Kbyte, up to 128 Kbyte of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.

They also feature standard and advanced communication interfaces.

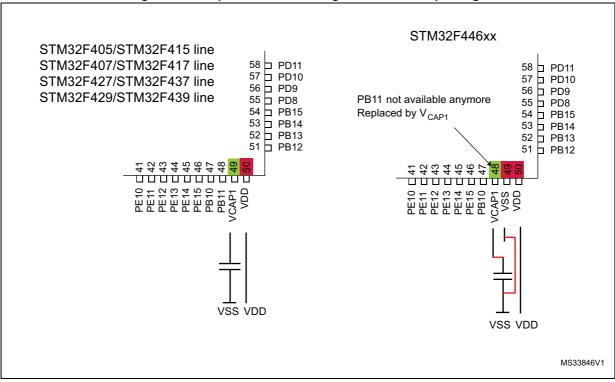
- Up to four I²Cs;
- Four SPIs, three I²Ss full simplex. To achieve audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization;
- Four USARTs plus two UARTs;
- An USB OTG full-speed and an USB OTG high-speed with full-speed capability (with the ULPI), both with dedicated power rails allowing to use them throughout the entire power range;
- Two CANs;
- Two SAIs serial audio interfaces. To achieve audio class accuracy, the SAIs can be clocked via a dedicated internal audio PLL;
- An SDIO/MMC interface;
- Camera interface;
- HDMI-CEC;
- SPDIF Receiver (SPDIFRx);
- QuadSPI.

Advanced peripherals include an SDIO, a flexible memory control (FMC) interface, a camera interface for CMOS sensors. Refer to *Table 2: STM32F446xC/E features and peripheral counts* for the list of peripherals available on each part number.

The STM32F446xC/E devices operates in the -40 to +105 °C temperature range from a 1.7 to 3.6 V power supply.

The supply voltage can drop to 1.7 V with the use of an external power supply supervisor (refer to *Section 3.16.2: Internal reset OFF*). A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F446xC/E devices offer devices in 6 packages ranging from 64 pins to 144 pins. The set of included peripherals changes with the device chosen.



- For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.
- 2. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
- 3. For the LQFP64 package, the Quad SPI is available with limited features.
- V_{DD}/V_{DDA} minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF).

2.1 Compatibility with STM32F4 family

The STM32F446xC/xV is software and feature compatible with the STM32F4 family.

The STM32F446xC/xV can be used as drop-in replacement of the other STM32F4 products but some slight changes have to be done on the PCB board.

Figure 1. Compatible board design for LQFP100 package

3 Functional overview

3.1 **ARM[®] Cortex[®]-M4 with FPU and embedded Flash and SRAM**

The ARM[®] Cortex[®]-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM[®] Cortex[®]-M4 with FPU core is a 32-bit RISC processor that features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

The STM32F446xC/E family is compatible with all ARM tools and software.

Figure 3 shows the general block diagram of the STM32F446xC/E family.

Note: Cortex-M4 with FPU core is binary compatible with the Cortex-M3 core.

3.2 Adaptive real-time memory accelerator (ART Accelerator[™])

The ART Accelerator[™] is a memory accelerator which is optimized for STM32 industrystandard ARM[®] Cortex[®]-M4 with FPU processors. It balances the inherent performance advantage of the ARM[®] Cortex[®]-M4 with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor full 225 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 180 MHz.

