

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 14x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1784t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.6 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- · Traditional Data Memory
- Linear Data Memory
- Program Flash Memory

3.6.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

8.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 or PIE2 registers)

The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 8.5 "Automatic Context Saving".")
- PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

Note 1:	Individual	inte	rrupt	flag	bits	are are	set,
	regardless	of	the	state	of	any	other
	enable bits						

2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

8.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 8-2 and Figure 8.3 for more details.

11.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See **Section 30.0 "Electrical Specifications**" for the LFINTOSC tolerances.

11.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 11-1.

11.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always on.

WDT protection is active during Sleep.

11.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

11.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 11-1 for more details.

TABLE 11-1:	WDT OPERATING MOD	ES
-------------	-------------------	----

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode	
11	Х	Х	Active	
10	37	Awake	Active	
TO	X	Sleep	Disabled	
01	1	×	Active	
UT	0	~	Disabled	
00	х	Х	Disabled	

TABLE 11-2: WDT CLEARING CONDITIONS

11.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

11.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- Device enters Sleep
- · Device wakes up from Sleep
- · Oscillator fail
- · WDT is disabled
- Oscillator Start-up TImer (OST) is running

See Table 11-2 for more information.

11.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again. The WDT remains clear until the OST, if enabled, completes. See **Section 6.0** "Oscillator **Module (with Fail-Safe Clock Monitor)**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. See **Section 3.0** "**Memory Organization**" and Status Register (Register 3-1) for more information.

Conditions	WDT		
WDTE<1:0> = 00			
WDTE<1:0> = 01 and SWDTEN = 0			
WDTE<1:0> = 10 and enter Sleep	Cleared		
CLRWDT Command	Cleared		
Oscillator Fail Detected			
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK			
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST		
Change INTOSC divider (IRCF bits)	Unaffected		

13.5 PORTB Registers

13.5.1 DATA REGISTER

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 13-12). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 13-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 13-11) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

13.5.2 DIRECTION CONTROL

The TRISB register (Register 13-12) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

13.5.3 OPEN DRAIN CONTROL

The ODCONB register (Register 13-16) controls the open-drain feature of the port. Open drain operation is independently selected for each pin. When an ODCONB bit is set, the corresponding port output becomes an open drain driver capable of sinking current only. When an ODCONB bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

13.5.4 SLEW RATE CONTROL

The SLRCONB register (Register 13-17) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONB bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONB bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

13.5.5 INPUT THRESHOLD CONTROL

The INLVLB register (Register 13-18) controls the input voltage threshold for each of the available PORTB input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTB register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See **Section TABLE 30-1: "Supply Voltage"** for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

13.5.6 ANALOG CONTROL

The ANSELB register (Register 13-14) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELB bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

REGISTER 13-36: LATE: PORTE DATA LATCH REGISTER⁽²⁾

U-0	U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u
_	_	_	_	_	LATE2	LATE1	LATE0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 LATE<2:0>: PORTE Output Latch Value bits⁽²⁾

- **Note 1:** Writes to PORTE are actually written to corresponding LATE register. Reads from PORTE register is return of actual I/O pin values.
 - 2: LATE<2:0> are available on PIC16(L)F1784/7 only.

REGISTER 13-37: ANSELE: PORTE ANALOG SELECT REGISTER⁽²⁾

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	—	—	ANSE2	ANSE1	ANSE0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 2-0 **ANSE<2:0>**: Analog Select between Analog or Digital Function on pins RE<2:0>, respectively
 - 0 = Digital I/O. Pin is assigned to port or digital special function.
 - 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.
 - 2: ANSELE<2:0> are available on PIC16(L)F1784/7 only.

TABLE 17-1:	ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES	
-------------	---	--

ADC Clock P	eriod (TAD)			Device Freq	uency (Fosc)		
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs (3)
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾
FRC	x11	1.0-6.0 μs ^(1,4)					

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of 1.6 μ s for VDD.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

17.2 ADC Operation

17.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/DONE bit of the ADCON0 register to a '1' will clear the ADRESH and ADRESL registers and start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 17.2.6 "A/D Conversion
	Procedure".

17.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- · Set the ADIF Interrupt Flag bit

17.2.3 TERMINATING A CONVERSION

When a conversion is terminated before completion by clearing the GO/DONE bit then the partial results are discarded and the results in the ADRESH and ADRESL registers from the previous conversion remain unchanged.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.

