

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	24
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1786-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram – 40-Pin PDIP

Note:

	1	40	RB7ICSPDAT
RA0	2	39	RB6/ICSPCLK
RA1	3	38	RB5
RA2	4	37	RB4
RA3	5	36	RB3
RA4	6	35	RB2
RA5	7	34	RB1
RE0	8	33	RB0
RE1	9 184	62 32	VDD
RE2	10 Ľ	<u>د</u> 31	Vss
VDD	11) 9	J 30∏	RD7
Vss	12 <u>ပ</u>	<u>ວ</u> 29	RD6
RA7	13 L	L 28	RD5
RA6	14	27	RD4
RC0	15	26	RC7
RC1	16	25	RC6
RC2	17	24	RC5
RC3	18	23	RC4
RD0	19	22	RD3
RD1	20	21	RD2

See Table 2 for the location of all peripheral functions.

PIC16(L)F1784/6/7

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-12

								/			
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 2										
10Ch	LATA	PORTA Data L	.atch							xxxx xxxx	uuuu uuuu
10Dh	LATB	PORTB Data L	atch							xxxx xxxx	uuuu uuuu
10Eh	LATC	PORTC Data I	atch							xxxx xxxx	uuuu uuuu
10Fh	LATD ⁽³⁾	PORTD Data I	atch							xxxx xxxx	uuuu uuuu
110h	LATE ⁽³⁾					_	LATE2	LATE1	LATE0	111	111
111h	CM1CON0	C10N	C1OUT	C10E	C1POL	C1ZLF	C1SP	C1HYS	C1SYNC	0000 0100	0000 0100
112h	CM1CON1	C1INTP	C1INTN		C1PCH<2:0>			C1NCH<2:0>		0000 0000	0000 0000
113h	CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2ZLF	C2SP	C2HYS	C2SYNC	0000 0100	0000 0100
114h	CM2CON1	C2INTP	C2INTN		C2PCH<2:0>			C2NCH<2:0>		0000 0000	0000 0000
115h	CMOUT	_	_	_	_	MC4OUT ⁽³⁾	MC3OUT	MC2OUT	MC1OUT	0000	0000
116h	BORCON	SBOREN	BORFS	_	_	_	_	_	BORRDY	1xq	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	R<1:0>	ADFV	R<1:0>	0q00 0000	0q00 0000
118h	DAC1CON0	DAC1EN		DAC10E1	DAC10E2	DAC1PS	SS<1:0>		DAC1NSS	0-00 00-0	0-00 00-0
119h	DAC1CON1				DAC1R	<7:0>				0000 0000	0000 0000
11Ah	CM4CON0	C4ON	C4OUT	C4OE	C4POL	C4ZLF	C4SP	C4HYS	C4SYNC	0000 0100	0000 0100
11Bh	CM4CON1	C4INTP	C4INTN	C4PCI	H<1:0>	—	-	C4NC	H<1:0>	000000	000000
11Ch	APFCON2	—	_	-	—	_	_	—	CCP3SEL	0	0
11Dh	APFCON1	C2OUTSEL	CC1PSEL	SDOSEL	SCKSEL	SDISEL	TXSEL	RXSEL	CCP2SEL	0000 0000	0000 0000
11Eh	CM3CON0	C3ON	C3OUT	C3OE	C3POL	C3ZLF	C3SP	C3HYS	C3SYNC	0000 0100	0000 0100
11Fh	CM3CON1	C3INTP	C3INTN		C3PCH<2:0>	•		C3NCH<2:0>		0000 0000	0000 0000
Ban	k 3	•									
18Ch	ANSELA	ANSA7	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	1-11 1111	1-11 1111
18Dh	ANSELB	_	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	-111 1111	-111 1111
18Eh	Unimplemente	d							_	_	_
18Fh	ANSELD ⁽³⁾	_	_	—	_	_	ANSD2	ANSD1	ANSD0	111	111
190h	ANSELE ⁽³⁾	_	_	_	—	_	ANSE2	ANSE1	ANSE0	111	111
191h	EEADRL	EEPROM / Pro	ogram Memor	y Address Reg	ister Low Byte					0000 0000	0000 0000
192h	EEADRH	(2)	EEPROM / F	Program Memor	ry Address Reg	ister High Byte				1000 0000	1000 0000
193h	EEDATL	EEPROM / Pro	ogram Memor	y Read Data R	egister Low Byt	e				xxxx xxxx	uuuu uuuu
194h	EEDATH	_	_	EEPROM / Pro	ogram Memory	Read Data Re	gister High By	te		xx xxxx	uu uuuu
195h	EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	$000x \ 0000$	0000 q000
196h	EECON2	EEPROM / Pro	ogram Memor	y Control Regis	ster 2					0000 0000	0000 0000
197h	VREGCON ⁽⁴⁾	—	_	—	—	—	—	VREGPM	Reserved	01	01
198h	—	Unimplemente	d							_	_
199h	RCREG	EUSART Rece	eive Data Reg	ister						0000 0000	0000 0000
19Ah	TXREG	EUSART Trans	smit Data Reg	gister						0000 0000	0000 0000
19Bh	SPBRG				BRG<	7:0>				0000 0000	0000 0000
19Ch	SPBRGH				BRG<	15:8>				0000 0000	0000 0000
19Dh	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	0000 0000
19Eh	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Fh	BAUDCON	ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. These registers can be addressed from any bank. Unimplemented, read as '1'. Legend:

1:

2:

PIC16(L)F1784/7 only. 3:

4: PIC16F1784/6/7 only.

Note

PIC16(L)F1784/6/7

REGISTER	4-2. CON	FIGZ. CONFI	JURATION						
		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1		
		LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN		
		bit 13					ł		
r									
U-1	U-1	R/P-1	U-1	U-1	U-1	R/P-1	R/P-1		
—	—	VCAPEN — — WR							
bit 7	-	·					k		
Legend:									
R = Readable	e bit	P = Programma	able bit U = Unimplemented bit, read as '1'						
'0' = Bit is cle	ared	'1' = Bit is set	s set -n = Value when blank or after Bulk Erase						
bit 13	LVP: Low-Vol 1 = Low-volta 0 = High-volta	tage Programming ge prog <u>ramm</u> ing e ige on MCLR mus	g Enable bit ⁽¹⁾ nabled t be used for pro	gramming					
bit 12	DEBUG: In-C 1 = In-Circuit I 0 = In-Circuit I	ircuit Debugger M Debugger disabled Debugger enabled	ode bit ⁽³⁾ d, ICSPCLK and I, ICSPCLK and	ICSPDAT are ge ICSPDAT are de	eneral purpose I/ dicated to the de	O pins ebugger			
bit 11		I PROP. Low Dower POR Enable bit							

REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2

Legend:						
R = Readable	e bit	P = Programmable bit	U = Unimplemented bit, read as '1'			
'0' = Bit is cle	ared	'1' = Bit is set	-n = Value when blank or after Bulk Erase			
bit 13	LVP: Low-Volt 1 = Low-voltag 0 = High-voltag	age Programming Enable bit ⁽¹⁾ le prog <u>ramm</u> ing enabled ge on MCLR must be used for pr	ogramming			
bit 12	DEBUG: In-Ci 1 = In-Circuit I 0 = In-Circuit I	rcuit Debugger Mode bit ⁽³⁾ Debugger disabled, ICSPCLK and Debugger enabled, ICSPCLK and	d ICSPDAT are general purpose I/O pins I ICSPDAT are dedicated to the debugger			
bit 11	LPBOR: Low- 1 = Low-Powe 0 = Low-Powe	Power BOR Enable bit r Brown-out Reset is disabled r Brown-out Reset is enabled				
bit 10	BORV: Brown- 1 = Brown-out 0 = Brown-out	-out Reset Voltage Selection bit ⁽⁴ Reset voltage (VBOR), low trip po Reset voltage (VBOR), high trip p) pint selected. point selected.			
bit 9	STVREN: Stac 1 = Stack Ove 0 = Stack Ove	ck Overflow/Underflow Reset Ena rflow or Underflow will cause a R rflow or Underflow will not cause	able bit eset a Reset			
bit 8	PLLEN: PLL E 1 = 4xPLL ena 0 = 4xPLL disa	Enable bit Ibled abled				
bit 7-6	Unimplement	ed: Read as '1'				
bit 5	VCAPEN: Volt 1 = VCAP funct 0 = VCAP funct	age Regulator Capacitor Enable tionality is disabled on RA6 tionality is enabled on RA6	bit ⁽²⁾			
bit 4-2	Unimplement	ed: Read as '1'				
bit 1-0	WRT<1:0>: FI <u>4 kW Flash me</u> 11 = Wr 10 = 00 01 = 00 00 = 00 <u>8 kW Flash me</u> 11 = Wr 10 = 00 01 = 00 00 = 00	ash Memory Self-Write Protectio emory (PIC16(L)F1784 only): rite protection off 0h to 1FFh write-protected, 200h 0h to 7FFh write-protected, 800h 0h to FFFh write-protected, no ar emory (PIC16(L)F1786/7 only): rite protection off 00h to 01FFh write-protected, 02 00h to 0FFFh write-protected, 10 00h to 1FFFh write-protected, no	n bits to FFFh may be modified by EECON control to FFFh may be modified by EECON control ddresses may be modified by EECON control 200h to 1FFFh may be modified by EECON control 000h to 1FFFh may be modified by EECON control o addresses may be modified by EECON control			
Note 1: 1 2: N 3: 1	The LVP bit cannot Not implemented of The DEBUG bit in and programmers.	t be programmed to '0' when Pro in "LF" devices. Configuration Words is managed For normal device operation, this	gramming mode is entered via LVP. automatically by device development tools including debuggers s bit should be maintained as a '1'.			

4: See VBOR parameter for specific trip point voltages.

bit 8

bit 0

5.13 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

5.14 Register Definitions: Power Control

REGISTER 5-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR
bit 7							bit 0

Legend:						
HC = Bit is cleared by hardw	are	HS = Bit is set by hardware				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition				

bit 7	STKOVF: Stack Overflow Flag bit
	1 = A Stack Overflow occurred
	0 = A Stack Overflow has not occurred or cleared by firmware
bit 6	STKUNF: Stack Underflow Flag bit
	1 = A Stack Underflow occurred
	0 = A Stack Underflow has not occurred or cleared by firmware
bit 5	Unimplemented: Read as '0'
bit 4	RWDT: Watchdog Timer Reset Flag bit
	1 = A Watchdog Timer Reset has not occurred or set to '1' by firmware
	0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3	RMCLR: MCLR Reset Flag bit
	1 = A MCLR Reset has not occurred or set to '1' by firmware
	0 = A MCLR Reset has occurred (cleared by hardware)
bit 2	RI: RESET Instruction Flag bit
	1 = A RESET instruction has not been executed or set to '1' by firmware
	0 = A RESET instruction has been executed (cleared by hardware)
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	1 = No Brown-out Reset occurred
	0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset
	occurs)

The PCON register bits are shown in Register 5-2.

8.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section 9.0** "**Power-Down Mode (Sleep)**" for more details.

8.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

8.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- · BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

R/W-0/0	0 R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
OSFIF	C2IF	C1IF	EEIF	BCL1IF	C4IF	C3IF	CCP2IF
bit 7		•					bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is	Bit is set '0' = Bit is cleared						
bit 7	OSFIF: Oscill	ator Fail Interru	upt Flag bit				
	1 = Interrupt i	s pending					
hit C		s not pending	unt Elea hit				
DILO	Leintorrupt	rator C2 Intern	upt Flag bit				
	0 = Interrupt i	s not pending					
bit 5	C1IF: Compa	rator C1 Interru	upt Flag bit				
	1 = Interrupt i	s pending					
	0 = Interrupt i	s not pending					
bit 4	EEIF: EEPRO	OM Write Comp	pletion Interru	pt Flag bit			
	1 = Interrupt i	s pending					
		s not pending					
DIT 3	BCL1IF: MS	SP Bus Collisio	n Interrupt Fla	ag bit			
	0 = Interrupt i	s not pending					
bit 2	C4IF: Compa	rator C4 Interru	upt Flag bit				
	1 = Interrupt i	s pending	1 0				
	0 = Interrupt i	s not pending					
bit 1	C3IF: Compa	rator C3 Interru	upt Flag bit				
	1 = Interrupt i	s pending					
		s not pending					
bit 0	CCP2IF: CCH	P2 Interrupt Fla	g bit				
	\perp = Interrupt i 0 = Interrupt i	is penaing					
		e net peneng					
Note:	Interrupt flag bits a	re set when an	interrupt				
	its corresponding	egargiess of the enable bit or the	e state of ne Global				
	Enable bit, GIE, c	of the INTCON	register.				
	User software	should ensu	ure the				
	appropriate interr	upt flag bits a	are clear				
	prior to enabling a	n interrupt.					

REGISTER 8-7: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	ANSA7	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	132
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	133
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	131
ODCONA	ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0	133
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		198
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	131
SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	133
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	131
WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	132

TABLE 13-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

TABLE 13-4: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
0015104	13:8	—	—	FCMEN	IESO	CLKOUTEN	BOREN<1:0>		CPD	54
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE	WDTE<1:0>		<1:0> FOSC<2:0>		54

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

PIC16(L)F1784/6/7

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	138
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2	INLVLB1	INLVLB0	139
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	137
ODCONB	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	139
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	137
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	139
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	137
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	138

TABLE 13-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

20.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Independent comparator control
- Programmable input selection
- · Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- · Programmable Speed/Power optimization
- · PWM shutdown
- Programmable and fixed voltage reference

20.1 Comparator Overview

A single comparator is shown in Figure 20-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

The comparators available for this device are located in Table 20-1.

TABLE 20-1: COMPARATOR AVAILABILITY PER DEVICE

Device	C1	C2	C3	C4
PIC16(L)F1784/6/7	•	•	٠	٠

SINGLE COMPARATOR

20.7 Comparator Negative Input Selection

The CxNCH<2:0> bits of the CMxCON0 register direct an analog input pin or analog ground to the inverting input of the comparator:

- CxIN- pin
- Analog Ground

Some inverting input selections share a pin with the operational amplifier output function. Enabling both functions at the same time will direct the operational amplifier output to the comparator inverting input.

Note: To use CxINy+ and CxINy- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

20.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section 30.0** "**Electrical Specifications**" for more details.

20.9 Zero Latency Filter

In high-speed operation, and under proper circuit conditions, it is possible for the comparator output to oscillate. This oscillation can have adverse effects on the hardware and software relying on this signal. Therefore, a digital filter has been added to the comparator output to suppress the comparator output oscillation. Once the comparator output changes, the output is prevented from reversing the change for a nominal time of 20 ns. This allows the comparator output to stabilize without affecting other dependent devices. Refer to Figure 20-3.

FIGURE 20-3: COMPARATOR ZERO LATENCY FILTER OPERATION

REGISTER 24-18: PSMCxTMRL: PSMC TIME BASE COUNTER LOW REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PSMCxT	MRL<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **PSMCxTMRL<7:0>:** 16-bit PSMCx Time Base Counter Least Significant bits = PSMCxTMR<7:0>

REGISTER 24-19: PSMCxTMRH: PSMC TIME BASE COUNTER HIGH REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1
			PSMCxT	MRH<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets

bit 7-0 PSMCxTMRH<7:0>: 16-bit PSMCx Time Base Counter Most Significant bits

'0' = Bit is cleared

= PSMCxTMR<15:8>

'1' = Bit is set

REGISTER 24-20: PSMCxPHL: PSMC PHASE COUNT LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PSMCx	PHL<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0

PSMCxPHL<7:0>: 16-bit Phase Count Least Significant bits = PSMCxPH<7:0>

REGISTER 24-21: PSMCxPHH: PSMC PHASE COUNT HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PSMCxP	PHH<7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSMCxPHH<7:0>:** 16-bit Phase Count Most Significant bits

= PSMCxPH<15:8>

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1
_	—	PxSTRF ⁽²⁾	PxSTRE ⁽²⁾	PxSTRD ⁽²⁾	PxSTRC ⁽²⁾	PxSTRB	PxSTRA
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BOF	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	tad: Pead as '	،				
bit 5		M Steering PSI		Enable hit(2)			
bit 5		:0> = 0000 (Si	nale-nhase Pl				
	1 = Single P	WM output is a	active on pin P	/ <u>/////.</u> /SMCxF			
	0 = Single P	WM output is r	not active on p	in PSMCxF. P	WM drive is in in	active state	
	If PxMODE<3	:0> = 0001 (C	omplementary	Single-phase	<u>PWM):</u>		
	1 = Complete0 = Complete	mentary PWM	output is active	e on pin PSMC ctive on nin PS	CXF SMCxOUT5 PW	/M drive is in i	nactive state
	IF PxMODE<	3.0 > = 1100 (3)	-nhase Steerij	ייייע און			
	1 = PSMCx[D and PSMCxE	are high. PS	MCxA, PMSC	xB, PSMCxC and	d PMSCxF are	e low.
	0 = 3-phase	output combin	ation is not ac	tive			
bit 4	PxSTRE: PW	M Steering PS	MCxE Output	Enable bit ⁽²⁾			
	If PxMODE<3	: <u>0> = 000x (si</u>	<u>ngle-phase PV</u>	VM or Comple	mentary PWM):		
	1 = Single P 0 = Single P	WM output is a	not active on pin P	INCXE	WM drive is in ir	nactive state	
	IF PxMODE<	3:0> = 1100 (3	-phase Steerii	na): ⁽¹⁾			
	1 = PSMCxE	3 and PSMCxE	are high. PSI	MCxA, PMSC>	C, PSMCxD and	d PMSCxF are	e low.
	0 = 3-phase	output combin	ation is not ac	tive			
bit 3	PxSTRD: PW	M Steering PS	MCxD Output	Enable bit ⁽²⁾			
	$\frac{\text{If PXMODE}<3}{1 = \text{Single P}}$: <u>:0> = 0000 (Si</u> WM output is a	<u>ngle-phase Pl</u> active on pin P	<u>//M):</u> /SMCxD			
	0 = Single P	WM output is r	not active on pin r	in PSMCxD. F	PWM drive is in ir	nactive state	
	If PxMODE<3	:0> = 0001 (Ce	omplementary	single-phase	<u>PWM):</u>		
	1 = Compler	mentary PWM	output is active	e on pin PSMC			
			putput is not a	ctive on pin Pa	SINCXD. PVVIVI di	rive is in inacti	ve state
	1 = PSMCxE	$3.0^{2} = 1100$ (3) B and PSMCx(are high. PS	<u>ig).</u> MCxA. PMSC:	xD. PSMCxE and	d PMSCxF are	e low.
	0 = 3-phase	output combin	ation is not ac	tive	,		
bit 2	PxSTRC: PW	M Steering PS	MCxC Output	Enable bit ