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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC16(L)F1784/6/7
Pin Diagram – 40-Pin PDIP
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Note: See Table 2 for the location of all peripheral functions.
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PIC16(L)F1784/6/7
3.0 MEMORY ORGANIZATION

These devices contain the following types of memory: 

• Program Memory

- Configuration Words

- Device ID

- User ID

- Flash Program Memory

• Data Memory

- Core Registers

- Special Function Registers

- General Purpose RAM

- Common RAM

• Data EEPROM memory(1)

The following features are associated with access and
control of program memory and data memory:

• PCL and PCLATH

• Stack

• Indirect Addressing

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program
counter capable of addressing a 32K x 14 program
memory space. Table 3-1 shows the memory sizes
implemented for the PIC16(L)F1784/6/7 family.
Accessing a location above these boundaries will cause
a wrap-around within the implemented memory space.
The Reset vector is at 0000h and the interrupt vector is
at 0004h (see Figures 3-1 and 3-2).

 

Note 1: The Data EEPROM Memory and the
method to access Flash memory through
the EECON registers is described in
Section 12.0 “Data EEPROM and Flash
Program Memory Control”.

TABLE 3-1: DEVICE SIZES AND ADDRESSES

Device Program Memory Space (Words) Last Program Memory Address

PIC16(L)F1784 4,096 0FFFh

PIC16(L)F1786/7 8,192 1FFFh
 2012-2014 Microchip Technology Inc. DS40001637C-page 23
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4
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0h

Bh

Core Registers 
(Table 3-2)
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Core Registers 
(Table 3-2)

4 Ch

Unimplemented
Read as ‘0’

78Ch

Unimplemented
Read as ‘0’

4
4
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Common RAM

(Accesses
70h – 7Fh)

7F0h
Common RAM
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70h – 7Fh)

4 Fh 7FFh

BANK 22 BANK 23

8
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Core Registers 
(Table 3-2)
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Core Registers 
(Table 3-2)

8 Ch
Unimplemented

Read as ‘0’
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Unimplemented

Read as ‘0’

8 6Fh BEFh

8 70h
Common RAM

(Accesses
70h – 7Fh)
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Common RAM

(Accesses
70h – 7Fh)

8 7Fh BFFh

BANK 30 BANK 31

C
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Core Registers 
(Table 3-2)

F80h
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Core Registers 
(Table 3-2)

C

C
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Fh

Unimplemented
Read as ‘0’

F8Ch

FEFh

See Table 3-9

C 70h
Common RAM

(Accesses
70h – 7Fh)

FF0h
Common RAM

(Accesses
70h – 7Fh)

C Fh FFFh
BLE 3-7: PIC16(L)F1786/7 MEMORY MAP (BANKS 8-31)

= Unimplemented data memory locations, read as ‘0’
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(Table 3-2)
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(Table 3-2)
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(Table 3-2)
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(Table 3-2)
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(Table 3-2)
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Unimplemented
Read as ‘0’

48Ch

Unimplemented
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See Table 3-8
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PIC16(L)F1784/6/7
REGISTER 13-22: WPUC: WEAK PULL-UP PORTC REGISTER

R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

WPUC7 WPUC6 WPUC5 WPUC4 WPUC3 WPUC2 WPUC1 WPUC0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits
1 = Pull-up enabled
0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 13-23: ODCONC: PORTC OPEN DRAIN CONTROL REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

ODC7 ODC6 ODC5 ODC4 ODC3 ODC2 ODC1 ODC0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 ODC<7:0>: PORTC Open Drain Enable bits
For RC<7:0> pins, respectively
1 = Port pin operates as open-drain drive (sink current only)
0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 13-24: SLRCONC: PORTC SLEW RATE CONTROL REGISTER

R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

SLRC7 SLRC6 SLRC5 SLRC4 SLRC3 SLRC2 SLRC1 SLRC0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 SLRC<7:0>: PORTC Slew Rate Enable bits
For RC<7:0> pins, respectively
1 = Port pin slew rate is limited
0 = Port pin slews at maximum rate
 2012-2014 Microchip Technology Inc. DS40001637C-page 143