17.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC oscillator source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

17.2.5 AUTO-CONVERSION TRIGGER

The Auto-conversion Trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO/DONE bit is set by hardware.

The Auto-conversion Trigger source is selected with the TRIGSEL<3:0> bits of the ADCON2 register.

Using the Auto-conversion Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Auto-conversion sources are:

- CCP1
- CCP2
- CCP3
- PSMC1⁽¹⁾
- PSMC2⁽¹⁾

Note: The PSMC clock frequency, after the prescaler, must be less than Fosc/4 to ensure that the ADC detects the auto-conversion trigger. This limitation can be overcome by synchronizing a slave PSMC, running at the required slower clock frequency, to the first PSMC and triggering the conversion from the slave PSMC.

PSMC3

18.1 Effects of Reset

A device Reset forces all registers to their Reset state. This disables the OPA module.

18.2 OPA Module Performance

Common AC and DC performance specifications for the OPA module:

- Common Mode Voltage Range
- Leakage Current
- Input Offset Voltage
- · Open Loop Gain
- · Gain Bandwidth Product

Common mode voltage range is the specified voltage range for the OPA+ and OPA- inputs, for which the OPA module will perform to within its specifications. The OPA module is designed to operate with input voltages between Vss and VDD. Behavior for Common mode voltages greater than VDD, or below Vss, are not guaranteed.

Leakage current is a measure of the small source or sink currents on the OPA+ and OPA- inputs. To minimize the effect of leakage currents, the effective impedances connected to the OPA+ and OPA- inputs should be kept as small as possible and equal.

Input offset voltage is a measure of the voltage difference between the OPA+ and OPA- inputs in a closed loop circuit with the OPA in its linear region. The offset voltage will appear as a DC offset in the output equal to the input offset voltage, multiplied by the gain of the circuit. The input offset voltage is also affected by the Common mode voltage. The OPA is factory calibrated to minimize the input offset voltage of the module.

Open loop gain is the ratio of the output voltage to the differential input voltage, (OPA+) - (OPA-). The gain is greatest at DC and falls off with frequency.

Gain Bandwidth Product or GBWP is the frequency at which the open loop gain falls off to 0 dB.

18.3 OPAxCON Control Register

The OPAxCON register, shown in Register 18-1, controls the OPA module.

The OPA module is enabled by setting the OPAxEN bit of the OPAxCON register. When enabled, the OPA forces the output driver of OPAxOUT pin into tri-state to prevent contention between the driver and the OPA output.

Note: When the OPA module is enabled, the OPAxOUT pin is driven by the op amp output, not by the PORT digital driver. Refer to the Electrical specifications for the op amp output drive capability.

20.11 Register Definitions: Comparator Control

REGISTER 20-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

R/W/-0/0	R-0/0	R/W/-0/0	R/W/-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-0/0	
CxON	CXOUT	CxOF	CxPOI		CxSP	CxHYS	CXSYNC	
hit 7	0,001	OXOL	ONI OL	UNZLI	0,01	0,1110	bit 0	
bit i							bit 0	
Legend:								
P - Readable	bit	M = M/ritable	hit	II – Unimpler	mented bit read	d as 'O'		
IX = Readable	anged	v = Bit is upkr		n/n = Value	at POP and BC	D AS U	other Pesets	
'1' = Bit is set	angeu	$(0)^{2} = \text{Bit is clear}$	arad					
1 - Dit 13 30t								
bit 7	CxON: Comp	parator Enable I	oit					
	1 = Compara	tor is enabled						
	0 = Compara	tor is disabled a	and consumes	no active pow	er			
bit 6	CxOUT: Com	parator Output	bit					
	$\frac{\text{If CxPOL} = 1}{2}$	(inverted polari	<u>ty):</u>					
	1 = CxVP < CxVN $0 = CxVP > CxVN$							
	$0 = G_X V P > G_X V N$ If CxPOL = 0 (non-inverted polarity):							
	1 = CxVP > CxVN							
	0 = CxVP < 0	CxVN						
bit 5	CxOE: Comp	parator Output E	Enable bit					
	1 = CxOUT is	s present on the	e CxOUT pin. I	Requires that th	ne associated T	RIS bit be clea	red to actually	
	0 = CxOUT i	s internal only	ed by CXON.					
bit 4	CxPOL: Com	parator Output	Polarity Selec	ct bit				
	1 = Compara	tor output is inv	erted					
	0 = Compara	tor output is no	t inverted					
bit 3	CxZLF: Com	parator Zero La	atency Filter E	nable bit				
	1 = Compara	tor output is filte	ered					
	0 = Compara	tor output is un	filtered	.,				
bit 2	CxSP: Comp	arator Speed/P	ower Select b	it				
	1 = Compara0 = Compara	tor operates in	normal power, low-power, low	, nigner speed	mode			
bit 1	CxHYS: Com	parator Hyster	esis Enable bi	t				
2	1 = Compara	ator hysteresis	enabled	•				
	0 = Compara	ator hysteresis of	disabled					
bit 0	CxSYNC: Co	mparator Outp	ut Synchronou	is Mode bit				
	1 = Compara	ator output to T	imer1 and I/C	pin is synchro	onous to chang	ges on Timer1	clock source.	
	Output u	pdated on the f	alling edge of	Limer1 clock s	ource.			
		αιοι ουιραί ιο Π		pin is asynchic	1005.			

