Intel - 5CEBA7F23C8N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	56480
Number of Logic Elements/Cells	149500
Total RAM Bits	7880704
Number of I/O	240
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5ceba7f23c8n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Cyclone V Features

Table 2. Summary of Features for Cyclone V Devices

Feature		Description					
Technology	TSMC's 28-nm low-p1.1 V core voltage	ower (28LP) process technology					
Packaging	 Multiple device densi different device dens 	 Multiple device densities with compatible package footprints for seamless migration between different device densities 					
High-performance FPGA fabric	Enhanced 8-input ALM w	vith four registers					
Internal memory blocks		b) memory blocks with soft error correction code (ECC) block (MLAB)—640-bit distributed LUTRAM where you can use up to 25% memory					
Embedded Hard IP blocks	Variable-precision DSP	 Native support for up to three signal processing precision levels (three 9 x 9, two 18 x 18, or one 27 x 27 multiplier) in the same variable-precision DSP block 64-bit accumulator and cascade Embedded internal coefficient memory Preadder/subtractor for improved efficiency 					
	Memory controller DDR3, DDR2, and LPDDR2 with 16 and 32 bit ECC support						
	Embedded transceiver I/OPCI Express* (PCIe*) Gen2 and Gen1 (x1, x2, or x4) hard IP with multifunction support, endpoint, and root port						
Clock networks	, , , ,	l clock network d peripheral clock networks are not used can be powered down to reduce dynamic power					
Phase-locked loops (PLLs)	 Precision clock synth Integer mode and fra	esis, clock delay compensation, and zero delay buffering (ZDB) actional mode					
FPGA General-purpose I/Os (GPIOs)	400 MHz/800 Mbps eOn-chip termination	cond (Mbps) LVDS receiver and 840 Mbps LVDS transmitter external memory interface (OCT) p to 16 mA drive strength					
Low-power high-speed serial interface	Transmit pre-emphase	ibps integrated transceiver speed sis and receiver equalization nfiguration of individual channels					
HPS (Cyclone V SE, SX, and ST devices only)	 support for symmetr Interface peripherals On-The-GO (OTG) co flash controller, Secu network (CAN), seria interfaces 	rm Cortex-A9 MPCore processor-up to 925 MHz maximum frequency with ic and asymmetric multiprocessing —10/100/1000 Ethernet media access control (EMAC), USB 2.0 introller, quad serial peripheral interface (QSPI) flash controller, NAND re Digital/MultiMediaCard (SD/MMC) controller, UART, controller area il peripheral interface (SPI), I ² C interface, and up to 85 HPS GPIO					
		-general-purpose timers, watchdog timers, direct memory access (DMA) iguration manager, and clock and reset managers					
		continued					

⁽¹⁾ Contact Intel for availability.

Related Information

True LVDS Buffers in Devices, I/O Features in Cyclone V Devices Provides the number of LVDS channels in each device package.

Package Plan

Table 5. Package Plan for Cyclone V E Devices

Member Code	M383 (13 mm)	M484 (15 mm)	U324 (15 mm)	F256 (17 mm)	U484 (19 mm)	F484 (23 mm)	F672 (27 mm)	F896 (31 mm)
	GPIO							
A2	223	-	176	128	224	224	-	_
A4	223	-	176	128	224	224	-	_
A5	175	-	_	_	224	240	-	_
A7	-	240	_	_	240	240	336	480
A9	-	-	-	_	240	224	336	480

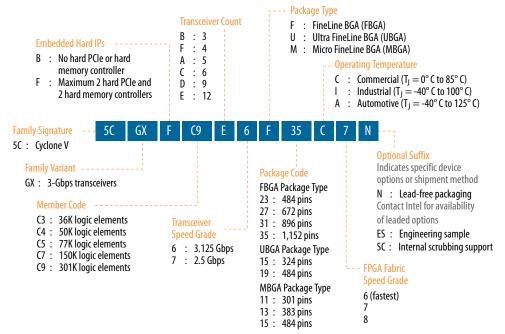
Cyclone V GX

This section provides the available options, maximum resource counts, and package plan for the Cyclone V GX devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the *Product Selector Guide*.

Related Information

Product Selector Guide


Provides the latest information about Intel products.

Available Options

Figure 2. Sample Ordering Code and Available Options for Cyclone V GX Devices

The SEU internal scrubbing feature is available for Cyclone V E, GX, SE, and SX devices with the "SC" suffix in the part number. For device availability and ordering, contact your local Intel sales representatives.

Maximum Resources

Table 6. Maximum Resource Counts for Cyclone V GX Devices

Resource				Member Code		
		C3	C4	C5	C7	C9
Logic Elements	(LE) (K)	36	50	77	150	301
ALM		13,460	18,860	29,080	56,480	113,560
Register		53,840	75,440	116,320	225,920	454,240
Memory (Kb)	M10K	1,350	2,500	4,460	6,860	12,200
	MLAB	182	424	424	836	1,717
Variable-precisio	on DSP Block	57	70	150	156	342
18 x 18 Multiplie	er	114	140	300	312	684
PLL		4	6	6	7	8
3 Gbps Transceiver		3	6	6	9	12
GPIO ⁽⁴⁾		208	336	336	480	560
		•	1	1	1	continued

⁽⁴⁾ The number of GPIOs does not include transceiver I/Os. In the Intel Quartus[®] Prime software, the number of user I/Os includes transceiver I/Os.

