

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 14x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1784-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Flash Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM
- Data EEPROM memory⁽¹⁾

	Program Memory Control".							
	Section 12.0 "Data EEPROM and Flash							
	the	EECC	N	registe	rs is	des	cribed	1 in
				ess Fla			,	0
Note 1:	The	Data	EE	PROM	Mer	mory	and	the

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing a 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented for the PIC16(L)F1784/6/7 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figures 3-1 and 3-2).

TABLE 3-1: DEVICE SIZES AND ADDRESSES

Device	Program Memory Space (Words)	Last Program Memory Address		
PIC16(L)F1784	4,096	0FFFh		
PIC16(L)F1786/7	8,192	1FFFh		

PIC16(L)F1784 MEMORY MAP (BANKS 8-31)

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h 40Bh	Core Registers (Table 3-2)	480h 48Bh	Core Registers (Table 3-2)	500h 50Bh	Core Registers (Table 3-2)	580h 58Bh	Core Registers (Table 3-2)	600h 60Bh	Core Registers (Table 3-2)	680h 68Bh	Core Registers (Table 3-2)	700h 70Bh	Core Registers (Table 3-2)	780h 78Bh	Core Registers (Table 3-2)
40Ch		48Ch		50Ch 510h 511h 512h	Unimplemented Read as '0' OPA1CON —	58Ch		60Ch		68Ch		70Ch		78Ch	
	Unimplemented Read as '0'		Unimplemented Read as '0'	513h 514h 519h 51Ah 51Bh	OPA2CON Unimplemented Read as '0' CLKRCON Unimplemented		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
46Fh		4EFh		56Fh	Read as '0'	5EFh		66Fh		6EFh		76Fh		7EFh	
470h 47Fh	Common RAM (Accesses 70h – 7Fh)	4F0h 4FFh	Common RAM (Accesses 70h – 7Fh)	570h 57Fh	Common RAM (Accesses 70h – 7Fh)	5F0h 5FFh	Common RAM (Accesses 70h – 7Fh)	670h 67Fh	Common RAM (Accesses 70h – 7Fh)	6F0h 6FFh	Common RAM (Accesses 70h – 7Fh)	770h 77Fh	Common RAM (Accesses 70h – 7Fh)	7F0h 7FFh	Common RAM (Accesses 70h – 7Fh)
	BANK 16	I I	BANK 17		BANK 18	01111	BANK 19	0.111	BANK 20	0.1.11	BANK 21		BANK 22		BANK 23
800h 80Bh	Core Registers (Table 3-2)	880h 88Bh	Core Registers (Table 3-2)	900h 90Bh	Core Registers (Table 3-2)	980h 98Bh	Core Registers (Table 3-2)	A00h A0Bh	Core Registers (Table 3-2)	A80h A8Bh	Core Registers (Table 3-2)	B00h B0Bh	Core Registers (Table 3-2)	B80h B8Bh	Core Registers (Table 3-2)
80Ch	See Table 3-10	88Ch	Unimplemented Read as '0'	90Ch	Unimplemented Read as '0'	98Ch	Unimplemented Read as '0'	A0Ch	Unimplemented Read as '0'	A8Ch	Unimplemented Read as '0'	B0Ch	Unimplemented Read as '0'	B8Ch	Unimplemented Read as '0'
86Fh 870h	Common RAM (Accesses	8EFh 8F0h	Common RAM (Accesses	96Fh 970h	Common RAM (Accesses	9EFh 9F0h	Common RAM (Accesses	A6Fh A70h	Common RAM (Accesses	AEFh AF0h	Common RAM (Accesses	B6Fh B70h	Common RAM (Accesses	BEFh BF0h	Common RAM (Accesses
87Fh	70h – 7Fh)	8FFh	70h – 7Fh)	97Fh	70h – 7Fh)	9FFh	70h – 7Fh)	A7Fh	70h – 7Fh)	AFFh	70h – 7Fh)	B7Fh	70h – 7Fh)	BFFh	70h – 7Fh)
_	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h C0Bh	Core Registers (Table 3-2)	C80h C8Bh	Core Registers (Table 3-2)	D00h D0Bh	Core Registers (Table 3-2)	D80h D8Bh	Core Registers (Table 3-2)	E00h E0Bh	Core Registers (Table 3-2)	E80h E8Bh	Core Registers (Table 3-2)	F00h F0Bh	Core Registers (Table 3-2)	F80h F8Bh	Core Registers (Table 3-2)
C0Ch C6Fh	Unimplemented Read as '0'	C8Ch CEFh	Unimplemented Read as '0'	D0Ch D6Fh	Unimplemented Read as '0'	D8Ch DEFh	Unimplemented Read as '0'	E0Ch E6Fh	Unimplemented Read as '0'	E8Ch EEFh	Unimplemented Read as '0'	F0Ch F6Fh	Unimplemented Read as '0'	F8Ch FEFh	See Table 3-9
C70h C70h	Common RAM (Accesses 70h – 7Fh)	CF0h CFFh	Common RAM (Accesses 70h – 7Fh)	DoFn D70h D7Fh	Common RAM (Accesses 70h – 7Fh)	DEFN DF0h DFFh	Common RAM (Accesses 70h – 7Fh)	E70h	Common RAM (Accesses 70h – 7Fh)	EF0h EFFh	Common RAM (Accesses 70h – 7Fh)	F70h F7Fh	Common RAM (Accesses 70h – 7Fh)	FEFN FF0h FFFh	Common RAM (Accesses 70h – 7Fh)