PIC16(L)F1784/6/7
22.0 TIMER1 MODULE WITH GATE 
CONTROL

The Timer1 module is a 16-bit timer/counter with the
following features:

• 16-bit timer/counter register pair (TMR1H:TMR1L)

• Programmable internal or external clock source

• 2-bit prescaler

• Dedicated 32 kHz oscillator circuit

• Optionally synchronized comparator out

• Multiple Timer1 gate (count enable) sources

• Interrupt on overflow

• Wake-up on overflow (external clock, 
Asynchronous mode only)

• Time base for the Capture/Compare function

• Auto-conversion Trigger (with CCP)

• Selectable Gate Source Polarity

• Gate Toggle mode

• Gate Single-pulse mode

• Gate Value Status

• Gate Event Interrupt

Figure 22-1 is a block diagram of the Timer1 module.

FIGURE 22-1: TIMER1 BLOCK DIAGRAM   
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PIC16(L)F1784/6/7
FIGURE 22-6: TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE   

TMR1GE

T1GPOL

t1g_in

T1CKI

T1GVAL

Timer1 N N + 1 N + 2

T1GSPM

T1GGO/

DONE

Set by software
Cleared by hardware on
falling edge of T1GVAL

Set by hardware on
falling edge of T1GVALCleared by software

Cleared by
softwareTMR1GIF

T1GTM

Counting enabled on
rising edge of T1G

N + 4N + 3
DS40001637C-page 206  2012-2014 Microchip Technology Inc.



PIC16(L)F1784/6/7
24.2.6 CLOCK PRESCALER

There are four prescaler choices available to be
applied to the selected clock:

• Divide by 1
• Divide by 2
• Divide by 4
• Divide by 8

The clock source is selected with the PxCPRE<1:0>
bits of the PSMCx Clock Control (PSMCxCLK) register
(Register 24-6).

The prescaler output is psmc_clk, which is the clock
used by all of the other portions of the PSMC module.

FIGURE 24-3: TIME BASE WAVEFORM GENERATION
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PIC16(L)F1784/6/7
24.5.3 COMPLEMENTARY PWM 
STEERING

In Complementary PWM Steering mode, the primary
PWM signal (non-complementary) and complementary
signal can be steered according to their respective type.

Primary PWM signal can be steered to any of the
following outputs:

• PSMCxA

• PSMCxC

• PSMCxE

The complementary PWM signal can be steered to any
of the following outputs:

• PSMCxB

• PSMCxD

• PSMCxE

Examples of unsynchronized complementary steering
are shown in Figure 24-17.

FIGURE 24-17: COMPLEMENTARY PWM STEERING WAVEFORM (NO SYNCHRONIZATION, 
ZERO DEAD-BAND TIME)

Arrows indicate where a change in the steering bit automatically 
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PSMCxE
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PIC16(L)F1784/6/7
26.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time
because it controls the SCK line. The master
determines when the slave (Processor 2, Figure 26-5)
is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as
soon as the SSPBUF register is written to. If the SPI is
only going to receive, the SDO output could be
disabled (programmed as an input). The SSPSR
register will continue to shift in the signal present on the
SDI pin at the programmed clock rate. As each byte is
received, it will be loaded into the SSPBUF register as
if a normal received byte (interrupts and Status bits
appropriately set).

The clock polarity is selected by appropriately
programming the CKP bit of the SSPCON1 register
and the CKE bit of the SSPSTAT register. This then,
would give waveforms for SPI communication as
shown in Figure 26-6, Figure 26-8 and Figure 26-9,
where the MSB is transmitted first. In Master mode, the
SPI clock rate (bit rate) is user programmable to be one
of the following:

• FOSC/4 (or TCY)

• FOSC/16 (or 4 * TCY)

• FOSC/64 (or 16 * TCY)

• Timer2 output/2 

• Fosc/(4 * (SSPADD + 1))

Figure 26-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before
there is a clock edge on SCK. The change of the input
sample is shown based on the state of the SMP bit. The
time when the SSPBUF is loaded with the received
data is shown.