Resource		Member Code							
		C3	C4	C5	C7	С9			
LVDS	Transmitter	52	84	84	120	140			
	Receiver	52	84	84	120	140			
PCIe Hard IP Blo	PCIe Hard IP Block		2	2	2	2			
Hard Memory Controller		1	2	2	2	2			

Related Information

True LVDS Buffers in Devices, I/O Features in Cyclone V Devices Provides the number of LVDS channels in each device package.

Package Plan

Table 7. Package Plan for Cyclone V GX Devices

Member Code	M301 (11 mm)		M3 (13 I		M4 (15 i		U3 (15 i		U4 (19 1	84 mm)
	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR
C3	_	_	_	_	_	_	144	3	208	3
C4	129	4	175	6	_	-	_	-	224	6
C5	129	4	175	6	_	_	_	_	224	6
C7	—	—	—	—	240	3	—		240	6
C9	_	_	_	_	_	_	_		240	5

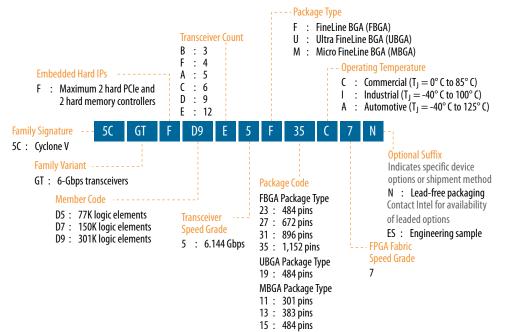
Member Code		F484 (23 mm)				F896 (31 mm)		F1152 (35 mm)	
	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	
C3	208	3	_	_	_	_	_	-	
C4	240	6	336	6	_	_	_	-	
C5	240	6	336	6	_	_	_	-	
C7	240	6	336	9	480	9	_	-	
C9	224	6	336	9	480	12	560	12	

Cyclone V GT

This section provides the available options, maximum resource counts, and package plan for the Cyclone V GT devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the *Product Selector Guide*.

Related Information


Product Selector Guide

Provides the latest information about Intel products.

Available Options

Figure 3. Sample Ordering Code and Available Options for Cyclone V GT Devices

Maximum Resources

Table 8. Maximum Resource Counts for Cyclone V GT Devices

Resource			Member Code	
		D5	D7	D9
Logic Elements (LE) (К)	77	150	301
ALM		29,080	56,480	113,560
Register		116,320	225,920	454,240
Memory (Kb)	M10K	4,460	6,860	12,200
	MLAB	424	836	1,717
Variable-precision DS	P Block	150	156	342
18 x 18 Multiplier		300	300 312	
PLL		6	7	8
6 Gbps Transceiver		6	9	12
GPIO ⁽⁵⁾		336	480	560
LVDS Transmitter		84	120	140
				continued

⁽⁵⁾ The number of GPIOs does not include transceiver I/Os. In the Intel Quartus Prime software, the number of user I/Os includes transceiver I/Os.

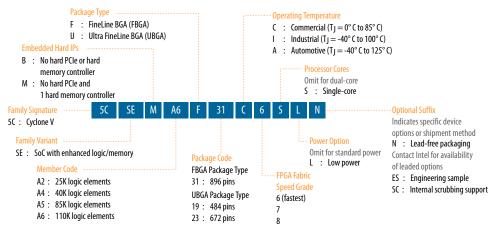
Cyclone V SE

This section provides the available options, maximum resource counts, and package plan for the Cyclone V SE devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the *Product Selector Guide*.

Related Information

Product Selector Guide


Provides the latest information about Intel products.

Available Options

Figure 4. Sample Ordering Code and Available Options for Cyclone V SE Devices

The SEU internal scrubbing feature is available for Cyclone V E, GX, SE, and SX devices with the "SC" suffix in the part number. For device availability and ordering, contact your local Intel sales representatives.

Cyclone V SE and SX low-power devices (L power option) offer 30% static power reduction for devices with 25K LE and 40K LE, and 20% static power reduction for devices with 85K LE and 110K LE.

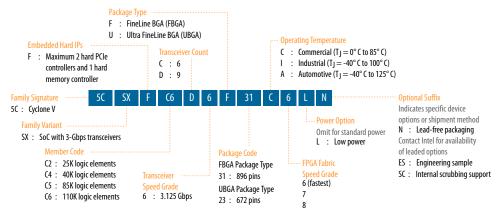
Cyclone V SX

This section provides the available options, maximum resource counts, and package plan for the Cyclone V SX devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the *Product Selector Guide*.

Related Information

Product Selector Guide


Provides the latest information about Intel products.

Available Options

Figure 5. Sample Ordering Code and Available Options for Cyclone V SX Devices

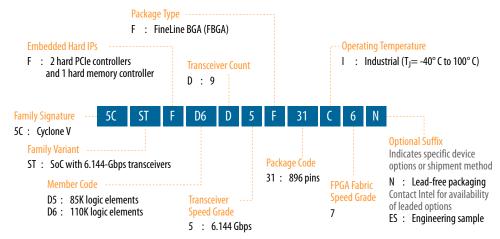
The SEU internal scrubbing feature is available for Cyclone V E, GX, SE, and SX devices with the "SC" suffix in the part number. For device availability and ordering, contact your local Intel sales representatives.