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u		
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS	6<1:0>		
bit 7		•				•	bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	/are			
bit 7	bit 7 TMR1GE: Timer1 Gate Enable bit If TMR1ON = 0: This bit is ignored If TMR1ON = 1: 1 = Timer1 counting is controlled by the Timer1 gate function 0 = Timer1 counts regardless of Timer1 gate function								
bit 6	<pre>it 6 T1GPOL: Timer1 Gate Polarity bit 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low)</pre>								
bit 5	T1GTM: Time 1 = Timer1 G 0 = Timer1 G Timer1 gate fi	er1 Gate Toggle Gate Toggle mo Gate Toggle mo lip-flop toggles	e Mode bit de is enabled de is disabled on every risin	and toggle flip- g edge.	flop is cleared				
bit 4	T1GSPM: Tin	ner1 Gate Sind	le-Pulse Mode	e bit					
	1 = Timer1 G 0 = Timer1 G	Gate Single-Pul Gate Single-Pul	se mode is en se mode is dis	abled and is co abled	ntrolling Timer	1 gate			
bit 3	T1GGO/DON	E: Timer1 Gate	e Single-Pulse	Acquisition Sta	atus bit				
	1 = Timer1 g 0 = Timer1 g	ate single-puls ate single-puls	e acquisition is e acquisition h	s ready, waiting as completed c	for an edge or has not been	started			
bit 2	T1GVAL: Tim	ner1 Gate Curre	ent State bit						
	Indicates the Unaffected by	current state o / Timer1 Gate I	f the Timer1 ga Enable (TMR1	ate that could b GE).	e provided to T	MR1H:TMR1L			
bit 1-0	T1GSS<1:0>	: Timer1 Gate	Source Select	bits					
	11 = Compar 10 = Compar 01 = Timer0 0 00 = Timer1 0	ator 2 optionall ator 1 optionall overflow output gate pin	y synchronize y synchronize	d output (sync_ d output (sync_	<u>_</u> C2OUT) _C1OUT)				

REGISTER 22-2: T1GCON: TIMER1 GATE CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	138
CCP1CON	—	—	DC1B	<1:0>		CCP1N	1<3:0>		280
CCP2CON	—	—	DC2B	<1:0>		CCP2N	1<3:0>		280
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98
TMR1H	Holding Regi	ster for the M	ost Significan	t Byte of the	16-bit TMR1 F	Register			199*
TMR1L	Holding Regi	ister for the Le	east Significa	nt Byte of the	16-bit TMR1	Register			199*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	137
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	207
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GS	S<1:0>	208

TABLE 22-5:	SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1
-------------	---

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module.

* Page provides register information.

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0		
PxASDSIN	—	_	PxASDSC4	PxASDSC3	PxASDSC2	PxASDSC1	—		
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'			
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7 PxASDSIN: Auto-shutdown occurs on PSMCxIN pin									
1 = Auto-shutdown will occur when PSMCxIN pin goes true									
	0 = PSMCXIN pin will not cause auto-shutdown								
bit 6-5	Unimplement	ted: Read as '	0'						
bit 4	PxASDSC4: /	Auto-shutdown	occurs on syr	nc_C4OUT out	tput				
	1 = Auto-shu	utdown will occ	ur when sync	_C4OUT outpu	it goes true				
hit 2	D = Sync_C4								
DIL 3		tdown will occ	UCCUIS ON SYI		ipui it goes true				
	0 = sync C3	BOUT will not c	ause auto-shu	_cooon outpu	it goes tide				
bit 2	PxASDSC2:	Auto-shutdown	occurs on syr	nc C2OUT out	tput				
	1 = Auto-shu	utdown will occ	ur when sync	C2OUT outpu	it goes true				
	$0 = sync_C2$	OUT will not c	ause auto-shu	itdown					
bit 1	PxASDSC1: /	Auto-shutdown	occurs on syr	nc_C1OUT out	tput				
	1 = Auto-shu	utdown will occ	ur when sync	_C1OU output	goes true				
	$0 = sync_C1$	OU will not ca	use auto-shute	down					
bit 0	Unimplement	ted: Read as '	0'						

