

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 14x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1784-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1784/6/7

Pin Diagram – 28-Pin SPDIP, SOIC, SSOP

Pin Diagram – 28-Pin QFN

PIC16(L)F1784/6/7

TABLE 3-12:	SPECIAL FUNCTION REGISTER SUMMARY	(CONTINUED))
-------------	-----------------------------------	-------------	---

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 7										
38Ch	INLVLA	Input Type Cor	nput Type Control for PORTA							0000 0000	0000 0000
38Dh	INLVLB	Input Type Cor	ntrol for POR	ГВ						0000 0000	0000 0000
38Eh	INLVLC	Input Type Cor	ntrol for POR	ГС						1111 1111	1111 1111
38Fh	INLVLD ⁽³⁾	Input Type Co	ntrol for POR	ГD						1111 1111	1111 1111
390h	INLVLE	—	_	_	_	INLVLE3	INLVLE2 ⁽³⁾	INLVLE1 ⁽³⁾	INLVLE0 ⁽³⁾	1111	1111
391h	IOCAP				IOCAP	<7:0>				0000 0000	0000 0000
392h	IOCAN		IOCAN<7:0>							0000 0000	0000 0000
393h	IOCAF		IOCAF<7:0>							0000 0000	0000 0000
394h	IOCBP		IOCBP<7:0>						0000 0000	0000 0000	
395h	IOCBN				IOCBN	<7:0>				0000 0000	0000 0000
396h	IOCBF				IOCBF	<7:0>				0000 0000	0000 0000
397h	IOCCP				IOCCP	<7:0>				0000 0000	0000 0000
398h	IOCCN				IOCCN	<7:0>				0000 0000	0000 0000
399h	IOCCF				IOCCF	<7:0>				0000 0000	0000 0000
39Ah		Linimalomento	d								
39Ch	—	Unimplemente							_		
39Dh	IOCEP	—	— — — IOCEP3 — — —						0	0	
39Eh	IOCEN	—	—	—	—	IOCEN3	—	—	—	0	0
39Fh	IOCEF	IOCEF3						—	0	0	
Ban	k 8-9					•				•	
40Ch											
or											

40Ch				
or				
41Fh				
and	_	Unimplemented	—	—
48Ch				
or				
49Fh				

Bank 10

Dan	K IU									
50Ch 510h	_	Unimplemente	implemented —						—	
511h	OPA1CON	OPA1EN	OPA1SP	—	—	_	_	OPA1PCH<1:0>	0000	0000
512h	—	Unimplemente	implemented — — —							—
513h	OPA2CON	OPA2EN	OPA2SP	—	—	_	_	OPA2PCH<1:0>	0000	0000
514h	—	Unimplemente	d						—	—
515h	OPA3CON ⁽³⁾	OPA3EN	OPA3SP	_	_	_	_	OPA3PCH<1:0>	0000	0000
51Ah	CLKRCON	CLKREN	CLKROE	CLKRSLR	CLKRD	C<1:0>	(CLKRDIV<2:0>	0011 0000	0011 0000
51Bh 51Fh	_	Unimplemente	nimplemented						_	_

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Legend:

Shaded locations are unimplemented, read as '0'. 1: These registers can be addressed from any bank.

Note 2:

Unimplemented, read as '1'. 3:

PIC16(L)F1784/7 only. PIC16F1784/6/7 only. 4:

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0		
_	PSMC3TIF	PSMC2TIF	PSMC1TIF		PSMC3SIF	PSMC2SIF	PSMC1SIF		
bit 7							bit 0		
Legend:	Legend:								
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
u = Bit is u	unchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is	set	'0' = Bit is clea	ared						
bit 7	Unimplemen	ted: Read as '	0'						
bit 6	PSMC3TIF: F	SMC3 Time B	ase Interrupt F	-lag bit					
	1 = Interrupt i 0 = Interrupt i	s pending s not pending							
bit 5	PSMC2TIF: F	SMC2 Time B	ase Interrupt F	-lag bit					
	1 = Interrupt i	s pending							
		s not pending							
bit 4		SMC1 Time B	ase Interrupt I	lag bit					
	\perp = Interrupt i	s penaing s not pendina							
bit 3	Unimplemen	ted: Read as '	0'						
bit 2	PSMC3SIF: F	PSMC3 Auto-st	° hutdown Flag	bit					
	1 = Interrupt i	s pending	in a second s	~					
	0 = Interrupt i	s not pending							
bit 1	PSMC2SIF: F	PSMC2 Auto-sh	nutdown Flag	bit					
	1 = Interrupt i	s pending							
		s not pending							
bit 0	PSMC1SIF: ⊦	'SMC1 Auto-st	hutdown Flag	bit					
	1 = Interrupt i	s pending							
	0 – menuper	s not pending							
Note:	Note: Interrupt flag bits are set when an interrupt								
	condition occurs, re	egardless of the	e state of						
	Enable bit GIE o	f the INTCON							
User software should ensure the									
	appropriate interrupt flag bits are clear								
	prior to enabling a	n interrupt.							