Legend: = Unimplemented data memory locations, read as '0'

TABLE 3-6:

	LE 3-12:	SFLUAL		IN REGIS				7			
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	16 (Continued))			•						
831h	PSMC2CON	PSMC2EN	PSMC2LD	PSMC2DBFE	PSMC2DBRE		P2MOE)E<3:0>		0000 0000	0000 0000
832h	PSMC2MDL	P2MDLEN	P2MDLPOL	P2MDLBIT	_		P2MSR	C<3:0>		000- 0000	000- 0000
833h	PSMC2SYNC	P2POFST	P2PRPOL	P2DCPOL	_	—	—	P2SYN	C<1:0>	00000	00000
834h	PSMC2CLK	—	_	P2CPF	RE<1:0>	—	—	P2CSR	C<1:0>	0000	0000
835h	PSMC2OEN	_	_	_	—	_	_	P2OEB	P2OEA	00	00
836h	PSMC2POL	—	P2INPOL	—	—	—	—	P2POLB	P2POLA	-000	-000
837h	PSMC2BLNK	—	—	P2FEB	M<1:0>	—	—	P2REB	M<1:0>	0000	0000
838h	PSMC2REBS	P2REBIN	_	—	P2REBSC4	P2REBSC3	P2REBSC2	P2REBSC1	_	00 000-	00 000-
839h	PSMC2FEBS	P2FEBIN	_	—	P2FEBSC4	P2FEBSC3	P2FEBSC2	P2FEBSC1	_	00 000-	00 000-
83Ah	PSMC2PHS	P2PHSIN	_	—	P2PHSC4	P2PHSC3	P2PHSC2	P2PHSC1	P2PHST	00 0000	00 0000
83Bh	PSMC2DCS	P2DCSIN	_	—	P2DCSC4	P2DCSC3	P2DCSC2	P2DCSC1	P2DCST	00 0000	00 0000
83Ch	PSMC2PRS	P2PRSIN	—	—	P2PRSC4	P2PRSC3	P2PRSC2	P2PRSC1	P2PRST	00 0000	00 0000
83Dh	PSMC2ASDC	P2ASE	P2ASDEN	P2ARSEN	—	_	_	_	P2ASDOV	0000	0000
83Eh	PSMC2ASDL	—	_	P2ASDLF	P2ASDLE	P2ASDLD	P2ASDLC	P2ASDLB	P2ASDLA	00 0000	00 0000
83Fh	PSMC2ASDS	P2ASDSIN	_	—	P2ASDSC4	P2ASDSC3	P2ASDSC2	P2ASDSC1	—	00 000-	00 000-
840h	PSMC2INT	P2TOVIE	P2TPHIE	P2TDCIE	P2TPRIE	P2TOVIF	P2TPHIF	P2TDCIF	P2TPRIF	0000 0000	0000 0000
841h	PSMC2PHL	Phase Low Co	unt							0000 0000	0000 0000
842h	PSMC2PHH	Phase High Co	ount							0000 0000	0000 0000
843h	PSMC2DCL	Duty Cycle Lov	w Count							0000 0000	0000 0000
844h	PSMC2DCH	Duty Cycle Hig	gh Count							0000 0000	0000 0000
845h	PSMC2PRL	Period Low Co	ount							0000 0000	0000 0000
846h	PSMC2PRH	Period High Co	ount							0000 0000	0000 0000
847h	PSMC2TMRL	Time base Lov	v Counter							0000 0001	0000 0001
848h	PSMC2TMRH	Time base Hig	h Counter							0000 0000	0000 0000
849h	PSMC2DBR	rising Edge De	ad-band Cou	nter						0000 0000	0000 0000
84Ah	PSMC2DBF	Falling Edge D	Falling Edge Dead-band Counter 0000 0000 0								0000 0000
84Bh	PSMC2BLKR	rising Edge Bla	rising Edge Blanking Counter 0000 0000 0								0000 0000
84Ch	PSMC2BLKF	Falling Edge B	lanking Coun	ter		r				0000 0000	0000 0000
84Dh	PSMC2FFA	—	— — Fractional Frequency Adjust Register 0000							0000	0000
84Eh	PSMC2STR0	—	—	—	—	—	—	P2STRB	P2STRA	01	01
84Fh	PSMC2STR1	P2SYNC	—	—	-	—	—	P2LSMEN	P2HSMEN	000	000
850h	_	Unimplemente	d							—	-