REGISTER 24-17: PSMCxASDS: PSMC AUTO-SHUTDOWN SOURCE REGISTER

26.3 I²C MODE OVERVIEW

The Inter-Integrated Circuit Bus (I^2C) is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A Slave device is controlled through addressing.

The I²C bus specifies two signal connections:

- · Serial Clock (SCL)
- · Serial Data (SDA)

Figure 26-11 shows the block diagram of the MSSP module when operating in I^2C mode.

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 26-11 shows a typical connection between two processors configured as master and slave devices.

The I^2C bus can operate with one or more master devices and one or more slave devices.

There are four potential modes of operation for a given device:

- Master Transmit mode
 (master is transmitting data to a slave)
- Master Receive mode
 (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode (slave is receiving data from the master)

To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.

If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively.

A Start bit is indicated by a high-to-low transition of the SDA line while the SCL line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the master intends to read data from the slave, and is sent out as a logical zero when it intends to write data to the slave.

FIGURE 26-11: I²C MASTER/ SLAVE CONNECTION

The Acknowledge bit (\overline{ACK}) is an active-low signal, which holds the SDA line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.

The transition of a data bit is always performed while the SCL line is held low. Transitions that occur while the SCL line is held high are used to indicate Start and Stop bits.

If the master intends to write to the slave, then it repeatedly sends out a byte of data, with the slave responding after each byte with an \overrightarrow{ACK} bit. In this example, the master device is in Master Transmit mode and the slave is in Slave Receive mode.

If the master intends to read from the slave, then it repeatedly receives a byte of data from the slave, and responds after each byte with an \overline{ACK} bit. In this example, the master device is in Master Receive mode and the slave is Slave Transmit mode.

On the last byte of data communicated, the master device may end the transmission by sending a Stop bit. If the master device is in Receive mode, it sends the Stop bit in place of the last ACK bit. A Stop bit is indicated by a low-to-high transition of the SDA line while the SCL line is held high.

In some cases, the master may want to maintain control of the bus and re-initiate another transmission. If so, the master device may send another Start bit in place of the Stop bit or last ACK bit when it is in receive mode.

The I²C bus specifies three message protocols;

- Single message where a master writes data to a slave.
- Single message where a master reads data from a slave.
- Combined message where a master initiates a minimum of two writes, or two reads, or a combination of writes and reads, to one or more slaves.

FIGURE 27-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

	······ : : : :	······································			: 3; 	: 		unnie Seas st		
--	--------------------------------	--	--	--	-------------	-------	--	------------------	--	--