FIGURE 26-6: SPI MODE WAVEFORM (MASTER MODE)        
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PIC16(L)F1784/6/7
26.4.9 ACKNOWLEDGE SEQUENCE

The 9th SCL pulse for any transferred byte in I2C is
dedicated as an Acknowledge. It allows receiving
devices to respond back to the transmitter by pulling
the SDA line low. The transmitter must release control
of the line during this time to shift in the response. The
Acknowledge (ACK) is an active-low signal, pulling the
SDA line low indicated to the transmitter that the
device has received the transmitted data and is ready
to receive more. 

The result of an ACK is placed in the ACKSTAT bit of
the SSPCON2 register.

Slave software, when the AHEN and DHEN bits are
set, allow the user to set the ACK value sent back to
the transmitter. The ACKDT bit of the SSPCON2
register is set/cleared to determine the response.

Slave hardware will generate an ACK response if the
AHEN and DHEN bits of the SSPCON3 register are
clear. 

There are certain conditions where an ACK will not be
sent by the slave. If the BF bit of the SSPSTAT register
or the SSPOV bit of the SSPCON1 register are set
when a byte is received. 

When the module is addressed, after the 8th falling
edge of SCL on the bus, the ACKTIM bit of the SSP-
CON3 register is set. The ACKTIM bit indicates the
acknowledge time of the active bus. The ACKTIM Sta-
tus bit is only active when the AHEN bit or DHEN bit is
enabled.

26.5 I2C SLAVE MODE OPERATION

The MSSP Slave mode operates in one of four modes
selected in the SSPM bits of SSPCON1 register. The
modes can be divided into 7-bit and 10-bit Addressing
mode. 10-bit Addressing modes operate the same as
7-bit with some additional overhead for handling the
larger addresses.

Modes with Start and Stop bit interrupts operated the
same as the other modes with SSP1IF additionally
getting set upon detection of a Start, Restart, or Stop
condition.

26.5.1 SLAVE MODE ADDRESSES

The SSPADD register (Register 26-6) contains the
Slave mode address. The first byte received after a
Start or Restart condition is compared against the
value stored in this register. If the byte matches, the
value is loaded into the SSPBUF register and an
interrupt is generated. If the value does not match, the
module goes idle and no indication is given to the
software that anything happened.

The SSP Mask register (Register 26-5) affects the
address matching process. See Section 26.5.9 “SSP
Mask Register” for more information.

26.5.1.1 I2C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data
byte is ignored when determining if there is an address
match.

26.5.1.2 I2C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is
compared to the binary value of ‘1 1 1 1 0 A9 A8 0’. A9
and A8 are the two MSb of the 10-bit address and
stored in bits 2 and 1 of the SSPADD register.

After the acknowledge of the high byte the UA bit is set
and SCL is held low until the user updates SSPADD
with the low address. The low address byte is clocked
in and all 8 bits are compared to the low address value
in SSPADD. Even if there is not an address match;
SSP1IF and UA are set, and SCL is held low until
SSPADD is updated to receive a high byte again.
When SSPADD is updated the UA bit is cleared. This
ensures the module is ready to receive the high
address byte on the next communication.

A high and low address match as a write request is
required at the start of all 10-bit addressing communi-
cation. A transmission can be initiated by issuing a
Restart once the slave is addressed, and clocking in
the high address with the R/W bit set. The slave hard-
ware will then acknowledge the read request and
prepare to clock out data. This is only valid for a slave
after it has received a complete high and low address
byte match.
DS40001637C-page 296  2012-2014 Microchip Technology Inc.



PIC16(L)F1784/6/7
26.5.2 SLAVE RECEPTION

When the R/W bit of a matching received address byte
is clear, the R/W bit of the SSPSTAT register is cleared.
The received address is loaded into the SSPBUF
register and acknowledged. 

When the overflow condition exists for a received
address, then not Acknowledge is given. An overflow
condition is defined as either bit BF of the SSPSTAT
register is set, or bit SSPOV of the SSPCON1 register
is set. The BOEN bit of the SSPCON3 register modifies
this operation. For more information see Register 26-4.

An MSSP interrupt is generated for each transferred
data byte. Flag bit, SSP1IF, must be cleared by soft-
ware.

When the SEN bit of the SSPCON2 register is set, SCL
will be held low (clock stretch) following each received
byte. The clock must be released by setting the CKP
bit of the SSPCON1 register, except sometimes in
10-bit mode. See Section 26.2.3 “SPI Master Mode”
for more detail.

26.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events
for the MSSP module configured as an I2C Slave in
7-bit Addressing mode. All decisions made by hard-
ware or software and their effect on reception.
Figure 26-13 and Figure 26-14 is used as a visual
reference for this description.

This is a step by step process of what typically must
be done to accomplish I2C communication.

1. Start bit detected.

2. S bit of SSPSTAT is set; SSP1IF is set if inter-
rupt on Start detect is enabled.

3. Matching address with R/W bit clear is received.

4. The slave pulls SDA low sending an ACK to the
master, and sets SSP1IF bit.

5. Software clears the SSP1IF bit.

6. Software reads received address from SSPBUF
clearing the BF flag.

7. If SEN = 1; Slave software sets CKP bit to
release the SCL line.

8. The master clocks out a data byte.

9. Slave drives SDA low sending an ACK to the
master, and sets SSP1IF bit.

10. Software clears SSP1IF.

11. Software reads the received byte from SSPBUF
clearing BF.

12. Steps 8-12 are repeated for all received bytes
from the master.

13. Master sends Stop condition, setting P bit of
SSPSTAT, and the bus goes idle.

26.5.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set
operate the same as without these options with extra
interrupts and clock stretching added after the 8th
falling edge of SCL. These additional interrupts allow
the slave software to decide whether it wants to ACK
the receive address or data byte, rather than the hard-
ware. This functionality adds support for PMBus™ that
was not present on previous versions of this module. 

This list describes the steps that need to be taken by
slave software to use these options for I2C communi-
cation. Figure 26-15 displays a module using both
address and data holding. Figure 26-16 includes the
operation with the SEN bit of the SSPCON2 register
set.

1. S bit of SSPSTAT is set; SSP1IF is set if inter-
rupt on Start detect is enabled.

2. Matching address with R/W bit clear is clocked
in. SSP1IF is set and CKP cleared after the 8th
falling edge of SCL.

3. Slave clears the SSP1IF.

4. Slave can look at the ACKTIM bit of the SSP-
CON3 register to determine if the SSP1IF was
after or before the ACK.

5. Slave reads the address value from SSPBUF,
clearing the BF flag.

6. Slave sets ACK value clocked out to the master
by setting ACKDT.

7. Slave releases the clock by setting CKP.

8. SSP1IF is set after an ACK, not after a NACK.

9. If SEN = 1 the slave hardware will stretch the
clock after the ACK.

10. Slave clears SSP1IF.

11. SSP1IF set and CKP cleared after 8th falling
edge of SCL for a received data byte.

12. Slave looks at ACKTIM bit of SSPCON3 to
determine the source of the interrupt.

13. Slave reads the received data from SSPBUF
clearing BF.

14. Steps 7-14 are the same for each received data
byte.

15. Communication is ended by either the slave
sending an ACK = 1, or the master sending a
Stop condition. If a Stop is sent and Interrupt on
Stop Detect is disabled, the slave will only know
by polling the P bit of the SSTSTAT register.

Note: SSP1IF is still set after the 9th falling edge
of SCL even if there is no clock stretching
and BF has been cleared. Only if NACK is
sent to master is SSP1IF not set
 2012-2014 Microchip Technology Inc. DS40001637C-page 297



PIC16(L)F1784/6/7
26.7 BAUD RATE GENERATOR

The MSSP module has a Baud Rate Generator
available for clock generation in both I2C and SPI
Master modes. The Baud Rate Generator (BRG)
reload value is placed in the SSPADD register
(Register 26-6). When a write occurs to SSPBUF, the
Baud Rate Generator will automatically begin counting
down. 