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: Unimplemented, read as '1'.

3: PIC16(L)F1784/7 only.

4: PIC16F1784/6/7 only.

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED	TABLE 3-12:	R SUMMARY (CONTINUED)
--	-------------	-----------------------

	••••••						1			
Name	Bit 7	Bit 6	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							Value on all other Resets
Bank 31										
_	Unimplemente									_
STATUS_ SHAD	—	-	—	—	—	Z	DC	С	xxx	uuu
WREG_SHAD	Working Regis	orking Register Shadow xxxx xxxx uuuu uuuu								
BSR_SHAD	_	— — Bank Select Register Shadow								u uuuu
PCLATH_ SHAD	Program Counter Latch High Register Shadow								-xxx xxxx	uuuu uuuu
FSR0L_SHAD	Indirect Data Memory Address 0 Low Pointer Shadow								uuuu uuuu	
FSR0H_ SHAD	Indirect Data M	lemory Addre	ss 0 High Poin	ter Shadow					XXXX XXXX	uuuu uuuu
FSR1L_SHAD	Indirect Data M	lemory Addre	ss 1 Low Point	er Shadow					XXXX XXXX	uuuu uuuu
FSR1H_ SHAD	Indirect Data M	ndirect Data Memory Address 1 High Pointer Shadow xxxx xxxx uuuu u								uuuu uuuu
_	Unimplemente	Jnimplemented							—	_
STKPTR	—	— — Current Stack Pointer								1 1111
TOSL	Top of Stack Lo	Top of Stack Low byte xxxx xxxx 1							uuuu uuuu	
TOSH	—	Top of Stack	High byte						-xxx xxxx	-uuu uuuu
	Name STATUS_ SHAD STATUS_ SHAD WREG_SHAD BSR_SHAD PCLATH_ SHAD FSR0L_SHAD FSR0H_ SHAD FSR1L_SHAD FSR1H_ SHAD STKPTR TOSL	Name Bit 7 C 31 Unimplemente STATUS_ SHAD — VREG_SHAD Working Regis BSR_SHAD — PCLATH_ SHAD Moirking Regis FSR0L_SHAD Indirect Data M FSR0H_ SHAD Indirect Data M FSR1L_SHAD Indirect Data M FSR1H_ SHAD Indirect Data M FSR1H_ SHAD Indirect Data M FSR1H_ STKPTR — TOSL Top of Stack Log	Name Bit 7 Bit 6 <31	Name Bit 7 Bit 6 Bit 5 < 31	Name Bit 7 Bit 6 Bit 5 Bit 4 <31	Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 - Unimplemented	Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 (31	Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 C31 Unimplemented Z DC STATUS_ SHAD Z DC WREG_SHAD Working Register Shadow Bank Select Register Shadow BSR_SHAD Bank Select Register Shadow PCLATH_ SHAD Bank Select Register Shadow DC SRS_SHAD Bank Select Register Shadow DC SROL_SHAD Indirect Data Memory Address 0 Low Pointer Shadow Stadow FSROL_SHAD Indirect Data Memory Address 1 Low Pointer Shadow FSR1L_SHAD Indirect Data Memory Address 1 Low Pointer Shadow FSR1H_SHAD Indirect Data Memory Address 1 High Pointer Shadow Unimplemented Current Stack Pointer TOP of Stack Low byte	Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 <31	Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR <31

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. These registers can be addressed from any bank. Unimplemented, read as '1'. Legend:

Note

1: 2:

PIC16(L)F1784/7 only. 3:

4: PIC16F1784/6/7 only.