Cyclone V SE and SX low-power devices (L power option) offer 30% static power reduction for devices with 25K LE and 40K LE, and 20% static power reduction for devices with 85K LE and 110K LE.

Maximum Resources

Table 12. Maximum Resource Counts for Cyclone V SX Devices

Reso	urce		Member Code						
		C2	C4	C5	C6				
Logic Elements (LE)	(K)	25	40	85	110				
ALM		9,430	15,880	32,070	41,910				
Register		37,736	60,376	128,300	166,036				
Memory (Kb)	M10K	1,400	2,700	3,970	5,570				
	MLAB	138	231	480	621				
Variable-precision D	SP Block	36	84	87	112				
18 x 18 Multiplier		72	168	174	224				
FPGA PLL		5	5	6	6				
			•		continued.				


Related Information

Product Selector Guide

Provides the latest information about Intel products.

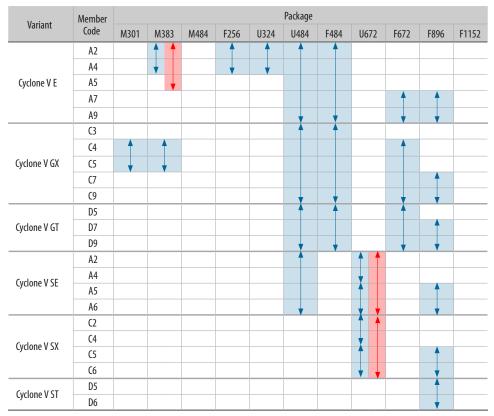
Available Options

Figure 6. Sample Ordering Code and Available Options for Cyclone V ST Devices

Maximum Resources

Table 14. Maximum Resource Counts for Cyclone V ST Devices

Res	ource	Member	r Code	
		D5	D6	
Logic Elements (LE) (K)		85	110	
ALM		32,070	41,910	
Register		128,300	166,036	
Memory (Kb)	M10K	3,970	5,570	
	MLAB	480	621	
Variable-precision DSP Block		87	112	
18 x 18 Multiplier		174	224	
FPGA PLL		6	6	
HPS PLL		3	3	
6.144 Gbps Transceiver		9	9	
FPGA GPIO ⁽¹⁰⁾		288	288	
HPS I/O		181	181	
LVDS	LVDS Transmitter		72	
	-		continued	


⁽¹⁰⁾ The number of GPIOs does not include transceiver I/Os. In the Intel Quartus Prime software, the number of user I/Os includes transceiver I/Os.

I/O Vertical Migration for Cyclone V Devices

Figure 7. Vertical Migration Capability Across Cyclone V Device Packages and Densities

The arrows indicate the vertical migration paths. The devices included in each vertical migration path are shaded. You can also migrate your design across device densities in the same package option if the devices have the same dedicated pins, configuration pins, and power pins.

You can achieve the vertical migration shaded in red if you use only up to 175 GPIOs for the M383 package, and 138 GPIOs for the U672 package. These migration paths are not shown in the Intel Quartus Prime software Pin Migration View.

Note: To verify the pin migration compatibility, use the Pin Migration View window in the Intel Quartus Prime software Pin Planner.

Adaptive Logic Module

Cyclone V devices use a 28 nm ALM as the basic building block of the logic fabric.

The ALM, as shown in following figure, uses an 8-input fracturable look-up table (LUT) with four dedicated registers to help improve timing closure in register-rich designs and achieve an even higher design packing capability than previous generations.

Table 16. Variable-Precision DSP Block Configurations for Cyclone V Devices

Usage Example	Multiplier Size (Bit)	DSP Block Resource
Low precision fixed point for video applications	Three 9 x 9	1
Medium precision fixed point in FIR filters	Two 18 x 18	1
FIR filters and general DSP usage	Two 18 x 18 with accumulate	1
High precision fixed- or floating-point implementations	One 27 x 27 with accumulate	1

You can configure each DSP block during compilation as independent three 9 x 9, two 18×18 , or one 27×27 multipliers. With a dedicated 64 bit cascade bus, you can cascade multiple variable-precision DSP blocks to implement even higher precision DSP functions efficiently.

Table 17. Number of Multipliers in Cyclone V Devices

The table lists the variable-precision DSP resources by bit precision for each Cyclone V device.

Variant	Member Code	Variable- precision DSP Block		dent Input an plications Ope		18 x 18 Multiplier Adder Mode	18 x 18 Multiplier
		DSF BIOCK	9 x 9 Multiplier	18 x 18 Multiplier	27 x 27 Multiplier	Auder Mode	Adder Summed with 36 bit Input
Cyclone V E	A2	25	75	50	25	25	25
	A4	66	198	132	66	66	66
-	A5	150	450	300	150	150	150
	A7	156	468	312	156	156	156
	A9	342	1,026	684	342	342	342
Cyclone V	C3	57	171	114	57	57	57
GX	C4	70	210	140	70	70	70
-	C5	150	450	300	150	150	150
	C7	156	468	312	156	156	156
	C9	342	1,026	684	342	342	342
Cyclone V GT	D5	150	450	300	150	150	150
	D7	156	468	312	156	156	156
-	D9	342	1,026	684	342	342	342
Cyclone V SE	A2	36	108	72	36	36	36
	A4	84	252	168	84	84	84
-	A5	87	261	174	87	87	87
	A6	112	336	224	112	112	112
Cyclone V SX	C2	36	108	72	36	36	36
-	C4	84	252	168	84	84	84
	C5	87	261	174	87	87	87
							continued

	Member	M10K		MLAB		Total RAM Bit
Variant	Code	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	(Kb)
Cyclone V GT	D5	446	4,460	679	424	4,884
	D7	686	6,860	1338	836	7,696
	D9	1,220	12,200	2748	1,717	13,917
Cyclone V SE	A2	140	1,400	221	138	1,538
	A4	270	2,700	370	231	2,460
	A5	397	3,970	768	480	4,450
	A6	553	5,530	994	621	6,151
Cyclone V SX	C2	140	1,400	221	138	1,538
	C4	270	2,700	370	231	2,460
	C5	397	3,970	768	480	4,450
	C6	553	5,530	994	621	6,151
Cyclone V ST	D5	397	3,970	768	480	4,450
	D6	553	5,530	994	621	6,151

Embedded Memory Configurations

Table 19. Supported Embedded Memory Block Configurations for Cyclone V Devices

This table lists the maximum configurations supported for the embedded memory blocks. The information is applicable only to the single-port RAM and ROM modes.

Memory Block	Depth (bits)	Programmable Width
MLAB	32	x16, x18, or x20
M10K	256	x40 or x32
	512	x20 or x16
	1К	x10 or x8
	2К	x5 or x4
	4К	x2
	8К	×1

Clock Networks and PLL Clock Sources

550 MHz Cyclone V devices have 16 global clock networks capable of up to operation. The clock network architecture is based on Intel's global, quadrant, and peripheral clock structure. This clock structure is supported by dedicated clock input pins and fractional PLLs.

Note: To reduce power consumption, the Intel Quartus Prime software identifies all unused sections of the clock network and powers them down.

PLL Features

The PLLs in the Cyclone V devices support the following features:

- Frequency synthesis
- On-chip clock deskew
- Jitter attenuation
- Programmable output clock duty cycles
- PLL cascading
- Reference clock switchover
- Programmable bandwidth
- User-mode reconfiguration of PLLs
- Low power mode for each fractional PLL
- Dynamic phase shift
- Direct, source synchronous, zero delay buffer, external feedback, and LVDS compensation modes

Fractional PLL

In addition to integer PLLs, the Cyclone V devices use a fractional PLL architecture. The devices have up to eight PLLs, each with nine output counters. You can use the output counters to reduce PLL usage in two ways:

- Reduce the number of oscillators that are required on your board by using fractional PLLs
- Reduce the number of clock pins that are used in the device by synthesizing multiple clock frequencies from a single reference clock source

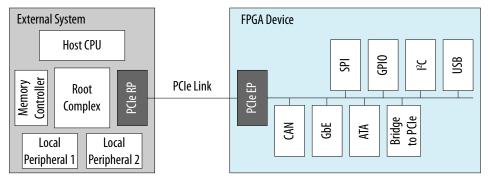
If you use the fractional PLL mode, you can use the PLLs for precision fractional-N frequency synthesis—removing the need for off-chip reference clock sources in your design.

The transceiver fractional PLLs that are not used by the transceiver I/Os can be used as general purpose fractional PLLs by the FPGA fabric.

FPGA General Purpose I/O

Cyclone V devices offer highly configurable GPIOs. The following list describes the features of the GPIOs:

- Programmable bus hold and weak pull-up
- LVDS output buffer with programmable differential output voltage (V_{\text{OD}}) and programmable pre-emphasis
- On-chip parallel termination (R_T OCT) for all I/O banks with OCT calibration to limit the termination impedance variation
- On-chip dynamic termination that has the ability to swap between series and parallel termination, depending on whether there is read or write on a common bus for signal integrity
- Easy timing closure support using the hard read FIFO in the input register path, and delay-locked loop (DLL) delay chain with fine and coarse architecture


PCIe Gen1 and Gen2 Hard IP

Cyclone V GX, GT, SX, and ST devices contain PCIe hard IP that is designed for performance and ease-of-use. The PCIe hard IP consists of the MAC, data link, and transaction layers.

The PCIe hard IP supports PCIe Gen2 and Gen1 end point and root port for up to x4 lane configuration. The PCIe Gen2 x4 support is PCIe-compatible.

The PCIe endpoint support includes multifunction support for up to eight functions, as shown in the following figure. The integrated multifunction support reduces the FPGA logic requirements by up to 20,000 LEs for PCIe designs that require multiple peripherals.

Figure 9. PCIe Multifunction for Cyclone V Devices

The Cyclone V PCIe hard IP operates independently from the core logic. This independent operation allows the PCIe link to wake up and complete link training in less than 100 ms while the Cyclone V device completes loading the programming file for the rest of the device.

In addition, the PCIe hard IP in the Cyclone V device provides improved end-to-end datapath protection using ECC.

External Memory Interface

This section provides an overview of the external memory interface in Cyclone V devices.

Hard and Soft Memory Controllers

Cyclone V devices support up to two hard memory controllers for DDR3, DDR2, and LPDDR2 SDRAM devices. Each controller supports 8 to 32 bit components of up to 4 gigabits (Gb) in density with two chip selects and optional ECC. For the Cyclone V SoC devices, an additional hard memory controller in the HPS supports DDR3, DDR2, and LPDDR2 SDRAM devices.

All Cyclone V devices support soft memory controllers for DDR3, DDR2, and LPDDR2 SDRAM devices for maximum flexibility.

External Memory Performance

Table 20. External Memory Interface Performance in Cyclone V Devices

The maximum and minimum operating frequencies depend on the memory interface standards and the supported delay-locked loop (DLL) frequency listed in the device datasheet.

Interface	Voltage	Maximum Free	Minimum Frequency	
	(V)	Hard Controller	Soft Controller	(MHz)
DDR3 SDRAM	1.5	400	303	303
	1.35	400	303	303
DDR2 SDRAM	1.8	400	300	167
LPDDR2 SDRAM	1.2	333	300	167

Related Information

External Memory Interface Spec Estimator

For the latest information and to estimate the external memory system performance specification, use Intel's External Memory Interface Spec Estimator tool.

HPS External Memory Performance

Table 21. HPS External Memory Interface Performance

The hard processor system (HPS) is available in Cyclone V SoC devices only.

Interface	Voltage (V)	HPS Hard Controller (MHz)
DDR3 SDRAM	1.5	400
	1.35	400
DDR2 SDRAM	1.8	400
LPDDR2 SDRAM	1.2	333

Related Information

External Memory Interface Spec Estimator

For the latest information and to estimate the external memory system performance specification, use Intel's External Memory Interface Spec Estimator tool.

Low-Power Serial Transceivers

Cyclone V devices deliver the industry's lowest power 6.144 Gbps transceivers at an estimated 88 mW maximum power consumption per channel. Cyclone V transceivers are designed to be compliant with a wide range of protocols and data rates.

Transceiver Channels

The transceivers are positioned on the left outer edge of the device. The transceiver channels consist of the physical medium attachment (PMA), physical coding sublayer (PCS), and clock networks.

PCS Features

The Cyclone V core logic connects to the PCS through an 8, 10, 16, 20, 32, or 40 bit interface, depending on the transceiver data rate and protocol. Cyclone V devices contain PCS hard IP to support PCIe Gen1 and Gen2, Gbps Ethernet (GbE), Serial RapidIO[®] (SRIO), and Common Public Radio Interface (CPRI).

Most of the standard and proprietary protocols from 614 Mbps to 6.144 Gbps are supported.

Table 23.	Transceiver PCS	Features for C	vclone V Devices
		i cutui co i ci c	

PCS Support	Data Rates (Gbps)	Transmitter Data Path Feature	Receiver Data Path Feature
3-Gbps and 6-Gbps Basic	0.614 to 6.144	 Phase compensation FIFO Byte serializer 8B/10B encoder Transmitter bit-slip 	 Word aligner Deskew FIFO Rate-match FIFO 8B/10B decoder Byte deserializer Byte ordering Receiver phase compensation FIFO
PCIe Gen1 (x1, x2, x4)	2.5 and 5.0	 Dedicated PCIe PHY IP core PIPE 2.0 interface to the core 	 Dedicated PCIe PHY IP core PIPE 2.0 interface to the core logic
PCIe Gen2 (x1, x2, x4) ⁽¹²⁾		logic	logic
GbE	1.25	 Custom PHY IP core with preset feature GbE transmitter synchronization state machine 	 Custom PHY IP core with preset feature GbE receiver synchronization state machine
XAUI (13)	3.125	Dedicated XAUI PHY IP core	Dedicated XAUI PHY IP core
HiGig	3.75	XAUI synchronization state machine for bonding four channels	XAUI synchronization state machine for realigning four channels
SRIO 1.3 and 2.1	1.25 to 3.125	 Custom PHY IP core with preset feature SRIO version 2.1-compliant x2 and x4 channel bonding 	 Custom PHY IP core with preset feature SRIO version 2.1-compliant x2 and x4 deskew state machine
SDI, SD/HD, and 3G-SDI	0.27 ⁽¹⁴⁾ , 1.485, and 2.97	Custom PHY IP core with preset feature	Custom PHY IP core with preset feature
JESD204A	0.3125 ⁽¹⁵⁾ to 3.125		
		•	continued

⁽¹²⁾ PCIe Gen2 is supported for Cyclone V GT and ST devices. The PCIe Gen2 x4 support is PCIe-compatible.

- ⁽¹³⁾ XAUI is supported through the soft PCS.
- $^{(14)}$ The 0.27-Gbps data rate is supported using oversampling user logic that you must implement in the FPGA fabric.
- ⁽¹⁵⁾ The 0.3125-Gbps data rate is supported using oversampling user logic that you must implement in the FPGA fabric.

PCS Support	Data Rates (Gbps)	Transmitter Data Path Feature	Receiver Data Path Feature
Serial ATA Gen1 and Gen2	1.5 and 3.0	 Custom PHY IP core with preset feature Electrical idle 	 Custom PHY IP core with preset feature Signal detect Wider spread of asynchronous SSC
CPRI 4.1 ⁽¹⁶⁾	0.6144 to 6.144	Dedicated deterministic latency PHY IP core	Dedicated deterministic latency PHY IP core
OBSAI RP3	0.768 to 3.072	Transmitter (TX) manual bit-slip mode	Receiver (RX) deterministic latency state machine
V-by-One HS	Up to 3.75	Custom PHY IP core	Custom PHY IP core
DisplayPort 1.2 ⁽¹⁷⁾	1.62 and 2.7		Wider spread of asynchronous SSC

SoC with HPS

Each SoC combines an FPGA fabric and an HPS in a single device. This combination delivers the flexibility of programmable logic with the power and cost savings of hard IP in these ways:

- Reduces board space, system power, and bill of materials cost by eliminating a discrete embedded processor
- Allows you to differentiate the end product in both hardware and software, and to support virtually any interface standard
- Extends the product life and revenue through in-field hardware and software updates

HPS Features

The HPS consists of a dual-core Arm Cortex-A9 MPCore processor, a rich set of peripherals, and a shared multiport SDRAM memory controller, as shown in the following figure.

⁽¹⁶⁾ High-voltage output mode (1000-BASE-CX) is not supported.

⁽¹⁷⁾ Pending characterization.

HPS-FPGA AXI Bridges

The HPS–FPGA bridges, which support the Advanced Microcontroller Bus Architecture (AMBA[®]) Advanced eXtensible Interface (AXI[™]) specifications, consist of the following bridges:

- FPGA-to-HPS AXI bridge—a high-performance bus supporting 32, 64, and 128 bit data widths that allows the FPGA fabric to issue transactions to slaves in the HPS.
- HPS-to-FPGA AXI bridge—a high-performance bus supporting 32, 64, and 128 bit data widths that allows the HPS to issue transactions to slaves in the FPGA fabric.
- Lightweight HPS-to-FPGA AXI bridge—a lower latency 32 bit width bus that allows the HPS to issue transactions to slaves in the FPGA fabric. This bridge is primarily used for control and status register (CSR) accesses to peripherals in the FPGA fabric.

The HPS-FPGA AXI bridges allow masters in the FPGA fabric to communicate with slaves in the HPS logic, and vice versa. For example, the HPS-to-FPGA AXI bridge allows you to share memories instantiated in the FPGA fabric with one or both microprocessors in the HPS, while the FPGA-to-HPS AXI bridge allows logic in the FPGA fabric to access the memory and peripherals in the HPS.

Each HPS–FPGA bridge also provides asynchronous clock crossing for data transferred between the FPGA fabric and the HPS.

HPS SDRAM Controller Subsystem

The HPS SDRAM controller subsystem contains a multiport SDRAM controller and DDR PHY that are shared between the FPGA fabric (through the FPGA-to-HPS SDRAM interface), the level 2 (L2) cache, and the level 3 (L3) system interconnect. The FPGA-to-HPS SDRAM interface supports AMBA AXI and Avalon[®] Memory-Mapped (Avalon-MM) interface standards, and provides up to six individual ports for access by masters implemented in the FPGA fabric.

To maximize memory performance, the SDRAM controller subsystem supports command and data reordering, deficit round-robin arbitration with aging, and high-priority bypass features. The SDRAM controller subsystem supports DDR2, DDR3, or LPDDR2 devices up to 4 Gb in density operating at up to 400 MHz (800 Mbps data rate).

FPGA Configuration and Processor Booting

The FPGA fabric and HPS in the SoC are powered independently. You can reduce the clock frequencies or gate the clocks to reduce dynamic power, or shut down the entire FPGA fabric to reduce total system power.

You can configure the FPGA fabric and boot the HPS independently, in any order, providing you with more design flexibility:

- You can boot the HPS independently. After the HPS is running, the HPS can fully or
 partially reconfigure the FPGA fabric at any time under software control. The HPS
 can also configure other FPGAs on the board through the FPGA configuration
 controller.
- You can power up both the HPS and the FPGA fabric together, configure the FPGA fabric first, and then boot the HPS from memory accessible to the FPGA fabric.

Apart from lowering cost and power consumption, partial reconfiguration increases the effective logic density of the device because placing device functions that do not operate simultaneously is not necessary. Instead, you can store these functions in external memory and load them whenever the functions are required. This capability reduces the size of the device because it allows multiple applications on a single device—saving the board space and reducing the power consumption.

Intel simplifies the time-intensive task of partial reconfiguration by building this capability on top of the proven incremental compile and design flow in the Intel Quartus Prime design software. With the Intel solution, you do not need to know all the intricate device architecture details to perform a partial reconfiguration.

Partial reconfiguration is supported through the FPP x16 configuration interface. You can seamlessly use partial reconfiguration in tandem with dynamic reconfiguration to enable simultaneous partial reconfiguration of both the device core and transceivers.

Enhanced Configuration and Configuration via Protocol

Cyclone V devices support 1.8 V, 2.5 V, 3.0 V, and 3.3 V programming voltages and several configuration schemes.

Mode	Data Width	Max Clock Rate (MHz)	Max Data Rate (Mbps)	Decompressi on	Design Security	Partial Reconfigurat ion ⁽¹⁸⁾	Remote System Update
AS through the EPCS and EPCQ serial configuration device	1 bit, 4 bits	100	_	Yes	Yes	_	Yes
PS through CPLD or external microcontroller	1 bit	125	125	Yes	Yes	_	_
FPP	8 bits	125	_	Yes	Yes	_	Parallel flash
	16 bits	125	_	Yes	Yes	Yes	loader
CvP (PCIe)	x1, x2, and x4 lanes	-	_	Yes	Yes	Yes	_
JTAG	1 bit	33	33	-	_	_	_

 Table 24.
 Configuration Schemes and Features Supported by Cyclone V Devices

Instead of using an external flash or ROM, you can configure the Cyclone V devices through PCIe using CvP. The CvP mode offers the fastest configuration rate and flexibility with the easy-to-use PCIe hard IP block interface. The Cyclone V CvP implementation conforms to the PCIe 100 ms power-up-to-active time requirement.

