

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	56480
Number of Logic Elements/Cells	149500
Total RAM Bits	7880704
Number of I/O	240
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-FBGA
Supplier Device Package	484-UBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5cgxbc7c7u19c8n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Cyclone	V Device Overview	. 3
Ke	ey Advantages of Cyclone V Devices	. 3
Su	ummary of Cyclone V Features	.4
	vclone V Device Variants and Packages	
•	Cyclone V E	
	Cyclone V GX	. 7
	Cyclone V GT	
	Cyclone V SE	
	Cyclone V SX	
	Cyclone V ST	
I/0	O Vertical Migration for Cyclone V Devices	
-	daptive Logic Module	
	riable-Precision DSP Block	
En	nbedded Memory Blocks	21
	Types of Embedded Memory	
	Embedded Memory Capacity in Cyclone V Devices	
	Embedded Memory Configurations	22
Cle	ock Networks and PLL Clock Sources	22
FP	PGA General Purpose I/O	23
PC	CIe Gen1 and Gen2 Hard IP	24
Ex	ternal Memory Interface	24
	Hard and Soft Memory Controllers	
	External Memory Performance	
	HPS External Memory Performance	
Lo	w-Power Serial Transceivers	
	Transceiver Channels	
	PMA Features	
	PCS Features	
Sc	oC with HPS	
	HPS Features	
	FPGA Configuration and Processor Booting	
	Hardware and Software Development	
Dy	namic and Partial Reconfiguration	
	Dynamic Reconfiguration	
	Partial Reconfiguration	
	hanced Configuration and Configuration via Protocol	
	wer Management	
Do	ocument Revision History for Cyclone V Device Overview	33

Cyclone V Device Overview

The Cyclone® V devices are designed to simultaneously accommodate the shrinking power consumption, cost, and time-to-market requirements; and the increasing bandwidth requirements for high-volume and cost-sensitive applications.

Enhanced with integrated transceivers and hard memory controllers, the Cyclone V devices are suitable for applications in the industrial, wireless and wireline, military, and automotive markets.

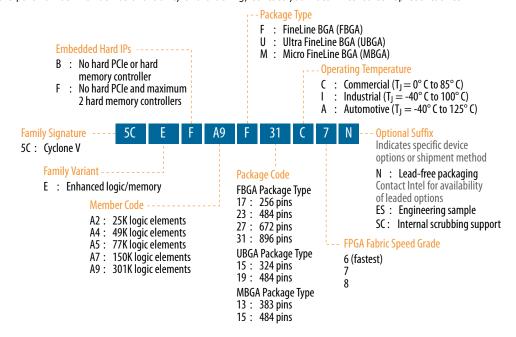
Related Information

Cyclone V Device Handbook: Known Issues

Lists the planned updates to the Cyclone V Device Handbook chapters.

Key Advantages of Cyclone V Devices

Table 1. Key Advantages of the Cyclone V Device Family


Advantage	Supporting Feature
Lower power consumption	Built on TSMC's 28 nm low-power (28LP) process technology and includes an abundance of hard intellectual property (IP) blocks Up to 40% lower power consumption than the previous generation device
Improved logic integration and differentiation capabilities	8-input adaptive logic module (ALM) Up to 13.59 megabits (Mb) of embedded memory Variable-precision digital signal processing (DSP) blocks
Increased bandwidth capacity	3.125 gigabits per second (Gbps) and 6.144 Gbps transceivers Hard memory controllers
Hard processor system (HPS) with integrated Arm* Cortex*-A9 MPCore* processor	 Tight integration of a dual-core Arm Cortex-A9 MPCore processor, hard IP, and an FPGA in a single Cyclone V system-on-a-chip (SoC) Supports over 128 Gbps peak bandwidth with integrated data coherency between the processor and the FPGA fabric
Lowest system cost	Requires only two core voltages to operate Available in low-cost wirebond packaging Includes innovative features such as Configuration via Protocol (CvP) and partial reconfiguration

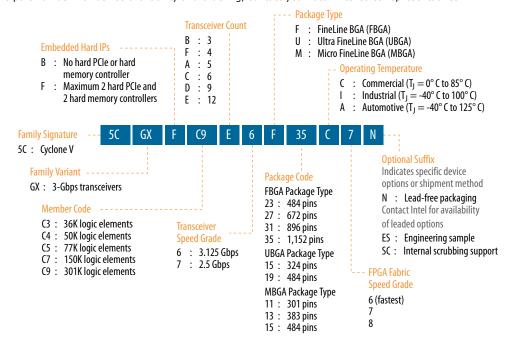
Available Options

Figure 1. Sample Ordering Code and Available Options for Cyclone V E Devices

The SEU internal scrubbing feature is available for Cyclone V E, GX, SE, and SX devices with the "SC" suffix in the part number. For device availability and ordering, contact your local Intel sales representatives.

Maximum Resources

Table 4. Maximum Resource Counts for Cyclone V E Devices


Res	ource			Member Code		
		A2	A4	A5	A7	А9
Logic Elements	(LE) (K)	25	49	77	150	301
ALM		9,430	18,480	29,080	56,480	113,560
Register		37,736	73,920	116,320	225,920	454,240
Memory (Kb)	M10K	1,760	3,080	4,460	6,860	12,200
	MLAB	196	303	424	836	1,717
Variable-precisi	on DSP Block	25	66	150	156	342
18 x 18 Multipli	er	50	132	300	312	684
PLL		4	4	6	7	8
GPIO		224	224	240	480	480
LVDS	Transmitter	56	56	60	120	120
Receiver		56	56	60	120	120
Hard Memory C	ontroller	1	1	2	2	2

Available Options

Figure 2. Sample Ordering Code and Available Options for Cyclone V GX Devices

The SEU internal scrubbing feature is available for Cyclone V E, GX, SE, and SX devices with the "SC" suffix in the part number. For device availability and ordering, contact your local Intel sales representatives.

Maximum Resources

Table 6. Maximum Resource Counts for Cyclone V GX Devices

Reso	urce			Member Code	1	
		С3	C4	C5	C7	С9
Logic Elements ((LE) (K)	36	50	77	150	301
ALM		13,460	18,860	29,080	56,480	113,560
Register		53,840	75,440	116,320	225,920	454,240
Memory (Kb)	M10K	1,350	2,500	4,460	6,860	12,200
	MLAB	182	424	424	836	1,717
Variable-precision	n DSP Block	57	70	150	156	342
18 x 18 Multiplie	er	114	140	300	312	684
PLL		4	6	6	7	8
3 Gbps Transceiver		3	6	6	9	12
GPIO ⁽⁴⁾		208	336	336	480	560
						continued

⁽⁴⁾ The number of GPIOs does not include transceiver I/Os. In the Intel Quartus® Prime software, the number of user I/Os includes transceiver I/Os.

CV-51001 | 2018.05.07

Resource		Member Code							
		С3	C4	C5	С7	C9			
LVDS	Transmitter	52	84	84	120	140			
	Receiver	52	84	84	120	140			
PCIe Hard IP Block		1	2	2	2	2			
Hard Memory Co	ontroller	1	2	2	2	2			

Related Information

True LVDS Buffers in Devices, I/O Features in Cyclone V Devices

Provides the number of LVDS channels in each device package.

Package Plan

Table 7. Package Plan for Cyclone V GX Devices

Member Code	M3 (11)	801 mm)	M3 (13 i		M4 (15		U3 (15		U4 (19 i	
	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR
C3	_	_	_	_	_	_	144	3	208	3
C4	129	4	175	6	_	_	_	_	224	6
C5	129	4	175	6	_	_	_	_	224	6
C7	_	_	_	_	240	3	_	_	240	6
C9	_	_	_	_	_	_	_	_	240	5

Member Code	F4 (23 i		F6 (27 I	72 mm)	F896 (31 mm)		F1152 (35 mm)	
	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR
C3	208	3	_	_	_	_	_	_
C4	240	6	336	6	_	_	_	_
C5	240	6	336	6	_	_	_	_
C7	240	6	336	9	480	9	_	_
С9	224	6	336	9	480	12	560	12

Cyclone V GT

This section provides the available options, maximum resource counts, and package plan for the Cyclone V GT devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the *Product Selector Guide*.

Related Information

Product Selector Guide

Provides the latest information about Intel products.

CV-51001 | 2018.05.07

Resource		Member Code					
		D5	D7	D9			
Receiver		84	120	140			
PCIe Hard IP Block		2	2	2			
Hard Memory Controller		2	2	2			

Related Information

True LVDS Buffers in Devices, I/O Features in Cyclone V Devices

Provides the number of LVDS channels in each device package.

Package Plan

Table 9. Package Plan for Cyclone V GT Devices

Transceiver counts shown are for transceiver ≤ 5 Gbps . 6 Gbps transceiver channel count support depends on the package and channel usage. For more information about the 6 Gbps transceiver channel count, refer to the Cyclone V Device Handbook Volume 2: Transceivers.

Member Code		M301 M383 (11 mm) (13 mm)		M484 (15 mm)		U484 (19 mm)		
	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR
D5	129	4	175	6	_	_	224	6
D7	_	_	_	_	240	3	240	6
D9	_	_	_	_	_	_	240	5

Member Code	F48 (23 I			F672 F896 (27 mm) (31 mm)			F11 (35 i	
	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR
D5	240	6	336	6	_	_	_	_
D7	240	6	336	9 (6)	480	9 (6)	_	_
D9	224	6	336	9 (6)	480	12 ⁽⁷⁾	560	12 ⁽⁷⁾

Related Information

6.144-Gbps Support Capability in Cyclone V GT Devices, Cyclone V Device Handbook Volume 2: Transceivers

Provides more information about 6 Gbps transceiver channel count.

⁽⁶⁾ If you require CPRI (at 6.144 Gbps) and PCIe Gen2 transmit jitter compliance, Intel recommends that you use only up to three full-duplex transceiver channels for CPRI, and up to six full-duplex channels for PCIe Gen2. The CMU channels are not considered full-duplex channels.

⁽⁷⁾ If you require CPRI (at 6.144 Gbps) and PCIe Gen2 transmit jitter compliance, Intel recommends that you use only up to three full-duplex transceiver channels for CPRI, and up to eight full-duplex channels for PCIe Gen2. The CMU channels are not considered full-duplex channels.

Maximum Resources

Table 10. **Maximum Resource Counts for Cyclone V SE Devices**

Res	ource		Me	ember Code	
		A2	A4	A5	A6
Logic Elements (LE) (K)	25	40	85	110
ALM		9,430	15,880	32,070	41,910
Register		37,736	60,376	128,300	166,036
Memory (Kb)	M10K	1,400	2,700	3,970	5,570
	MLAB	138	231	480	621
Variable-precisio	n DSP Block	36	84	87	112
18 x 18 Multiplie	r	72	168	174	224
FPGA PLL		5	5	6	6
HPS PLL		3	3	3	3
FPGA GPIO		145	145	288	288
HPS I/O		181	181	181	181
LVDS	Transmitter	32	32	72	72
	Receiver	37	37	72	72
FPGA Hard Memo	FPGA Hard Memory Controller		1	1	1
HPS Hard Memor	HPS Hard Memory Controller		1	1	1
Arm Cortex-A9 M	1PCore Processor	Single- or dual- core	Single- or dual- core	Single- or dual-core	Single- or dual-core

Related Information

True LVDS Buffers in Devices, I/O Features in Cyclone V Devices Provides the number of LVDS channels in each device package.

Package Plan

Package Plan for Cyclone V SE Devices Table 11.

The HPS I/O counts are the number of I/Os in the HPS and does not correlate with the number of HPS-specific I/O pins in the FPGA. Each HPS-specific pin in the FPGA may be mapped to several HPS I/Os.

Member Code	U484 (19 mm)					F89 (31 r	
	FPGA GPIO	HPS I/O	FPGA GPIO	HPS I/O	FPGA GPIO	HPS I/O	
A2	66	151	145	181	_	_	
A4	66	151	145	181	_	_	
A5	66	151	145	181	288	181	
A6	66	151	145	181	288	181	

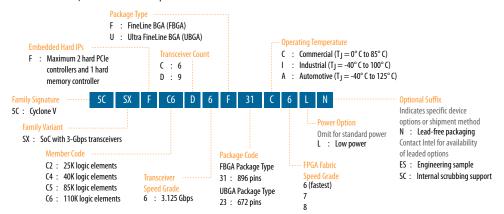
Cyclone V SX

This section provides the available options, maximum resource counts, and package plan for the Cyclone V SX devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the *Product Selector Guide*.

Related Information

Product Selector Guide


Provides the latest information about Intel products.

Available Options

Figure 5. Sample Ordering Code and Available Options for Cyclone V SX Devices

The SEU internal scrubbing feature is available for Cyclone V E, GX, SE, and SX devices with the "SC" suffix in the part number. For device availability and ordering, contact your local Intel sales representatives.

Cyclone V SE and SX low-power devices (L power option) offer 30% static power reduction for devices with 25K LE and 40K LE, and 20% static power reduction for devices with 85K LE and 110K LE.

Maximum Resources

Table 12. Maximum Resource Counts for Cyclone V SX Devices

Resource		Member Code				
		C2	C4	C5	C6	
Logic Elements (LE) (K)		25	40	85	110	
ALM		9,430	15,880	32,070	41,910	
Register		37,736	60,376	128,300	166,036	
Memory (Kb)	M10K	1,400	2,700	3,970	5,570	
	MLAB	138	231	480	621	
Variable-precision DSP Block		36	84	87	112	
18 x 18 Multiplier		72	168	174	224	
FPGA PLL		5	5	6	6	
continued						

Resource		Member Code				
		C2	C4	C5	C6	
HPS PLL		3	3	3	3	
3 Gbps Transceiver		6	6	9	9	
FPGA GPIO (8)	FPGA GPIO ⁽⁸⁾		145	288	288	
HPS I/O		181	181	181	181	
LVDS	Transmitter	32	32	72	72	
	Receiver	37	37	72	72	
PCIe Hard IP Block	PCIe Hard IP Block		2	2 (9)	2 (9)	
FPGA Hard Memory Controller		1	1	1	1	
HPS Hard Memory Controller		1	1	1	1	
Arm Cortex-A9 MP0	Core Processor	Dual-core	Dual-core	Dual-core	Dual-core	

Related Information

True LVDS Buffers in Devices, I/O Features in Cyclone V Devices

Provides the number of LVDS channels in each device package.

Package Plan

Table 13. Package Plan for Cyclone V SX Devices

The HPS I/O counts are the number of I/Os in the HPS and does not correlate with the number of HPS-specific I/O pins in the FPGA. Each HPS-specific pin in the FPGA may be mapped to several HPS I/Os.

Member Code	U672 (23 mm)				F896 (31 mm)	
	FPGA GPIO	HPS I/O	XCVR	FPGA GPIO	HPS I/O	XCVR
C2	145	181	6	_	_	_
C4	145	181	6	_	_	_
C5	145	181	6	288	181	9
C6	145	181	6	288	181	9

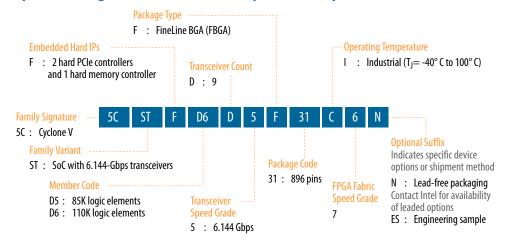
Cyclone V ST

This section provides the available options, maximum resource counts, and package plan for the Cyclone V ST devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the *Product Selector Guide*.

⁽⁸⁾ The number of GPIOs does not include transceiver I/Os. In the Intel Quartus Prime software, the number of user I/Os includes transceiver I/Os.

^{(9) 1} PCIe Hard IP Block in U672 package.


Related Information

Product Selector Guide

Provides the latest information about Intel products.

Available Options

Figure 6. Sample Ordering Code and Available Options for Cyclone V ST Devices

Maximum Resources

Table 14. Maximum Resource Counts for Cyclone V ST Devices

Reso	ource	Membe	r Code
		D5	D6
Logic Elements (LE) (K)		85	110
ALM		32,070	41,910
Register		128,300	166,036
Memory (Kb)	M10K	3,970	5,570
	MLAB	480	621
Variable-precision DSP Block		87	112
18 x 18 Multiplier		174	224
FPGA PLL		6	6
HPS PLL		3	3
6.144 Gbps Transceiver		9	9
FPGA GPIO ⁽¹⁰⁾		288	288
HPS I/O		181	181
LVDS	Transmitter	72	72
continued			

⁽¹⁰⁾ The number of GPIOs does not include transceiver I/Os. In the Intel Quartus Prime software, the number of user I/Os includes transceiver I/Os.

Figure 8. ALM for Cyclone V Devices

You can configure up to 25% of the ALMs in the Cyclone V devices as distributed memory using MLABs.

Related Information

Embedded Memory Capacity in Cyclone V Devices on page 21 Lists the embedded memory capacity for each device.

Variable-Precision DSP Block

Cyclone V devices feature a variable-precision DSP block that supports these features:

- Configurable to support signal processing precisions ranging from 9 x 9, 18 x 18 and 27 x 27 bits natively
- A 64-bit accumulator
- A hard preadder that is available in both 18- and 27-bit modes
- Cascaded output adders for efficient systolic finite impulse response (FIR) filters
- Internal coefficient register banks, 8 deep, for each multiplier in 18- or 27-bit mode
- Fully independent multiplier operation
- A second accumulator feedback register to accommodate complex multiplyaccumulate functions
- Fully independent Efficient support for single-precision floating point arithmetic
- The inferability of all modes by the Intel Quartus Prime design software

Table 16. Variable-Precision DSP Block Configurations for Cyclone V Devices

Usage Example	Multiplier Size (Bit)	DSP Block Resource
Low precision fixed point for video applications	Three 9 x 9	1
Medium precision fixed point in FIR filters	Two 18 x 18	1
FIR filters and general DSP usage	Two 18 x 18 with accumulate	1
High precision fixed- or floating-point implementations	One 27 x 27 with accumulate	1

You can configure each DSP block during compilation as independent three 9 \times 9, two 18 \times 18, or one 27 \times 27 multipliers. With a dedicated 64 bit cascade bus, you can cascade multiple variable-precision DSP blocks to implement even higher precision DSP functions efficiently.

Table 17. Number of Multipliers in Cyclone V Devices

The table lists the variable-precision DSP resources by bit precision for each Cyclone V device.

Variant	Member Code	Variable- precision DSP Block		Independent Input and Output Multiplications Operator			18 x 18 Multiplier Adder
	DSP Block	9 x 9 Multiplier	18 x 18 Multiplier	27 x 27 Multiplier	Adder Mode	Summed with 36 bit Input	
Cyclone V E	A2	25	75	50	25	25	25
	A4	66	198	132	66	66	66
	A5	150	450	300	150	150	150
	A7	156	468	312	156	156	156
	A9	342	1,026	684	342	342	342
Cyclone V	C3	57	171	114	57	57	57
GX	C4	70	210	140	70	70	70
	C5	150	450	300	150	150	150
	C7	156	468	312	156	156	156
	C9	342	1,026	684	342	342	342
Cyclone V GT	D5	150	450	300	150	150	150
	D7	156	468	312	156	156	156
	D9	342	1,026	684	342	342	342
Cyclone V SE	A2	36	108	72	36	36	36
	A4	84	252	168	84	84	84
	A5	87	261	174	87	87	87
	A6	112	336	224	112	112	112
Cyclone V SX	C2	36	108	72	36	36	36
	C4	84	252	168	84	84	84
	C5	87	261	174	87	87	87
							continued

	Member		.0К	ML	Total RAM Bit	
Variant	Code	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	(Kb)
Cyclone V GT	D5	446	4,460	679	424	4,884
	D7	686	6,860	1338	836	7,696
	D9	1,220	12,200	2748	1,717	13,917
Cyclone V SE	A2	140	1,400	221	138	1,538
	A4	270	2,700	370	231	2,460
	A5	397	3,970	768	480	4,450
	A6	553	5,530	994	621	6,151
Cyclone V SX	C2	140	1,400	221	138	1,538
	C4	270	2,700	370	231	2,460
	C5	397	3,970	768	480	4,450
	C6	553	5,530	994	621	6,151
Cyclone V ST	D5	397	3,970	768	480	4,450
	D6	553	5,530	994	621	6,151

Embedded Memory Configurations

Table 19. Supported Embedded Memory Block Configurations for Cyclone V Devices

This table lists the maximum configurations supported for the embedded memory blocks. The information is applicable only to the single-port RAM and ROM modes.

Memory Block	Depth (bits)	Programmable Width
MLAB	32	x16, x18, or x20
M10K	256	x40 or x32
	512	x20 or x16
	1K	x10 or x8
	2K	x5 or x4
	4K	x2
	8K	×1

Clock Networks and PLL Clock Sources

550 MHz Cyclone V devices have 16 global clock networks capable of up to operation. The clock network architecture is based on Intel's global, quadrant, and peripheral clock structure. This clock structure is supported by dedicated clock input pins and fractional PLLs.

Note:

To reduce power consumption, the Intel Quartus Prime software identifies all unused sections of the clock network and powers them down.

PLL Features

The PLLs in the Cyclone V devices support the following features:

- Frequency synthesis
- On-chip clock deskew
- Jitter attenuation
- Programmable output clock duty cycles
- PLL cascading
- Reference clock switchover
- Programmable bandwidth
- User-mode reconfiguration of PLLs
- Low power mode for each fractional PLL
- Dynamic phase shift
- Direct, source synchronous, zero delay buffer, external feedback, and LVDS compensation modes

Fractional PLL

In addition to integer PLLs, the Cyclone V devices use a fractional PLL architecture. The devices have up to eight PLLs, each with nine output counters. You can use the output counters to reduce PLL usage in two ways:

- Reduce the number of oscillators that are required on your board by using fractional PLLs
- Reduce the number of clock pins that are used in the device by synthesizing multiple clock frequencies from a single reference clock source

If you use the fractional PLL mode, you can use the PLLs for precision fractional-N frequency synthesis—removing the need for off-chip reference clock sources in your design.

The transceiver fractional PLLs that are not used by the transceiver I/Os can be used as general purpose fractional PLLs by the FPGA fabric.

FPGA General Purpose I/O

Cyclone V devices offer highly configurable GPIOs. The following list describes the features of the GPIOs:

- Programmable bus hold and weak pull-up
- \bullet LVDS output buffer with programmable differential output voltage (V $_{\text{OD}}$) and programmable pre-emphasis
- ullet On-chip parallel termination (R_T OCT) for all I/O banks with OCT calibration to limit the termination impedance variation
- On-chip dynamic termination that has the ability to swap between series and parallel termination, depending on whether there is read or write on a common bus for signal integrity
- Easy timing closure support using the hard read FIFO in the input register path, and delay-locked loop (DLL) delay chain with fine and coarse architecture

External Memory Performance

Table 20. External Memory Interface Performance in Cyclone V Devices

The maximum and minimum operating frequencies depend on the memory interface standards and the supported delay-locked loop (DLL) frequency listed in the device datasheet.

Interface	Voltage			Minimum Frequency	
	(V)	Hard Controller	Soft Controller	(MHz)	
DDR3 SDRAM	1.5	400	303	303	
	1.35	400	303	303	
DDR2 SDRAM	1.8	400	300	167	
LPDDR2 SDRAM	1.2	333	300	167	

Related Information

External Memory Interface Spec Estimator

For the latest information and to estimate the external memory system performance specification, use Intel's External Memory Interface Spec Estimator tool.

HPS External Memory Performance

Table 21. HPS External Memory Interface Performance

The hard processor system (HPS) is available in Cyclone V SoC devices only.

Interface	Voltage (V)	HPS Hard Controller (MHz)
DDR3 SDRAM	1.5	400
	1.35	400
DDR2 SDRAM	1.8	400
LPDDR2 SDRAM	1.2	333

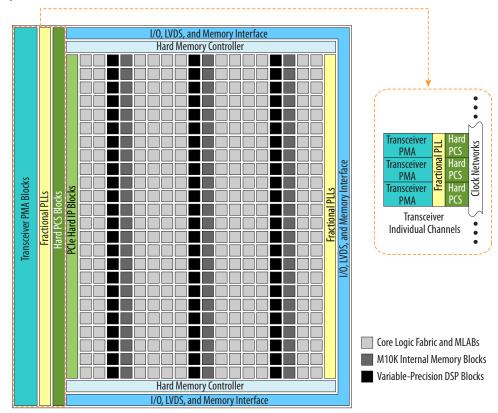
Related Information

External Memory Interface Spec Estimator

For the latest information and to estimate the external memory system performance specification, use Intel's External Memory Interface Spec Estimator tool.

Low-Power Serial Transceivers

Cyclone V devices deliver the industry's lowest power 6.144 Gbps transceivers at an estimated 88 mW maximum power consumption per channel. Cyclone V transceivers are designed to be compliant with a wide range of protocols and data rates.


Transceiver Channels

The transceivers are positioned on the left outer edge of the device. The transceiver channels consist of the physical medium attachment (PMA), physical coding sublayer (PCS), and clock networks.

Figure 10. Device Chip Overview for Cyclone V GX and GT Devices

The figure shows a Cyclone V FPGA with transceivers. Different Cyclone V devices may have a different floorplans than the one shown here.

PMA Features

To prevent core and I/O noise from coupling into the transceivers, the PMA block is isolated from the rest of the chip—ensuring optimal signal integrity. For the transceivers, you can use the channel PLL of an unused receiver PMA as an additional transmit PLL.

Table 22. PMA Features of the Transceivers in Cyclone V Devices

Features	Capability		
Backplane support	Driving capability up to 6.144 Gbps		
PLL-based clock recovery	Superior jitter tolerance		
Programmable deserialization and word alignment	Flexible deserialization width and configurable word alignment pattern		
Equalization and pre-emphasis	 Up to 14.37 dB of pre-emphasis and up to 4.7 dB of equalization No decision feedback equalizer (DFE) 		
Ring oscillator transmit PLLs	614 Mbps to 6.144 Gbps		
Input reference clock range	20 MHz to 400 MHz		
Transceiver dynamic reconfiguration	Allows the reconfiguration of a single channel without affecting the operation of other channels		

PCS Features

The Cyclone V core logic connects to the PCS through an 8, 10, 16, 20, 32, or 40 bit interface, depending on the transceiver data rate and protocol. Cyclone V devices contain PCS hard IP to support PCIe Gen1 and Gen2, Gbps Ethernet (GbE), Serial RapidIO[®] (SRIO), and Common Public Radio Interface (CPRI).

Most of the standard and proprietary protocols from 614 Mbps to 6.144 Gbps are supported.

Table 23. Transceiver PCS Features for Cyclone V Devices

PCS Support	Data Rates (Gbps)	Transmitter Data Path Feature	Receiver Data Path Feature	
3-Gbps and 6-Gbps Basic	0.614 to 6.144	 Phase compensation FIFO Byte serializer 8B/10B encoder Transmitter bit-slip 	 Word aligner Deskew FIFO Rate-match FIFO 8B/10B decoder Byte deserializer Byte ordering Receiver phase compensation FIFO 	
PCIe Gen1 (x1, x2, x4)	2.5 and 5.0	Dedicated PCIe PHY IP core PIPE 2.0 interface to the core logic	Dedicated PCIe PHY IP core PIPE 2.0 interface to the core logic	
PCIe Gen2 (x1, x2, x4) ⁽¹²⁾		logic	logic	
GbE	1.25	Custom PHY IP core with preset feature GbE transmitter synchronization state machine	Custom PHY IP core with preset feature GbE receiver synchronization state machine	
XAUI (13)	3.125	Dedicated XAUI PHY IP core	Dedicated XAUI PHY IP core	
HiGig	3.75	XAUI synchronization state machine for bonding four channels	XAUI synchronization state machine for realigning four channels	
SRIO 1.3 and 2.1	1.25 to 3.125	Custom PHY IP core with preset feature SRIO version 2.1-compliant x2 and x4 channel bonding	Custom PHY IP core with preset feature SRIO version 2.1-compliant x2 and x4 deskew state machine	
SDI, SD/HD, and 3G-SDI	0.27 ⁽¹⁴⁾ , 1.485, and 2.97	Custom PHY IP core with preset feature	Custom PHY IP core with preset feature	
JESD204A	0.3125 ⁽¹⁵⁾ to 3.125			
	,		continued	

⁽¹²⁾ PCIe Gen2 is supported for Cyclone V GT and ST devices. The PCIe Gen2 x4 support is PCIe-compatible.

⁽¹³⁾ XAUI is supported through the soft PCS.

 $^{^{(14)}}$ The 0.27-Gbps data rate is supported using oversampling user logic that you must implement in the FPGA fabric.

⁽¹⁵⁾ The 0.3125-Gbps data rate is supported using oversampling user logic that you must implement in the FPGA fabric.

PCS Support	Data Rates (Gbps)	Transmitter Data Path Feature	Receiver Data Path Feature		
Serial ATA Gen1 and Gen2	1.5 and 3.0	Custom PHY IP core with preset feature Electrical idle	Custom PHY IP core with preset feature Signal detect Wider spread of asynchronous SSC		
CPRI 4.1 ⁽¹⁶⁾	0.6144 to 6.144	Dedicated deterministic latency PHY IP core	Dedicated deterministic latency PHY IP core		
OBSAI RP3	0.768 to 3.072	Transmitter (TX) manual bit-slip mode	Receiver (RX) deterministic latency state machine		
V-by-One HS	Up to 3.75	Custom PHY IP core	Custom PHY IP core		
DisplayPort 1.2 ⁽¹⁷⁾	1.62 and 2.7		Wider spread of asynchronous SSC		