4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

13.6 Register Definitions: PORTB

REGISTER 13-11: PORTB: PORTB REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0		
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-0 **RB<7:0>**: PORTB General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

REGISTER 13-12: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

REGISTER 13-13: LATB: PORTB DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | LATB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATB<7:0>: PORTB Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

R/W-1/1	R/W-1/1 R/W		R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
ANSB6	ANSB5 ANSB4		ANSB3	ANSB2	ANSB1	ANSB0		
				•		bit 0		
bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		ared						
	ANSB6	ANSB6 ANSB5 bit W = Writable anged x = Bit is unkr	ANSB6 ANSB5 ANSB4	ANSB6 ANSB5 ANSB4 ANSB3 bit W = Writable bit U = Unimpler anged x = Bit is unknown -n/n = Value a	ANSB6 ANSB5 ANSB4 ANSB3 ANSB2 bit W = Writable bit U = Unimplemented bit, read anged x = Bit is unknown -n/n = Value at POR and BO	ANSB6ANSB5ANSB4ANSB3ANSB2ANSB1bitW = Writable bitU = Unimplemented bit, read as '0'angedx = Bit is unknown-n/n = Value at POR and BOR/Value at all of the second s		

bit 7 Unimplemented: Read as '0'

bit 6-0 **ANSB<6:0>**: Analog Select between Analog or Digital Function on pins RB<6:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

REGISTER 13-15: WPUB: WEAK PULL-UP PORTB REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUB7	WPUB6 WPUB5 WPUB		WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
bit 7	it 7						bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 24-22: PSMCxDCL: PSMC DUTY CYCLE COUNT LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PSMCx	DCL<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0

PSMCxDCL<7:0>: 16-bit Duty Cycle Count Least Significant bits = PSMCxDC<7:0>

REGISTER 24-23: PSMCxDCH: PSMC DUTY CYCLE COUNT HIGH REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PSMCxDCH<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSMCxDCH<7:0>:** 16-bit Duty Cycle Count Most Significant bits = PSMCxDC<15:8>

26.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK line. The master determines when the slave (Processor 2, Figure 26-5) is to broadcast data by the software protocol.


In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPCON1 register and the CKE bit of the SSPSTAT register. This then, would give waveforms for SPI communication as shown in Figure 26-6, Figure 26-8 and Figure 26-9, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SSPADD + 1))

Figure 26-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 26-6: SPI MODE WAVEFORM (MASTER MODE)

26.6.7 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN bit of the SSPCON2 register.

Note:	The MSSP module must be in an Idle
	state before the RCEN bit is set or the
	RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSP1IF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPCON2 register.

26.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

26.6.7.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

26.6.7.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). 26.6.7.4 Typical Receive Sequence:

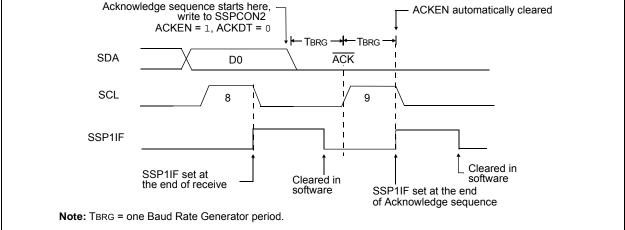
- 1. The user generates a Start condition by setting the SEN bit of the SSPCON2 register.
- 2. SSP1IF is set by hardware on completion of the Start.
- 3. SSP1IF is cleared by software.
- 4. User writes SSPBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDA pin until all 8 bits are transmitted. Transmission begins as soon as SSPBUF is written to.
- 6. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register.
- 7. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSP1IF bit.
- 8. User sets the RCEN bit of the SSPCON2 register and the master clocks in a byte from the slave.
- 9. After the 8th falling edge of SCL, SSP1IF and BF are set.
- 10. User clears the SSP1IF bit and reads the received byte from SSPUF, which clears the BF flag.
- 11. The user either clears the SSPCON2 register's ACKDT bit to receive another byte or sets the ADKDT bit to suppress further data and then initiates the acknowledge sequence by setting the ACKEN bit.
- 12. Master's ACK or ACK is clocked out to the slave and SSP1IF is set.
- 13. User clears SSP1IF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. If the ACKST bit was set in step 11 then the user can send a STOP to release the bus.