Once the given operation is complete, the internal clock
will automatically stop counting and the clock pin will
remain in its last state. 

An internal signal “Reload” in Figure 26-39 triggers the
value from SSPADD to be loaded into the BRG counter.
This occurs twice for each oscillation of the module

clock line. The logic dictating when the reload signal is
asserted depends on the mode the MSSP is being
operated in.

Table 26-4 demonstrates clock rates based on
instruction cycles and the BRG value loaded into
SSPADD.

EQUATION 26-1:

FIGURE 26-40: BAUD RATE GENERATOR BLOCK DIAGRAM     

TABLE 26-4: MSSP CLOCK RATE W/BRG

FCLOCK
FOSC

SSPxADD 1+  4 
-------------------------------------------------=

Note: Values of 0x00, 0x01 and 0x02 are not valid
for SSPADD when used as a Baud Rate
Generator for I2C. This is an implementation
limitation.

FOSC FCY BRG Value
FCLOCK 

(2 Rollovers of BRG)

32 MHz 8 MHz 13h 400 kHz(1)

32 MHz 8 MHz 19h 308 kHz

32 MHz 8 MHz 4Fh 100 kHz

16 MHz 4 MHz 09h 400 kHz(1)

16 MHz 4 MHz 0Ch 308 kHz

16 MHz 4 MHz 27h 100 kHz

4 MHz 1 MHz 09h 100 kHz

Note 1: The I2C interface does not conform to the 400 kHz I2C specification (which applies to rates greater than 
100 kHz) in all details, but may be used with care where higher rates are required by the application.

SSPM<3:0>

BRG Down CounterSSPCLK  FOSC/2

SSPADD<7:0>

SSPM<3:0>

SCL

Reload

Control

Reload
DS40001637C-page 328  2012-2014 Microchip Technology Inc.



PIC16(L)F1784/6/7
             

  

REGISTER 26-5: SSPMSK: SSP MASK REGISTER

R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

MSK<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-1 MSK<7:1>: Mask bits
1 = The received address bit n is compared to SSPADD<n> to detect I2C address match
0 = The received address bit n is not used to detect I2C address match

bit 0 MSK<0>: Mask bit for I2C Slave mode, 10-bit Address
I2C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):
1 = The received address bit 0 is compared to SSPADD<0> to detect I2C address match
0 = The received address bit 0 is not used to detect I2C address match
I2C Slave mode, 7-bit address, the bit is ignored

REGISTER 26-6: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER (I2C MODE)

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

ADD<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

Master mode:

bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits
SCL pin clock period = ((ADD<7:0> + 1) *4)/FOSC

10-Bit Slave mode — Most Significant Address Byte:

bit 7-3 Not used: Unused for Most Significant Address byte. Bit state of this register is a “don’t care”. Bit 
pattern sent by master is fixed by I2C specification and must be equal to ‘11110’. However, those bits 
are compared by hardware and are not affected by the value in this register.

bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address

bit 0 Not used: Unused in this mode. Bit state is a “don’t care”.

10-Bit Slave mode — Least Significant Address Byte:

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1 ADD<7:1>: 7-bit address

bit 0 Not used: Unused in this mode. Bit state is a “don’t care”.
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27.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the
standard non-return-to-zero (NRZ) format. NRZ is
implemented with two levels: a VOH mark state which
represents a ‘1’ data bit, and a VOL space state which
represents a ‘0’ data bit. NRZ refers to the fact that
consecutively transmitted data bits of the same value
stay at the output level of that bit without returning to a
neutral level between each bit transmission. An NRZ
transmission port idles in the Mark state. Each character
transmission consists of one Start bit followed by eight
or nine data bits and is always terminated by one or
more Stop bits. The Start bit is always a space and the
Stop bits are always marks. The most common data
format is 8 bits. Each transmitted bit persists for a period
of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud
Rate Generator is used to derive standard baud rate
frequencies from the system oscillator. See Table 27-5
for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The
EUSART’s transmitter and receiver are functionally
independent, but share the same data format and baud
rate. Parity is not supported by the hardware, but can
be implemented in software and stored as the ninth
data bit.

27.1.1 EUSART ASYNCHRONOUS 
TRANSMITTER

The EUSART transmitter block diagram is shown in
Figure 27-1. The heart of the transmitter is the serial
Transmit Shift Register (TSR), which is not directly
accessible by software. The TSR obtains its data from
the transmit buffer, which is the TXREG register.

27.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous
operations by configuring the following three control
bits:

• TXEN = 1

• SYNC = 0

• SPEN = 1

All other EUSART control bits are assumed to be in
their default state.

Setting the TXEN bit of the TXSTA register enables the
transmitter circuitry of the EUSART. Clearing the SYNC
bit of the TXSTA register configures the EUSART for
asynchronous operation. Setting the SPEN bit of the
RCSTA register enables the EUSART and automatically
configures the TX/CK I/O pin as an output. If the TX/CK
pin is shared with an analog peripheral, the analog I/O
function must be disabled by clearing the corresponding
ANSEL bit. 

27.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the
TXREG register. If this is the first character, or the
previous character has been completely flushed from
the TSR, the data in the TXREG is immediately
transferred to the TSR register. If the TSR still contains
all or part of a previous character, the new character
data is held in the TXREG until the Stop bit of the
previous character has been transmitted. The pending
character in the TXREG is then transferred to the TSR
in one TCY immediately following the Stop bit
transmission. The transmission of the Start bit, data bits
and Stop bit sequence commences immediately
following the transfer of the data to the TSR from the
TXREG.

27.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with
the SCKP bit of the BAUDxCON register. The default
state of this bit is ‘0’ which selects high true transmit idle
and data bits. Setting the SCKP bit to ‘1’ will invert the
transmit data resulting in low true idle and data bits. The
SCKP bit controls transmit data polarity in
Asynchronous mode only. In Synchronous mode, the
SCKP bit has a different function. See Section 27.5.1.2
“Clock Polarity”.

27.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set
whenever the EUSART transmitter is enabled and no
character is being held for transmission in the TXREG.
In other words, the TXIF bit is only clear when the TSR
is busy with a character and a new character has been
queued for transmission in the TXREG. The TXIF flag bit
is not cleared immediately upon writing TXREG. TXIF
becomes valid in the second instruction cycle following
the write execution. Polling TXIF immediately following
the TXREG write will return invalid results. The TXIF bit
is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE
interrupt enable bit of the PIE1 register. However, the
TXIF flag bit will be set whenever the TXREG is empty,
regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE
bit only when there is more data to send. Clear the
TXIE interrupt enable bit upon writing the last character
of the transmission to the TXREG.

Note: The TXIF Transmitter Interrupt flag is set
when the TXEN enable bit is set.
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TABLE 27-3: BAUD RATE FORMULAS

TABLE 27-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR 

Configuration Bits
BRG/EUSART Mode Baud Rate Formula

SYNC BRG16 BRGH

0 0 0 8-bit/Asynchronous FOSC/[64 (n+1)]

0 0 1 8-bit/Asynchronous
FOSC/[16 (n+1)]

0 1 0 16-bit/Asynchronous

0 1 1 16-bit/Asynchronous

FOSC/[4 (n+1)]1 0 x 8-bit/Synchronous

1 1 x 16-bit/Synchronous

Legend: x = Don’t care, n = value of SPBRGH, SPBRGL register pair

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

BAUDCON ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN 347

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 346

SPBRGL BRG<7:0> 348

SPBRGH BRG<15:8> 348

TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 345

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for the Baud Rate Generator.

* Page provides register information.
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CALL Call Subroutine

Syntax: [ label ]   CALL   k

Operands: 0  k  2047

Operation: (PC)+ 1 TOS,
k  PC<10:0>,
(PCLATH<6:3>)  PC<14:11>

Status Affected: None

Description: Call Subroutine. First, return 
address (PC + 1) is pushed onto 
the stack. The 11-bit immediate 
address is loaded into PC bits 
<10:0>. The upper bits of the PC 
are loaded from PCLATH. CALL is 
a 2-cycle instruction.

CALLW Subroutine Call With W

Syntax: [ label ] CALLW

Operands: None

Operation: (PC) +1  TOS,
(W)  PC<7:0>,
(PCLATH<6:0>) PC<14:8>

Status Affected: None

Description: Subroutine call with W. First, the 
return address (PC + 1) is 
pushed onto the return stack. 
Then, the contents of W is loaded 
into PC<7:0>, and the contents of 
PCLATH into PC<14:8>. CALLW 
is a 2-cycle instruction.

CLRF Clear f

Syntax: [ label ]  CLRF    f

Operands: 0  f  127

Operation: 00h  (f)
1  Z

Status Affected: Z

Description: The contents of register ‘f’ are 
cleared and the Z bit is set.

CLRW Clear W

Syntax: [ label ]   CLRW

Operands: None

Operation: 00h  (W)
1  Z

Status Affected: Z

Description: W register is cleared. Zero bit (Z) 
is set.

CLRWDT Clear Watchdog Timer

Syntax: [ label ]   CLRWDT

Operands: None

Operation: 00h  WDT
0  WDT prescaler,
  TO
  PD

Status Affected: TO, PD

Description: CLRWDT instruction resets the 
Watchdog Timer. It also resets the 
prescaler of the WDT. 
Status bits TO and PD are set.

COMF Complement f

Syntax: [ label ]   COMF    f,d

Operands: 0  f  127
d  [0,1]

Operation: (f)  (destination)

Status Affected: Z

Description: The contents of register ‘f’ are 
complemented. If ‘d’ is ‘0’, the 
result is stored in W. If ‘d’ is ‘1’, 
the result is stored back in 
register ‘f’.

DECF Decrement f

Syntax: [ label ]   DECF f,d

Operands: 0  f  127
d  [0,1]

Operation: (f) - 1  (destination)

Status Affected: Z

Description: Decrement register ‘f’. If ‘d’ is ‘0’, 
the result is stored in the W 
register. If ‘d’ is ‘1’, the result is 
stored back in register ‘f’.
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FIGURE 30-3: POR AND POR REARM WITH SLOW RISING VDD 

VDD

VPOR

VPORR

VSS

VSS

NPOR(1)

TPOR(2)

POR REARM

Note 1: When NPOR is low, the device is held in Reset.
2: TPOR 1 s typical.
3: TVLOW 2.7 s typical.

TVLOW(3)

SVDD
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FIGURE 30-18: SPI SLAVE MODE TIMING (CKE = 0)

FIGURE 30-19: SPI SLAVE MODE TIMING (CKE = 1)

SS

SCK
(CKP = 0)

SCK
(CKP = 1)

SDO

SDI

SP70

SP71 SP72

SP73

SP74

SP75, SP76 SP77

SP78SP79

SP80

SP79SP78

MSb LSbbit 6 - - - - - -1

MSb In bit 6 - - - -1 LSb In

SP83

Note: Refer to Figure 30-4 for load conditions.
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Note: Refer to Figure 30-4 for load conditions.
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Note: Unless otherwise noted, VIN = 5V, FOSC = 300 kHz, CIN = 0.1 µF, TA = 25°C.

FIGURE 31-19: IDD, LFINTOSC Mode, 
Fosc = 31 kHz, PIC16LF1784/6/7 Only.

FIGURE 31-20: IDD, LFINTOSC Mode, 
Fosc = 31 kHz, PIC16F1784/6/7 Only.
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FIGURE 31-21: IDD, MFINTOSC Mode, 
Fosc = 500 kHz, PIC16LF1784/6/7 Only.

FIGURE 31-22: IDD, MFINTOSC Mode, 
Fosc = 500 kHz, PIC16F1784/6/7 Only.
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Mode, PIC16LF1784/6/7 Only.

FIGURE 31-24: IDD Maximum, HFINTOSC 
Mode, PIC16LF1784/6/7 Only.
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Note: For the most current package drawings, please see the Microchip Packaging Specification located at 
http://www.microchip.com/packaging
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