REGISTER 8-9: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

EXAMPLE 12-2: DATA EEPROM WRITE

	BANKSEL	EEADRL	;
	MOVLW	DATA_EE_ADDR	;
	MOVWF	EEADRL	;Data Memory Address to write
	MOVLW	DATA_EE_DATA	;
	MOVWF	EEDATL	;Data Memory Value to write
	BCF	EECON1, CFGS	;Deselect Configuration space
	BCF	EECON1, EEPGD	;Point to DATA memory
	BSF	EECON1, WREN	;Enable writes
	BCF	INTCON, GIE	;Disable INTs.
	MOVLW	55h	i
e g	MOVWF	EECON2	;Write 55h
luire Len	MOVLW	0AAh	i
Sec	MOVWF	EECON2	;Write AAh
ш <i>б</i>	BSF	EECON1, WR	;Set WR bit to begin write
	BSF	INTCON, GIE	;Enable Interrupts
	BCF	EECON1, WREN	;Disable writes
	BTFSC	EECON1, WR	;Wait for write to complete
	GOTO	\$-2	;Done

	Q1 Q2 Q3 Q4
Flash ADDR	I I
Flash Data	INSTR (PC) INSTR (PC + 1) EEDATH,EEDATL INSTR (PC + 3) INSTR (PC + 4)
	INSTR(PC - 1) BSF PMCON1,RD INSTR(PC + 1) Forced NOP INSTR(PC + 3) INSTR(PC + 4) executed here executed here executed here executed here executed here
RD bit	
EEDATH EEDATL Register	

REGISTER 13-29: ANSELD: PORTD ANALOG SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1
_	—		—	—	ANSD2	ANSD1	ANSD0
bit 7					•		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
u = Bit is unchanged x		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Rese			other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
•							

bit 7-3	Unimplemented: Read as '0'
bit 2-0	 ANSD<2:0>: Analog Select between Analog or Digital Function on pins RD<2:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 13-30: WPUD: WEAK PULL-UP PORTD REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUD7 | WPUD6 | WPUD5 | WPUD4 | WPUD3 | WPUD2 | WPUD1 | WPUD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUD<7:0>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled
- Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
 - **2:** The weak pull-up device is automatically disabled if the pin is in configured as an output.

PIC16(L)F1784/6/7

19.6 Register Definitions: DAC Control

REGISTER 19-1: DAC1CON0: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0			
DAC1EN	_	DAC10E1	DAC10E2	DAC1F	PSS<1:0>	_	DAC1NSS			
bit 7		•					bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
u = Bit is uncha	nged	x = Bit is unkno	own	-n/n = Value a	t POR and BOR	Value at all oth	er Resets			
'1' = Bit is set		'0' = Bit is clea	red							
bit 7	DAC1EN: DAC 1 = DAC1 is e 0 = DAC1 is d	C1 Enable bit enabled lisabled								
bit 6	Unimplement	ed: Read as '0'								
bit 5	DAC1OE1: DA 1 = DAC1 volt 0 = DAC1 volt	AC1 Voltage Ou tage level is als tage level is dis	tput 1 Enable I o an output on connected fror	bit the DAC1OUT n the DAC1OU	1 pin T1 pin					
bit 4	DAC1OE2: DA 1 = DAC1 volt 0 = DAC1 volt	AC1 Voltage Ou tage level is als tage level is dis	tput 2 Enable I o an output on connected fror	bit the DAC1OUT n the DAC1OU	2 pin T2 pin					
bit 3-2	DAC1PSS<1:0 11 = Reserve 10 = FVR But 01 = VREF+ p 00 = VDD	D>: DAC1 Positi ed, do not use ffer2 output in	ve Source Sel	ect bits						
bit 1	Unimplement	ed: Read as '0'								
bit 0	Unimplemented: Read as '0' DAC1NSS: DAC1 Negative Source Select bits 1 = VREF- pin 0 = VSS									

REGISTER 19-2: DAC1CON1: VOLTAGE REFERENCE CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			DAC1	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit	:	W = Writable bit	t	U = Unimplem	nented bit, read a	as '0'	

bit 7-0	DAC1R<7:0>: DAC1 Voltage Output Select bits

x = Bit is unknown

'0' = Bit is cleared

TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2		Bit 1	Bit 0	Register on page		
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		ADFVR<1:0>		162		
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	—	DAC1NSS	186		
DAC1CON1		DAC1R<7:0>									

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

u = Bit is unchanged

'1' = Bit is set

-n/n = Value at POR and BOR/Value at all other Resets

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u				
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS	S<1:0>				
bit 7			I.			•	bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets				
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	/are					
bit 7 TMR1GE: Timer1 Gate Enable bit <u>If TMR1ON = 0</u> : This bit is ignored <u>If TMR1ON = 1</u> : 1 = Timer1 counting is controlled by the Timer1 gate function 0 = Timer1 counts regardless of Timer1 gate function											
bit 6	T1GPOL: Tim 1 = Timer1 g 0 = Timer1 g	ner1 Gate Pola ate is active-hig ate is active-lov	rity bit gh (Timer1 cou w (Timer1 cou	unts when gate nts when gate i	is high) s low)						
bit 5	T1GTM: Time 1 = Timer1 G 0 = Timer1 G Timer1 gate fi	er1 Gate Toggle Gate Toggle mo Gate Toggle mo lip-flop toggles	e Mode bit de is enabled de is disabled on every rising	and toggle flip-	flop is cleared						
bit 4	T1GSPM: Tin	ner1 Gate Sing	le-Pulse Mode	e bit							
	1 = Timer1 G 0 = Timer1 G	Gate Single-Pul	se mode is en se mode is dis	abled and is co abled	ntrolling Timer	1 gate					
bit 3	T1GGO/DON	E: Timer1 Gate	e Single-Pulse	Acquisition Sta	atus bit						
	1 = Timer1 g 0 = Timer1 g	ate single-pulse ate single-pulse	e acquisition is e acquisition h	s ready, waiting as completed o	for an edge or has not been	started					
bit 2	T1GVAL: Tim	ner1 Gate Curre	ent State bit								
	Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L. Unaffected by Timer1 Gate Enable (TMR1GE).										
bit 1-0	T1GSS<1:0>	: Timer1 Gate	Source Select	bits							
	 11 = Comparator 2 optionally synchronized output (sync_C2OUT) 10 = Comparator 1 optionally synchronized output (sync_C1OUT) 01 = Timer0 overflow output 00 = Timer1 gate pin 										

REGISTER 22-2: T1GCON: TIMER1 GATE CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP2CON	—		DC2B	<1:0>		280			
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98
PR2	Timer2 Mod	dule Period	Register						210*
T2CON	_		T2OUTPS<3:0> TMR2ON T2CKPS<1:0>						
TMR2	Holding Re	gister for the	e 8-bit TMR2	2 Register					210*

TABLE 23-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

25.3.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

25.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

25.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON1	C2OUTSEL	CC1PSEL	SDOSEL	SCKSEL	SDISEL	TXSEL	RXSEL	CCP2SEL	127
APFCON2	—	—	_			—	—	CCP3SEL	280
CCP1CON	—	—	DC1B	<1:0>		CCP1I	M<3:0>		280
CCP2CON	—	—	DC2B	<1:0>		CCP2	M<3:0>		280
CCP33CON	—	—	DC3B	<1:0>		CCP3I	M<3:0>		280
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	93
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	C4IE	C3IE	CCP2IE	95
PIE3	—	_		CCP3IE	—	—		-	96
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	C4IF	C3IF	CCP2IF	99
PIR3	—	_		CCP3IF	—	—		-	100
PR2	Timer2 Period	Register							210*
T2CON	—		T2OUT	PS<3:0>	TMR2ON T2CKPS<1:0>				212
TMR2	Timer2 Module Register								210
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	131

TABLE 25-3: SUMMARY OF REGISTERS ASSOCIATED WITH STANDARD PWM

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM. * Page provides register information.