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

DocID027107 Rev 6

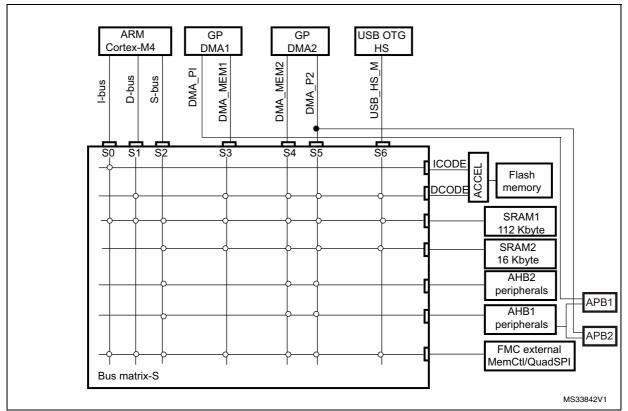


Figure 4. STM32F446xC/E and Multi-AHB matrix

3.8 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

	Piı	n Num	nber							
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	5	-	B4	5	PE6	I/O	FT	-	TRACED3, TIM9_CH2, SPI4_MOSI, SAI1_SD_A, FMC_A22, DCMI_D7, EVENTOUT	-
1	6	B9	C2	6	VBAT	S	-	-	-	-
2	7	C8	A1	7	PC13	I/O	FT	-	EVENTOUT	TAMP_1/WKUP1
3	8	C9	B1	8	PC14- OSC32_IN(PC14)	I/O	FT	-	EVENTOUT	OSC32_IN
4	9	D9	C1	9	PC15- OSC32_OUT(PC15)	I/O	FT	-	EVENTOUT	OSC32_OUT
-	-	-	C3	10	PF0	I/O	FT	-	I2C2_SDA, FMC_A0, EVENTOUT	-
-	-	-	C4	11	PF1	I/O	FT	-	I2C2_SCL, FMC_A1, EVENTOUT	-
-	-	-	D4	12	PF2	I/O	FT	-	I2C2_SMBA, FMC_A2, EVENTOUT	-
-	-	-	E2	13	PF3	I/O	FT	-	FMC_A3, EVENTOUT	ADC3_IN9
-	-	-	E3	14	PF4	I/O	FT	-	FMC_A4, EVENTOUT	ADC3_IN14
-	-	-	E4	15	PF5	I/O	FT	-	FMC_A5, EVENTOUT	ADC3_IN15
-	10	-	D2	16	VSS	S	-	-	-	-
-	11	-	D3	17	VDD	S	-	-	-	-
-	-	-	F3	18	PF6	I/O	FT	-	TIM10_CH1, SAI1_SD_B, QUADSPI_BK1_IO3, EVENTOUT	ADC3_IN4
-	-	-	F2	19	PF7	I/O	FT	-	TIM11_CH1, SAI1_MCLK_B, QUADSPI_BK1_IO2, EVENTOUT	ADC3_IN5
-	-	-	G3	20	PF8	I/O	FT	-	SAI1_SCK_B, TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT	ADC3_IN6
-	-	-	G2	21	PF9	I/O	FT	-	SAI1_FS_B, TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT	ADC3_IN7
-	-	-	G1	22	PF10	I/O	FT	-	DCMI_D11, EVENTOUT	ADC3_IN8
5	12	E9	D1	23	PH0-OSC_IN(PH0)	I/O	FT	-	EVENTOUT	OSC_IN

	Pir	n Num	nber							
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
63	99	B7	E6	-	VSS	S	-	-	-	-
-	-	B8	E5	143	PDR_ON	S	-	-	-	-
64	100	A8	F5	144	VDD	S	-	-	-	-