26.6.8 ACKNOWLEDGE SEQUENCE TIMING

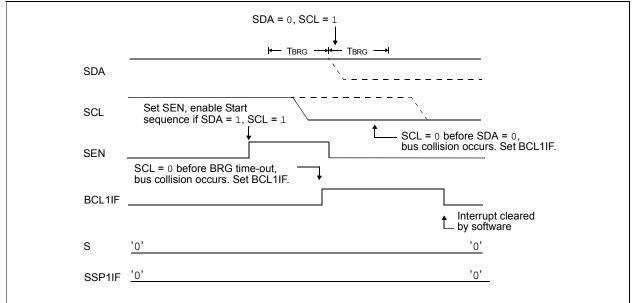
An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 26-29).

26.6.8.1 WCOL Status Flag

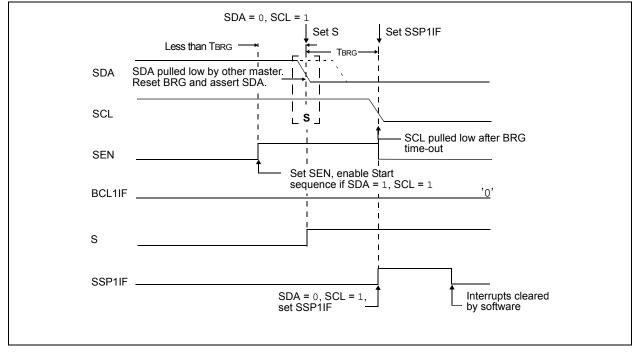
If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).


26.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPSTAT register is set. A TBRG later, the PEN bit is cleared and the SSP1IF bit is set (Figure 26-30).


26.6.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).


FIGURE 26-30: ACKNOWLEDGE SEQUENCE WAVEFORM

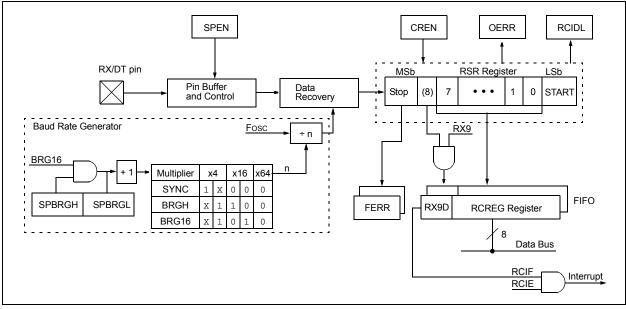


FIGURE 26-35: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

FIGURE 27-2: EUSART RECEIVE BLOCK DIAGRAM

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These registers are detailed in Register 27-1, Register 27-2 and Register 27-3, respectively.

When the receiver or transmitter section is not enabled then the corresponding RX or TX pin may be used for general purpose input and output.

					SYNC	C = 0, BRGH	l = 0, BRC	G16 = 0				
BAUD	Fosc = 32.000 MHz			Fosc	; = 20.00	0 MHz	Fosc	: = 18.43	2 MHz	Fosc	= 11.059	92 MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_	_		_	_	_	_	_		_	_
1200	—	_	_	1221	1.73	255	1200	0.00	239	1200	0.00	143
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8
57.6k	55.55k	-3.55	3	—	_	_	57.60k	0.00	7	57.60k	0.00	2
115.2k	—		_	_	_	_	_	_	_	_	_	—

TABLE 27-5:BAUD RATES FOR ASYNCHRONOUS MODES

					SYNC	C = 0, BRG	l = 0, BRG	616 = 0				
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc	= 3.686	4 MHz	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_		_	300	0.16	207	300	0.00	191	300	0.16	51
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	_	_	_
9600	9615	0.16	12	—	_	_	9600	0.00	5	_	_	_
10417	10417	0.00	11	10417	0.00	5	_	_	_	_	_	_
19.2k	_	_	_	_	_	_	19.20k	0.00	2	_	_	_
57.6k	—	_	_	—	_	_	57.60k	0.00	0	—	_	_
115.2k	—	_	—	—	_	—	_	_	—	—	_	—