© 2012-2014 Microchip Technology Inc.

26.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSP clock is much faster than the system clock.

In Slave mode, when MSSP interrupts are enabled, after the master completes sending data, an MSSP interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSP interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	ANSA7	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	132
APFCON1	C2OUTSEL	CCP1SEL	SDOSEL	SCKSEL	SDISEL	TXSEL	RXSEL	CCP2SEL	127
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	SSP1IF CCP1IF		TMR1IF	98
SSP1BUF	Synchronous	s Serial Port F	Receive Buffe	r/Transmit Re	egister				285*
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		331
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	333
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	329
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	131
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3 TRISC2		TRISC1	TRISA0	142

TABLE 26-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

* Page provides register information.

Note 1: PIC16(L)F1784/7 only.

26.6.7 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN bit of the SSPCON2 register.

Note:	The MSSP module must be in an Idle
	state before the RCEN bit is set or the
	RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSP1IF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPCON2 register.

26.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

26.6.7.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

26.6.7.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). 26.6.7.4 Typical Receive Sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPCON2 register.
- 2. SSP1IF is set by hardware on completion of the Start.
- 3. SSP1IF is cleared by software.
- 4. User writes SSPBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDA pin until all 8 bits are transmitted. Transmission begins as soon as SSPBUF is written to.
- 6. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register.
- 7. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSP1IF bit.
- 8. User sets the RCEN bit of the SSPCON2 register and the master clocks in a byte from the slave.
- 9. After the 8th falling edge of SCL, SSP1IF and BF are set.
- 10. User clears the SSP1IF bit and reads the received byte from SSPUF, which clears the BF flag.
- 11. The user either clears the SSPCON2 register's ACKDT bit to receive another byte or sets the ADKDT bit to suppress further data and then initiates the acknowledge sequence by setting the ACKEN bit.
- 12. Master's ACK or ACK is clocked out to the slave and SSP1IF is set.
- 13. User clears SSP1IF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. If the ACKST bit was set in step 11 then the user can send a STOP to release the bus.

26.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 26-35). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 26-36.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 26-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

26.8 Register Definitions: MSSP Control

R/M-0/0	R/W/-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
SMP			P	S		114	RE
pit 7	ONL	DIA	I	5	10,44	UA	bit
.egend:							
R = Readable	bit	W = Writable	bit	U = Unimpleme	ented bit, read as	'0'	
u = Bit is uncha	anged	x = Bit is unkr	own	-n/n = Value at	POR and BOR/Va	alue at all other F	Resets
1' = Bit is set		'0' = Bit is clea	ared				
oit 7	SMP: SPI Data	a Input Sample I	oit				
	<u>SPI Master mo</u> 1 = Input data 0 = Input data	ode: sampled at end sampled at mid	of data output ti	me t time			
	SMP must be o	<u>le:</u> cleared when SI	PI is used in Slav	ve mode			
	In I ² C Master of 1 = Slew rate 0 = Slew rate	or Slave mode: control disabled control enabled	for standard spe for high speed r	eed mode (100 k node (400 kHz)	Hz and 1 MHz)		
oit 6	CKE: SPI Cloc	ck Edge Select b	oit (SPI mode on	(v)			
	<u>In SPI Master</u> 1 = Transmit o	or Slave mode: ccurs on transiti	on from active to	Idle clock state			
	In I ² C™ mode 1 = Enable inp 0 = Disable SM	<u>only:</u> out logic so that t /Bus specific in	hresholds are co	ompliant with SM	Bus specification		
bit 5	D/A: Data/Add 1 = Indicates th 0 = Indicates the states the stat	lress bit (I ² C mo hat the last byte hat the last byte	de only) received or tran received or tran	smitted was data smitted was addr	ress		
oit 4	P: Stop bit						
	(I ² C mode only 1 = Indicates the 0 = Stop bit was	y. This bit is clea hat a Stop bit ha as not detected l	red when the Ms is been detected ast	SSP module is di last (this bit is '0	sabled, SSPEN is ' on Reset)	cleared.)	
oit 3	S: Start bit						
	(I ² C mode only 1 = Indicates the 0 = Start bit was	y. This bit is clea hat a Start bit ha as not detected	red when the Ms is been detected ast	SSP module is di last (this bit is '0	sabled, SSPEN is ' on Reset)	cleared.)	
pit 2	R/W: Read/Wr	ite bit informatio	n (I ² C mode onl	V)			
	This bit holds the to the next Sta	he R/W bit inforr rt bit, Stop bit, o	nation following t r not ACK bit.	he last address n	natch. This bit is o	nly valid from the	e address mate
	<u>In I²C Slave m</u> 1 = Read 0 = Write	iode:					
	In I ² C Master r	mode:					
	1 = Transmit	is in progress	-				
	0 = Transmit OR-ing th	is not in progres	s RSEN, PEN, R	CEN or ACKEN v	will indicate if the I	MSSP is in Idle n	node.
oit 1	UA: Update Ac 1 = Indicates th	ddress bit (10-bi hat the user nee	t I ² C mode only) ds to update the	address in the S	SPADD register		