1. PA11, PA12, PB14 and PB15 I/Os are supplied by VDDUSB

STM32F446xC/E

Pinout and pin description

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11/ CEC	I2C1/2/3 /4/CEC	SPI1/2/3/ 4	SPI2/3/4/ SAI1	SPI2/3/ USART1/ 2/3/UART 5/SPDIFR X	SAI/ USART6/ UART4/5/ SPDIFRX	CAN1/2 TIM12/13/ 14/ QUADSPI	SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS	OTG1_FS	FMC/ SDIO/ OTG2_FS	DCMI	-	S
	PC0	-	-	-	-	-	-	SAI1_ MCLK_B	-	-	-	OTG_HS_ ULPI_STP	-	FMC_ SDNWE	-	-	EVE
	PC1	-	-	-	-	-	SPI3_MOSI /I2S3_SD	SAI1_ SD_A	SPI2_MOS I /I2S2_SD	-	-	-	-	-	-	-	EVE
	PC2	-	-	-	-	-	SPI2_MISO	-	-	-	-	OTG_HS_ ULPI_DIR	-	FMC_ SDNE0	-	-	EVE OL
	PC3	-	-	-	-	-	SPI2_MOSI / I2S2_SD	-	-	-	-	OTG_HS_ ULPI_NXT	-	FMC_ SDCKE0	-	-	EVE OL
	PC4	-	-	-	-	-	I2S1_MCK	-	-	SPDIF_ RX2	-	-	-	FMC_ SDNE0	-	-	EVE OL
	PC5	-	-	-	-	-	-	-	USART3_ RX	SPDIF_ RX3	-	-	-	FMC_ SDCKE0	-	-	EVE
	PC6	-	-	TIM3_CH1	TIM8_CH1	FMPI2C1 _SCL	12S2_MCK	-	-	USART6_T X	-	-	-	SDIO_D6	DCMI_D0	-	EVE OL
Port C	PC7	-	-	TIM3_CH2	TIM8_CH2	FMPI2C1 _SDA	SPI2_SCK/ I2S2_CK	I2S3_MCK	SPDIF_ RX1	USART6_R X	-	-	-	SDIO_D7	DCMI_D1	-	EVE OL
	PC8	TRACE D0	-	TIM3_CH3	TIM8_CH3	-	-	-	UART5_ RTS	USART6_C K	-	-	-	SDIO_D0	DCMI_D2	-	EVE OL
	PC9	MCO2	-	TIM3_CH4	TIM8_CH4	I2C3_ SDA	I2S_CKIN	-	UART5_ CTS	-	QUADSPI_ BK1_IO0	-	-	SDIO_D1	DCMI_D3	-	EVE OL
	PC10	-	-	-	-	-	-	SPI3_SCK / I2S3_CK	USART3_ TX	UART4_TX	QUADSPI_ BK1_IO1	-	-	SDIO_D2	DCMI_D8	-	EVE OL
	PC11	-	-	-	-	-	-	SPI3_ MISO	USART3_ RX	UART4_RX	QUADSPI_ BK2_NCS	-	-	SDIO_D3	DCMI_D4	-	EVE OL
	PC12	-	-	-	-	I2C2_ SDA	-	SPI3_ MOSI/ I2S3_SD	USART3_ CK	UART5_TX	-	-	-	SDIO_CK	DCMI_D9	-	EVE OL
	PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVE OL
	PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVE OL
	PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVE

							Max			
Symbol	Parameter	Condi	itions fHCLK (MHz)		Тур	T _A = 25 °C	T _A = 25 °C	T _A = 25 °C	Unit	
				180	51.2	59.00	77.25	102.00		
			External clock, PLL ON, Flash on	168 ⁽²⁾	46.8	53.94	66.48	79.40		
				150	42.2	49.26	60.84	73.41		
		all peripherals enabled			144 ⁽²⁾	38.6	45.37	55.47	66.96	
				120	29.3	35.70	42.49	51.46		
	Supply				90	22.8	29.17	34.78	43.12	
IDD	current in Sleep			60	16.3	22.41	27.12	34.83	mA	
	mode				30	10.1	16.03	19.72	26.86	
				25	9.0	14.92	18.41	25.38		
				16	6.5	13.10	15.1	22.3		
			HSI, PLL	8	5.2	12.31	13.5	20.4		
			off, Flash on	4	4.5	11.63	12.5	19.3		
				2	4.1	11.23	12.0	18.8		