21 The \$08.437 remains a live while two WGE halfs and

FIGURE 27-10: SYNCHRONOUS TRANSMISSION

FIGURE 27-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 27-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
C2OUTSEL	CC1PSEL	SDOSEL	SCKSEL	SDISEL	TXSEL	RXSEL	CCP2SEL	127
ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	347
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94
TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	346
			BRG<	7:0>				348
			BRG<	15:8>				348
TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142
		EUS	ART Transm	it Data Regis	ster			337*
CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	345
	Bit 7 C2OUTSEL ABDOVF GIE TMR1GIE SPEN SPEN TRISC7 CSRC	Bit 7Bit 6C2OUTSELCC1PSELABDOVFRCIDLGIEPEIETMR1GIEADIFTMR1GIFADIFSPENRX9TRISC7TRISC6TRSRC4TX9	Bit 7Bit 6Bit 5C2OUTSELCC1PSELSDOSELABDOVFRCIDLImmodelGIEPEIETMR0IETMR1GIEADIERCIETMR1GIFADIFRCIFSPENRX9SRENTRISC7TRISC6TRISC5CSRCTX9TXEN	Bit 7Bit 6Bit 5Bit 4C2OUTSELCC1PSELSDOSELSCKSELABDOVFRCIDLJONSELSCKPGIEPEIETMR0IEINTETMR1GIEADIERCIETXIETMR1GIFADIFRCIETXIESPENRX9SRENCRENSPENTRISC6TRISC6SRENTRISC7TRISC6TRISC5TRISC6CSRCTX9SXENSYNC	Bit 7Bit 6Bit 5Bit 4Bit 3C2OUTSEICC1PSEISDOSEISCKSEISDISEIABDOVFRCIDL-SCKPBRG16GIEPEIETMR0IEINTEIOCIETMR1GIEADIERCIETXIESSP11ETMR1GIFADIFRCIFTXIFSSP11FSPENRX9SRENCRENADDENSPENRX9SRENCRENADDENTRISC7TRISC6TRISC5TRISC4TRISC3CSRCTX9TXENSYNCSENDB	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2C2OUTSELCC1PSELSDOSELSCKSELSDISELTXSELABDOVFRCIDL-SCKPBRG16-GIEPEIETMR0IEINTEIOCIETMR0IFTMR1GIEADIERCIETXIESSP1IECCP1IETMR1GIFADIFRCIFTXIFSSP1IFCCP1IFSPENRX9SRENCRENADDENFERRSPENRX9SRENCRENADDENFERRTRISC7TRISC6TRISC5TRISC4TRISC5TRISC4CSRCTX9TXENSYNCSENDBBRGH	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1C2OUTSELCC1PSELSDOSELSCKSELSDISELTXSELRXSELABDOVFRCIDL-SCKPBRG16-WUEGIEPEIETMROIEINTEIOCIETMROIFINTFTMR1GIEADIERCIETXIESSP1IECCP1IETMR2IETMR1GIFADIFRCIFTXIFSSP1IECCP1IFTMR2IESPENRX9SRENCRENADDENFERROERRBRGYSRENCRENADDENFERROERRTISC7TRISC6TRISC5TRISC4TRISC5TRISC4TRISC5CSRC4TX9SYNCSENDBBRGHTRM1	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0C2OUTSELCC1PSELSDOSELSCKSELSDISELTXSELRXSELCCP2SELABDOVFRCIDL-SCKPBRG16-WUEABDENGIEPEIETMR0IEINTEIOCIETMR0IFINTEIOCIFTMR1GIEADIERCIETXIESSP1IECCP1IETMR2IETMR1IETMR1GIFADIFRCIFTXIFSSP1IFCCP1IFTMR2IETMR1IESPENRX9SRENCRENADDENFERROERRRX9DSPENRX9SRENCRENADDENFERROERRRX9DTRISC7TRISC6TRISC5TRISC4TRISC3TRISC4TRISC4TRISC4TRISC4CSRCTX9TXENSYNCSENDBBRGHTRMTTX9D

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission.

* Page provides register information.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-61: Brown-Out Reset Voltage, Low Trip Point (BORV = 1), PIC16LF1784/6/7 Only.

FIGURE 31-63: Brown-Out Reset Voltage, Low Trip Point (BORV = 1), PIC16F1784/6/7 Only.

FIGURE 31-65: Brown-Out Reset Voltage, High Trip Point (BORV = 0).

FIGURE 31-62: Brown-Out Reset Hysteresis, Low Trip Point (BORV = 1), PIC16LF1784/6/7 Only.

FIGURE 31-66: Brown-Out Reset Hysteresis, High Trip Point (BORV = 0).

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-120: Comparator Offset, NP Mode (CxSP = 1), VDD = 5.0V, Typical Measured Values at 25°C, PIC16F1784/6/7 Only.

FIGURE 31-122: Comparator Response Time Over Voltage, NP Mode (CxSP = 1), Typical Measured Values, PIC16LF1784/6/7 Only.

FIGURE 31-124: Comparator Output Filter Delay Time Over Temp., NP Mode (CxSP = 1), Typical Measured Values, PIC16LF1784/6/7 Only.

FIGURE 31-121: Comparator Offset, NP Mode (CxSP = 1), VDD = 5.0V, Typical Measured Values From -40°C to 125°C, PIC16F1784/6/7 Only.

FIGURE 31-123: Comparator Response Time Over Voltage, NP Mode (CxSP = 1), Typical Measured Values, PIC16F1784/6/7 Only.

FIGURE 31-125: Comparator Output Filter Delay Time Over Temp., NP Mode (CxSP = 1), Typical Measured Values, PIC16F1784/6/7 Only.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Ν	ILLIMETER	S
Dimensior	ı Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B