PIC16(L)F1784/6/7

TABLE 30-13: ADC CONVERTER (ADC) 12-BIT DIFFERENTIAL CHARACTERISTICS:

Operati VDD = 3	ng Cor V, Tem	nditions p. = 25°C, Single-ended 2 μs TAD, V	/REF+ =	3V, Vref	- = Vss		
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD01	NR	Resolution			10	bit	
AD02	EIL	Integral Error		±1	±1.6	LSb	
AD03	Edl	Differential Error	_	±1	±1.4	LSb	No missing codes
AD04	EOFF	Offset Error	_	±1	±3.5	LSb	
AD05	Egn	Gain Error		±1	±2	LSb	
AD06	Vref	Reference Voltage ⁽³⁾	1.8		Vdd	V	VREF = (VREF+ minus VREF-)
AD07	VAIN	Full-Scale Range			VREF	V	
AD08	Zain	Recommended Impedance of Analog Voltage Source			10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.
AD09	NR	Resolution	l		12	bit	
AD10	EIL	Integral Error		±2		LSb	
AD11	Edl	Differential Error	l	±2		LSb	
AD12	EOFF	Offset Error		±1		LSb	
AD13	Egn	Gain Error		±1		LSb	
AD14	Vref	Reference Voltage ⁽³⁾	1.8		Vdd	V	VREF = (VREF+ minus VREF-)
AD15	VAIN	Full-Scale Range	-	_	VREF	V	
AD16	ZAIN	Recommended Impedance of Analog Voltage Source			10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

3: ADC VREF is from external VREF, VDD pin or FVR, whichever is selected as reference input.

4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

TABLE 30-14: ADC CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)											
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
AD130*	Tad	ADC Clock Period	1.0	—	9.0	μS	Tosc-based				
		ADC Internal RC Oscillator Period	1.0	2.5	6.0	μS	ADCS<1:0> = 11 (ADRC mode)				
AD131	Тсму	Conversion Time (not including Acquisition Time) ⁽¹⁾	_	15 (12-bit) 13 (10-bit)		Tad	Set GO/DONE bit to conversion complete				
AD132*	TACQ	Acquisition Time	—	5.0	_	μS					

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

Legend:	XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information.

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensior	n Limits	MIN	NOM	MAX
Number of Pins	N		40	
Pitch	е		.100 BSC	
Top to Seating Plane	А	-	-	.250
Molded Package Thickness	A2	.125	-	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.590	_	.625
Molded Package Width	E1	.485	-	.580
Overall Length	D	1.980	-	2.095
Tip to Seating Plane	L	.115	-	.200
Lead Thickness	С	.008	-	.015
Upper Lead Width	b1	.030	-	.070
Lower Lead Width	b	.014	-	.023
Overall Row Spacing §	eB	-	_	.700

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N		44	
Lead Pitch	е	0.80 BSC		
Overall Height	А	_	_	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	_	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	ф	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	Iolded Package Width E1 10.00 BSC			
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	_	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top		11°	12°	13°
Mold Draft Angle Bottom		11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support