Table 26. Typical and maximum current consumption in Sleep mode ⁽¹⁾
--

				Typ ⁽¹⁾			Max ⁽²⁾			
Symbol	Parameter	Conditions	Conditions T _A = 25 °C				T _A = 85 °C	T _A = 105 °C	Unit	
			V _{DD} = 1.7 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	v	, _{DD} = 3.3	v		
		Backup SRAM ON, and LSE oscillator in low power mode	2.43	3.44	4.12	7	20	36		
I _{DD_STBY}	Supply current in Standby mode	Backup SRAM OFF, RTC ON and LSE oscillator in low power mode	1.81	2.81	3.33	6	17	31		
		Backup SRAM ON, RTC ON and LSE oscillator in high drive mode	3.32	4.33	4.95	8	21	37	μA	
		Backup SRAM OFF, RTC ON and LSE oscillator in high drive mode	2.57	3.59	4.16	7	18	32		
		Backup SRAM ON, RTC and LSE OFF	2.03	2.73	3.5	6 ⁽³⁾	19	35 ⁽³⁾		
		Backup SRAM OFF, RTC and LSE OFF	1.28	1.97	2.03	5 ⁽³⁾	16	30 ⁽³⁾		

Table 28. Typical and maximum current consumptions in Standby mode
--

1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 μ A.

2. Guaranteed based on test during characterization unless otherwise specified.

3. Tested in production.

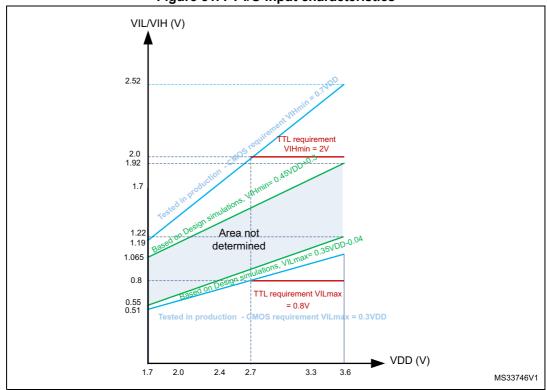


Figure 31. FT I/O input characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}) except PC13, PC14 and PC15 which can sink or source up to ± 3 mA. When using the PC13 to PC15 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2. In particular:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 14*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 14*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 57* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 16*. All I/Os are CMOS and TTL compliant.

		· · · · · ·						
Symbol	Parameter	Conditions	Min	Max	Unit			
t _{v(WS)}	WS valid time	Master mode	-	5.5				
t _{h(WS)}	WS hold time	Master mode	1	-				
t _{su(WS)}	WS actus time	Slave mode	1	-				
-	WS setup time	PCM short pulse Slave mode ⁽³⁾	2	-				
t _{h(WS)}	WS hold time	Slave mode	3	-				
-		PCM short pulse Slave mode ⁽³⁾	1.5	-				
$t_{su(SD_MR)}$	Data input setup time	Master receiver	3	-	20			
$t_{su(SD_SR)}$	Data input setup time	Slave receiver	2.5	-	ns			
t _{h(SD_MR)}	Data input hold time	Master receiver	4	-				
t _{h(SD_SR)}		Slave receiver	1	-				
$t_{v(SD_ST)}$	Data output valid time	Slave transmitter (after enable edge)	-	16				
t _{v(SD_MT)}	Data output valid time	Master transmitter (after enable edge)	-	4.5				
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	5	-				
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	1	-				

Table 66. I ² S dynamic characteristics ⁽¹⁾ (c	continued)
--	------------

1. Guaranteed based on test during characterization.

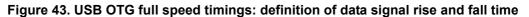
2. The maximum value of 256xFs is 45 MHz (APB1 maximum frequency).

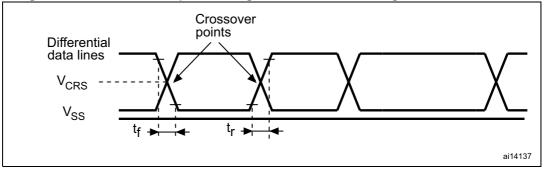
3. Measurement done with respect to I2S_CK rising edge.