SoC with HPS

Each SoC combines an FPGA fabric and an HPS in a single device. This combination delivers the flexibility of programmable logic with the power and cost savings of hard IP in these ways:

- Reduces board space, system power, and bill of materials cost by eliminating a discrete embedded processor
- Allows you to differentiate the end product in both hardware and software, and to support virtually any interface standard
- Extends the product life and revenue through in-field hardware and software updates

HPS Features

The HPS consists of a dual-core Arm Cortex-A9 MPCore processor, a rich set of peripherals, and a shared multiport SDRAM memory controller, as shown in the following figure.

⁽¹⁶⁾ High-voltage output mode (1000-BASE-CX) is not supported.

⁽¹⁷⁾ Pending characterization.

Apart from lowering cost and power consumption, partial reconfiguration increases the effective logic density of the device because placing device functions that do not operate simultaneously is not necessary. Instead, you can store these functions in external memory and load them whenever the functions are required. This capability reduces the size of the device because it allows multiple applications on a single device—saving the board space and reducing the power consumption.

Intel simplifies the time-intensive task of partial reconfiguration by building this capability on top of the proven incremental compile and design flow in the Intel Quartus Prime design software. With the Intel solution, you do not need to know all the intricate device architecture details to perform a partial reconfiguration.

Partial reconfiguration is supported through the FPP x16 configuration interface. You can seamlessly use partial reconfiguration in tandem with dynamic reconfiguration to enable simultaneous partial reconfiguration of both the device core and transceivers.

Enhanced Configuration and Configuration via Protocol

Cyclone V devices support $1.8\ V$, $2.5\ V$, $3.0\ V$, and $3.3\ V$ programming voltages and several configuration schemes.

Table 24. Configuration Schemes and Features Supported by Cyclone V Devices

Mode	Data Width	Max Clock Rate (MHz)	Max Data Rate (Mbps)	Decompressi on	Design Security	Partial Reconfigurat ion ⁽¹⁸⁾	Remote System Update
AS through the EPCS and EPCQ serial configuration device	1 bit, 4 bits	100	_	Yes	Yes	_	Yes
PS through CPLD or external microcontroller	1 bit	125	125	Yes	Yes	_	_
FPP	8 bits	125	_	Yes	Yes	_	Parallel flash
	16 bits	125	_	Yes	Yes	Yes	loader
CvP (PCIe)	x1, x2, and x4 lanes	_	_	Yes	Yes	Yes	_
JTAG	1 bit	33	33	_	_	_	_

Instead of using an external flash or ROM, you can configure the Cyclone V devices through PCIe using CvP. The CvP mode offers the fastest configuration rate and flexibility with the easy-to-use PCIe hard IP block interface. The Cyclone V CvP implementation conforms to the PCIe 100 ms power-up-to-active time requirement.

Related Information

Configuration via Protocol (CvP) Implementation in Intel FPGAs User Guide Provides more information about CvP.

⁽¹⁸⁾ The partial reconfiguration feature is available for Cyclone V E, GX, SE, and SX devices with the "SC" suffix in the part number. For device availability and ordering, contact your local Intel sales representatives.

CV-51001 | 2018.05.07

Date	Version	Changes
		 Updated Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, and Figure 10. Updated the "FPGA Configuration and Processor Booting" and "Hardware and Software Development" sections. Text edits throughout the document.
February 2012	1.2	 Updated Table 1-2, Table 1-3, and Table 1-6. Updated "Cyclone V Family Plan" on page 1-4 and "Clock Networks and PLL Clock Sources" on page 1-15. Updated Figure 1-1 and Figure 1-6.
November 2011	1.1	 Updated Table 1-1, Table 1-2, Table 1-3, Table 1-4, Table 1-5, and Table 1-6. Updated Figure 1-4, Figure 1-5, Figure 1-6, Figure 1-7, and Figure 1-8. Updated "System Peripherals" on page 1-18, "HPS-FPGA AXI Bridges" on page 1-19, "HPS SDRAM Controller Subsystem" on page 1-19, "FPGA Configuration and Processor Booting" on page 1-19, and "Hardware and Software Development" on page 1-20. Minor text edits.
October 2011	1.0	Initial release.