Related Information

Configuration via Protocol (CvP) Implementation in Intel FPGAs User Guide Provides more information about CvP.

⁽¹⁸⁾ The partial reconfiguration feature is available for Cyclone V E, GX, SE, and SX devices with the "SC" suffix in the part number. For device availability and ordering, contact your local Intel sales representatives.

Cyclone V Device Overview CV-51001 | 2018.05.07

Cyclone V SE and SX devices. December 2013 2013.12.26 Corrected single or dual-core ARM Cortex-A9 MPCore processor-up to 925 Mitz from 800 Mitz. Removed "Preliminary" texts from Ordering Code figures, Maximum Resources, Package Plan and I/O Vertical Migration tables. Removed the note "The number of GPIOs does not include transceiver I/Os. In the Quartus II software, the number of user I/Os includes transceiver I/Os. In the Maximum Resources Counts table for Cyclone V E and SE. Added leaded package options. Removed the note "The number of PLLs includes guerant. Updated Timbedded Hard IPs for Cyclone V GT devices to indicate Maximum 2 hard PCIe and 2 hard memory controllers. Addeel deaded package options. Removed the note "The number of PLLs includes gueran-purpose fractional PLLs and transceiver fractional PLLs." for all PLLs in the Maximum Resource Counts table. Corrected max LVDS counts for transmitter and receiver for Cyclone V E A5 device from 34 to 50. Corrected variable-precision DSP block, 27 x 27 multiplier, 18 x 18 multiplier adder summed with 36 bit input for Cyclone V SE devices from 116 to 150. Corrected VAS and VAS are validated and VA as well as SX C2 and C4 devices from 35 to 32. Corrected VDS transmitter for Cyclone V SE A2 and A4 as well as SX C2 and C4 devices from 35 to 32. Corrected VAS from 35 to 32. Corrected VADI is supported through the soft PCS in the PCS features for Cyclone V SE A2 and A4 as well as SX C2 and C4 devices from 35 to 32. Corrected VADI is supported through the soft PCS in the PCS features for Cyclone V SE A2 and A4 a	Date	Version	Changes
MHz from 800 MHz. Removed "Preliminary" texts from Ordering Code figures, Maximum Resources, Package Plan and I/O Vertical Migration tables. Removed the note "The number of GPI05 does not include transceiver I/Os. In the Quartus II software, the number of user /Os includes transceiver I/Os. The GPI05 in the Maximum Resource Counts table for Cyclone V E and SE. • Added limk to Altera Product Selector for each device variant. • Updated Embedded Hard IPs for Cyclone V GT devices to indicate Maximum 2 hard PCI2 and 2 hard memory controllers. • Added leaded package options. • Removed the note. "The number of PLLs includes general-purpose fractional PLLs and transceiver fractional PLLs." for all PLLs in the Maximum Resource Counts table. • Corrected max LVDS counts for transmitter and receiver for Cyclone V E AS device from 14 to 120. • Corrected max LVDS counts for transmitter and receiver for Cyclone V E AS devices from 31 to 120. • Corrected 18 x 18 multiplier of Cyclone V SE devices from 116 to 168. • Corrected 1VDS transmitter for Cyclone V SE A2 and A4 as well as SX C2 and C4 devices from 31 to 32. • Corrected 1VDS reavers for Cyclone V SE A2 and A4 as well as SX C2 and C4 devices from 31 to 32. • Corrected 1VDS reavers from May Cycle SE A3 and A4 as well as SX C2 and C4 devices from 31 to 32. • Corrected AVLDI is supported through the soft PCS in the PCS features for Cyclone V. • Added the DDR3 SDRAM for the maximum frequency's soft controller and the minimum frequency from 300 to 303 for vollege 1.35V.	July 2014	2014.07.07	Updated the I/O vertical migration figure to clarify the migration capability of Cyclone V SE and SX devices.
 Corrected 18 x 18 multiplier for Cyclone V SE devices from 116 to 168. Corrected 9 x 9 multiplier for Cyclone V SE devices from 174 to 252. Corrected LVDS transmitter for Cyclone V SE A2 and A4 as well as SX C2 and C4 devices from 31 to 32. Corrected LVDS receiver for Cyclone V SE A2 and A4 as well as SX C2 and C4 devices from 35 to 37. Corrected transceiver speed grade for Cyclone V ST devices ordering code from 4 to 5. Updated the DDR3 SDRAM for the maximum frequency's soft controller and the minimum frequency from 300 to 303 for voltage 1.35V. Added links to Altera's External Memory Spec Estimator tool to the topics listing the external memory interface performance. Corrected XAUI is supported through the soft PCS in the PCS features for Cyclone V. Added links to the known document issues in the Knowledge Base. Moved all links to the Related Information section of respective topics for easy reference. Corrected the Supporting Feature in Table 1 of Increased bandwidth capacity to '6.144 Gbps'. Updated Description in Table 2 of Low-power high-speed serial interface to '6.144 Gbps'. Updated Description in Table 3 of Cyclone V GT to '6.144 Gbps'. Updated LVDS in the Maximum Resource Counts tables to include Transmitter and Receiver values. Updated LVDS in the Maximum Resource Counts tables to include Transmitter and Receiver values. Updated He package plan with M383 for the Cyclone V E device. Removed the M301 and M383 packages from the Cyclone V GX C4 device Updated the GPI0 count to '129' for the M301 package of the Cyclone V 	December 2013	2013.12.26	 Corrected single or dual-core ARM Cortex-A9 MPCore processor-up to 925 MHz from 800 MHz. Removed "Preliminary" texts from Ordering Code figures, Maximum Resources, Package Plan and I/O Vertical Migration tables. Removed the note "The number of GPIOs does not include transceiver I/Os. In the Quartus II software, the number of user I/Os includes transceiver I/Os." for GPIOs in the Maximum Resource Counts table for Cyclone V E and SE. Added link to Altera Product Selector for each device variant. Updated Embedded Hard IPs for Cyclone V GT devices to indicate Maximum 2 hard PCIe and 2 hard memory controllers. Added leaded package options. Removed the note "The number of PLLs includes general-purpose fractional PLLs and transceiver fractional PLLs." for all PLLs in the Maximum Resource Counts table. Corrected max LVDS counts for transmitter and receiver for Cyclone V E A9 device from 140 to 120. Corrected variable-precision DSP block, 27 x 27 multiplier, 18 x 18 multiplier adder mode and 18 x 18 multiplier adder summed with 36 bit
 May 2013 2013.05.06 Added link to the known document issues in the Knowledge Base. Moved all links to the Related Information section of respective topics for easy reference. Corrected the title to the PCIe hard IP topic. Cyclone V devices support only PCIe Gen1 and Gen2. Updated Supporting Feature in Table 1 of Increased bandwidth capacity to '6.144 Gbps'. Updated Description in Table 2 of Low-power high-speed serial interface to '6.144 Gbps'. Updated Description in Table 3 of Cyclone V GT to '6.144 Gbps'. Updated the M386 package to M383 for Figure 1, Figure 2 and Figure 3. Updated LVDS in the Maximum Resource Counts tables to include Transmitter and Receiver values. Updated the m301 and M383 packages from the Cyclone V GX C4 device Updated the GPIO count to '129' for the M301 package of the Cyclone V 			 Corrected 18 x 18 multiplier for Cyclone V SE devices from 116 to 168. Corrected 9 x 9 multiplier for Cyclone V SE devices from 174 to 252. Corrected LVDS transmitter for Cyclone V SE A2 and A4 as well as SX C2 and C4 devices from 31 to 32. Corrected LVDS receiver for Cyclone V SE A2 and A4 as well as SX C2 and C4 devices from 35 to 37. Corrected transceiver speed grade for Cyclone V ST devices ordering code from 4 to 5. Updated the DDR3 SDRAM for the maximum frequency's soft controller and the minimum frequency from 300 to 303 for voltage 1.35V. Added links to Altera's External Memory Spec Estimator tool to the topics listing the external memory interface performance. Corrected XAUI is supported through the soft PCS in the PCS features for Cyclone V.
Updated 5 Gbps to '6.144 Gbps' forCyclone V GT device.	May 2013	2013.05.06	 Added link to the known document issues in the Knowledge Base. Moved all links to the Related Information section of respective topics for easy reference. Corrected the title to the PCIe hard IP topic. Cyclone V devices support only PCIe Gen1 and Gen2. Updated Supporting Feature in Table 1 of Increased bandwidth capacity to '6.144 Gbps'. Updated Description in Table 2 of Low-power high-speed serial interface to '6.144 Gbps'. Updated Description in Table 3 of Cyclone V GT to '6.144 Gbps'. Updated the M386 package to M383 for Figure 1, Figure 2 and Figure 3. Updated Figure 2 and Figure 3 for Transceiver Count by adding 'F : 4'. Updated the package plan with M383 for the Cyclone V E device. Removed the M301 and M383 packages from the Cyclone V GX C4 device. Updated the GPIO count to '129' for the M301 package of the Cyclone V GX C5 device.

Cyclone V Device Overview CV-51001 | 2018.05.07

Date	Version	Changes
		 Updated Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, and Figure 10. Updated the "FPGA Configuration and Processor Booting" and "Hardware and Software Development" sections. Text edits throughout the document.
February 2012	1.2	 Updated Table 1–2, Table 1–3, and Table 1–6. Updated "Cyclone V Family Plan" on page 1–4 and "Clock Networks and PLL Clock Sources" on page 1–15. Updated Figure 1–1 and Figure 1–6.
November 2011	1.1	 Updated Table 1–1, Table 1–2, Table 1–3, Table 1–4, Table 1–5, and Table 1–6. Updated Figure 1–4, Figure 1–5, Figure 1–6, Figure 1–7, and Figure 1–8. Updated "System Peripherals" on page 1–18, "HPS-FPGA AXI Bridges" on page 1–19, "HPS SDRAM Controller Subsystem" on page 1–19, "FPGA Configuration and Processor Booting" on page 1–19, and "Hardware and Software Development" on page 1–20. Minor text edits.
October 2011	1.0	Initial release.