Note: Refer to the I2S section of RM0390 reference manual for more details on the sampling frequency (F_S).

 f_{MCK} , f_{CK} , and D_{CK} values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. D_{CK} depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F_S maximum value is supported for each mode/condition.

Syn	nbol	Parameter	Conditions	Min. ⁽¹⁾	Тур.	Max. ⁽¹⁾	Unit
Input levels	V _{DDUSB}	USB OTG full speed transceiver operating voltage	-	3.0 ⁽²⁾	-	3.6	V
	V _{DI} ⁽³⁾ Differential input sensitivity I(USB_FS_DP/DM, USB_HS_DP/DM) V _{CM} ⁽³⁾ Differential common mode range Includes V _{DI} range		0.2	-	-		
			0.8	-	2.5	V	
	$V_{SE}^{(3)}$	Single ended receiver threshold	-	1.3	-	2.0	
Output	V _{OL}	Static output level low	${\sf R}_{\sf L}$ of 1.5 k\Omega to 3.6 ${\sf V}^{(4)}$	-	-	0.3	V
levels	V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 ${\sf k}\Omega$ to ${\sf V}_{\sf SS}{}^{(4)}$	2.8	-	3.6	v
R _{PD}		PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM)	V _{IN} = V _{DDUSB}	17	21	24	
		PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	VIN - VDDUSB	0.65	1.1	2.0	kΩ
R _{PU}		PA12, PB15 (USB_FS_DP, USB_HS_DP)	V _{IN} = V _{SS}	1.5	1.8	2.1	N22
		PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	V _{IN} = V _{SS}	0.25	0.37	0.55	


1. All the voltages are measured from the local ground potential.


2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

3. Guaranteed by design.

4. R_L is the load connected on the USB OTG full speed drivers.

Note: When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state (floating input), not as alternate function. A typical 200 µA current consumption of the sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 and PB13 when the feature is enabled.

6.3.23 V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
R	Resistor bridge for V _{BAT}	-	50	-	KΩ
Q	Ratio on V _{BAT} measurement	-	4	-	-
Er ⁽¹⁾	Error on Q	- 1	-	+ 1	%
T _{S_vbat} ⁽²⁾⁽²⁾	ADC sampling time when reading the V _{BAT} 1 mV accuracy	5	-	-	μs

Table 82. V_{BAT} monitoring characteristics

1. Guaranteed by design.

2. Shortest sampling time can be determined in the application by multiple iterations.

6.3.24 Reference voltage

The parameters given in *Table 83* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 16*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +105 °C	1.18	1.21	1.24	V
T _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage	-	10	-	-	μs
V _{RERINT_s} ⁽²⁾	Internal reference voltage spread over the temperature range	V_{DD} = 3V \pm 10mV	-	3	5	mV
T _{Coeff} ⁽²⁾	Temperature coefficient	-	-	30	50	ppm/°C
t _{START} ⁽²⁾	Startup time	-	-	6	10	μs

Table 83. internal reference voltage

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design.

Table 84. Internal reference voltage calibration values

Symbol	Parameter	Memory address
V _{REFIN_CAL}	Raw data acquired at temperature of 30 $^\circ\text{C}$ $_{\text{VDDA}}$ = 3.3 V	0x1FFF 7A2A - 0x1FFF 7A2B

6.3.25 DAC electrical characteristics

Table	85.	DAC	characteristics
-------	-----	-----	-----------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	Comments
V _{DDA}	Analog supply voltage	-	1.7 ⁽¹⁾	-	3.6	V	-
V _{REF+}	Reference supply voltage	-	1.7 ⁽¹⁾	-	3.6	V	V _{REF+} ≤V _{DDA}

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	2T _{HCLK} – 2	2 T _{HCLK} + 0.5	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	0	1	
t _{w(NOE)}	FMC_NOE low time	2T _{HCLK} - 1	2T _{HCLK} + 0.5	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0.5	
t _{h(A_NOE)}	Address hold time after FMC_NOE high	0	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	
t _{h(BL_NOE)}	FMC_BL hold time after FMC_NOE high	0	-	ns
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} - 2	-	
t _{su(Data_NOE)}	Data to FMC_NOEx high setup time	T _{HCLK} - 2	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0	
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} +1	

Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR - read timings $^{(1)(2)}$

1. C_L = 30 pF.

2. Guaranteed based on test during characterization.

Table 87. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -
NWAIT timings ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	7T _{HCLK} + 1	7T _{HCLK}	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} – 1	5T _{HCLK} + 1	
t _{w(NWAIT)}	FMC_NWAIT low time	T _{HCLK} – 0.5	-	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} + 1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} + 1	-	

1. C_L = 30 pF.

2. Guaranteed based on test during characterization.

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK} – 2	3T _{HCLK} +0.5	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	2T _{HCLK} – 0.5	2T _{HCLK}	
t _{tw(NOE)}	FMC_NOE low time	T _{HCLK} – 1	T _{HCLK} + 0.5	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	2	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	2	
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} – 0.5	T _{HCLK} + 0.5	
t _{h(AD_NADV)}	FMC_AD(address) valid hold time after FMC_NADV high)	0	-	ns
t _{h(A_NOE)}	Address hold time after FMC_NOE high	T _{HCLK} – 0.5	-	
t _{h(BL_NOE)}	FMC_BL time after FMC_NOE high	0	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} + 1.5	-	
t _{su(Data_NOE)}	Data to FMC_NOE high setup time	T _{HCLK} + 1	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	

1. C_L = 30 pF.

2. Guaranteed based on test during characterization.

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} - 1	8T _{HCLK} + 2	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} – 1	5T _{HCLK} + 1	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} + 1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} + 1	-	

1. C_L = 30 pF.

2. Guaranteed based on test during characterization.

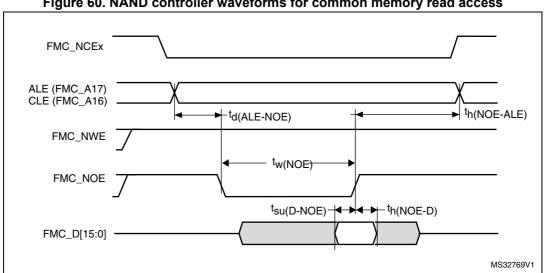


Figure 60. NAND controller waveforms for common memory read access

Figure 61. NAND controller waveforms for common memory write access

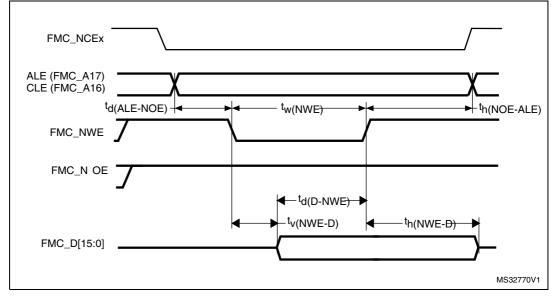


Table 98. Switching characteristics for NAND Flash read cycles⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(N0E)}	FMC_NOE low width	4T _{HCLK} – 0.5	4T _{HCLK} + 0.5	
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	9	-	
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	2.5	-	ns
t _{d(ALE-NOE)}	FMC_ALE valid before FMC_NOE low	-	3T _{HCLK} - 0.5	
t _{h(NOE-ALE)}	FMC_NWE high to FMC_ALE invalid	3T _{HCLK} – 2	-	

1. C_L = 30 pF.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz	
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	8/3	-	
t _{W(CKL)}	Clock low time	fpp =50MHz	9.5	10.5	-	20	
t _{W(CKH)}	Clock high time	fpp =50MHz	8.5	9.5	-	ns	
CMD, D inputs (referenced to CK) in eMMC mode							
t _{ISU}	Input setup time HS	fpp =50MHz	0.5	-	-		
t _{IH}	Input hold time HS	fpp =50MHz	7.5	-	-	ns	
CMD, D outputs (referenced to CK) in eMMC mode							
t _{OV}	Output valid time HS	fpp =50MHz	-	13.5	14.5	D C	
t _{OH}	Output hold time HS	fpp =50MHz	12	-	-	ns	

Table 106. Dynamic characteristics: eMMC characteristics V_{DD} = 1.7 V to 1.9 V⁽¹⁾⁽²⁾

1. Guaranteed based on test during characterization.

2. V_{DD} = 2.7 to 3.6 V.

6.3.29 RTC characteristics

Table 107. RTC characteristics

Symbol	Parameter	Conditions	Min	Max
-	f _{PCLK1} /RTCCLK frequency ratio	Any read/write operation from/to an RTC register	4	-

Symbol	millimeters			inches ⁽¹⁾				
	Min	Тур	Max	Min	Тур	Мах		
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
E3	-	12.000	-	-	0.4724	-		
е	-	0.500	-	-	0.0197	-		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	-	1.000	-	-	0.0394	-		
k	0°	3.5°	7°	0°	3.5°	7°		
CCC	-	-	0.080	-	-	0.0031		

Table 109. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

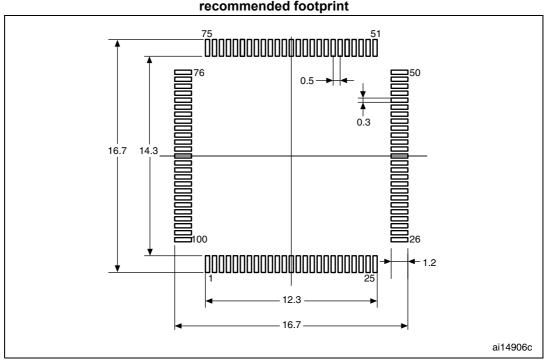


Figure 71. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

8 Part numbering

Table 118. Ordering informa	ation sch	eme					
Example:	STM32	F	446 V	С	т	6	ххх
Device family							
STM32 = ARM-based 32-bit microcontroller							
Product type							
F = general-purpose							
Device subfamily							
446= STM32F446xC/E,							
Pin count							
M = 81 pins							
R = 64 pins							
V = 100 pins							
Z = 144 pins							
Flash memory size							
C=256 Kbytes of Flash memory							
E=512 Kbytes of Flash memory							
Package							
H = UFBGA (7 x 7 mm)							
J = UFBGA (10 x 10 mm)							
T = LQFP							
Y = WLCSP							
Temperature range							
6 = Industrial temperature range, -40 to 85 °C.							
7 = Industrial temperature range, -40 to 105 °C.							
Options							

xxx = programmed parts

TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

A.2 USB OTG high speed (HS) interface solutions

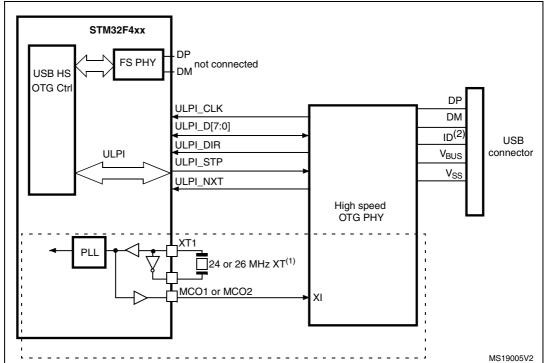


Figure 88. USB controller configured as peripheral, host, or dual-mode and used in high speed mode

 It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F446xx with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible connection.

2. The ID pin is required in dual role only.