		SYNC = 0, BRGH = 1, BRG16 = 0										
BAUD	Fosc = 32.000 MHz			Fosc	= 20.00	0 MHz	Fosc	: = 18.43	2 MHz	Fosc	= 11.059	92 MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_	—		_	_		_	_		_	_
1200	—	—	—	—		—	—	—	—	—	—	—
2400		_	_	—	_	_	_	_	_	_	_	_
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

29.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- · Byte Oriented
- · Bit Oriented
- · Literal and Control

The literal and control category contains the most varied instruction word format.

Table 29-3 lists the instructions recognized by the MPASM $^{\rm TM}$ assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)

TABLE 29-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 29-2: ABBREVIATION DESCRIPTIONS

Field	Description			
PC	Program Counter			
TO	Time-Out bit			
С	Carry bit			
DC	Digit Carry bit			
Z	Zero bit			
PD	Power-Down bit			

 One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

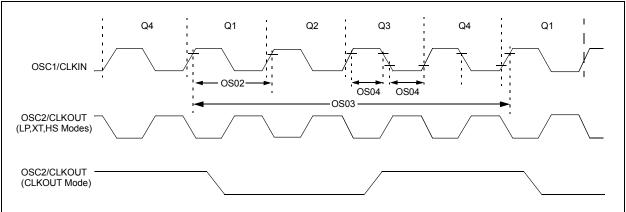
All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

29.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

Param No.	Sym.	Characteristic	Min. Typ†		Max.	Units	Conditions	
		Program Memory Programming Specifications						
D110	VIHH	Voltage on MCLR/VPP/RE3 pin	8.0	_	9.0	V	(Note 3)	
D111	IDDP	Supply Current during Programming	—	—	10	mA		
D112		VDD for Bulk Erase	2.7	—	VDDMAX	V		
D113	VPEW	VDD for Write or Row Erase	VDDMIN	—	VDDMAX	V		
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	—	—	1.0	mA		
D115	IDDPGM	Current on VDD during Erase/Write	—		5.0	mA		
		Data EEPROM Memory						
D116	ED	Byte Endurance	100K	—	_	E/W	-40°C to +85°C	
D117	VDRW	VDD for Read/Write	VDDMIN	—	VDDMAX	V		
D118	TDEW	Erase/Write Cycle Time	—	4.0	5.0	ms		
D119	TRETD	Characteristic Retention	—	40	_	Year	Provided no other specifications are violated	
D120	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	100k	—	_	E/W	-40°C to +85°C	
		Program Flash Memory						
D121	Eр	Cell Endurance	10K	—	_	E/W	-40°C to +85°C (Note 1)	
D122	Vpr	VDD for Read	VDDMIN	—	VDDMAX	V		
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms		
D124	TRETD	Characteristic Retention	—	40	_	Year	Provided no other specifications are violated	

Standard Operating Conditions (unless otherwise stated)


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

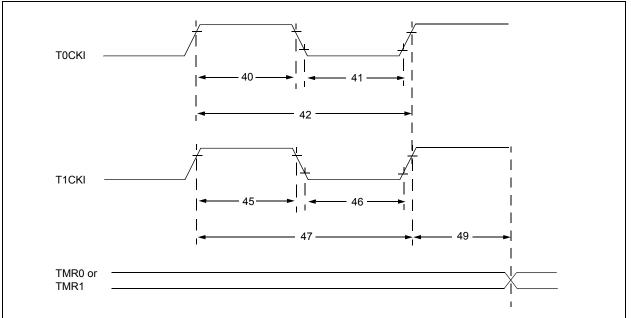
Note 1: Self-write and Block Erase.

2: Refer to Section 12.2 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

TABLE 30-6:	CLOCK OSCILLATOR TIMING REQUIREMENTS

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	0.5	MHz	EC Oscillator mode (low)
			DC	—	4	MHz	EC Oscillator mode (medium)
			DC	_	20	MHz	EC Oscillator mode (high)
		Oscillator Frequency ⁽¹⁾	—	32.768	_	kHz	LP Oscillator mode
			0.1	_	4	MHz	XT Oscillator mode
			1	_	4	MHz	HS Oscillator mode
			1	_	20	MHz	HS Oscillator mode, VDD > 2.7V
			DC	—	4	MHz	RC Oscillator mode, VDD > 2.0V
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	_	×	μS	LP Oscillator mode
			250	_	×	ns	XT Oscillator mode
			50	_	×	ns	HS Oscillator mode
			50	_	×	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	—	30.5	_	μS	LP Oscillator mode
			250	_	10,000	ns	XT Oscillator mode
			50	_	1,000	ns	HS Oscillator mode
			250	—	—	ns	RC Oscillator mode
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc
OS04*	TosH,	External CLKIN High,	2	_	_	μS	LP oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator
			20	—	—	ns	HS oscillator
OS05*	TosR,	External CLKIN Rise,	0	—	×	ns	LP oscillator
	TosF	External CLKIN Fall	0	—	×	ns	XT oscillator
			0	—	x	ns	HS oscillator


Standard Operating Conditions (unless otherwise stated)

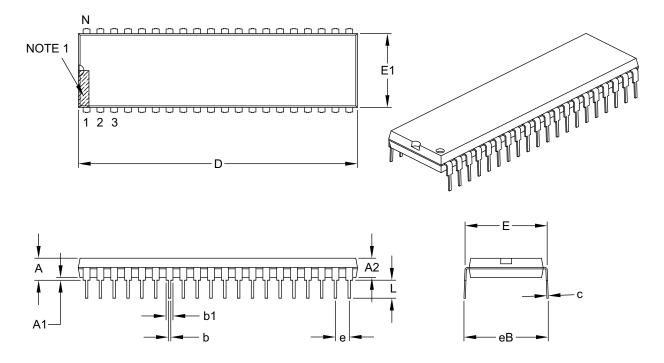
These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (Tcr) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

FIGURE 30-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 30-11:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
--------------	---


Standa	rd Operating	Conditions (u	nless otherwis	e stated)					
Param No.	Sym.		Characteristic		Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High F	Pulse Width	No Prescaler	0.5 Tcy + 20	—		ns	
		With P		With Prescaler	10	_	_	ns	
41*	T⊤0L	T0CKI Low F	Pulse Width No Prescaler		0.5 Tcy + 20	_	_	ns	
				With Prescaler	10	_	_	ns	
42*	Tt0P	T0CKI Period	iod		Greater of: 20 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High	Synchronous, No Prescaler		0.5 Tcy + 20	_		ns	
	Time	Synchronous, with Prescaler		15	—		ns		
			Asynchronous		30	_	_	ns	
46*	T⊤1L	T1CKI Low Time	Synchronous, I	No Prescaler	0.5 Tcy + 20	_	_	ns	
			Synchronous, v	with Prescaler	15	_		ns	
			Asynchronous		30	_		ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	_	_	ns	
48	F⊤1		illator Input Frequency Range nabled by setting bit T1OSCEN)		32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	y from External Clock Edge to Timer ment		2 Tosc	—	7 Tosc	—	Timers in Sync mode

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N	40			
Pitch	e	.100 BSC			
Top to Seating Plane	A	-	-	.250	
Molded Package Thickness	A2	.125	-	.195	
Base to Seating Plane	A1	.015	-	_	
Shoulder to Shoulder Width	E	.590	-	.625	
Molded Package Width	E1	.485	-	.580	
Overall Length	D	1.980	-	2.095	
Tip to Seating Plane	L	.115	-	.200	
Lead Thickness	С	.008	-	.015	
Upper Lead Width	b1	.030	-	.070	
Lower Lead Width	b	.014	-	.023	
Overall Row Spacing §	eB	-	-	.700	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ - X <u>/XX XXX</u> T Tape and Reel Temperature Package Pattern Option Range	Industrial temperature PDIP package
Device:	PIC16F1784, PIC16LF1784, PIC16F1786, PIC16LF1786, PIC16F1787, PIC16LF1787	b) PIC16F1786- E/SS Extended temperature, SSOP package
Tape and Reel Option:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾	
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package: ⁽²⁾		Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	2: Small form-factor packaging options may be available. Please check <u>www.microchip.com/packaging</u> for small-form factor package availability, or contact your local Sales Office.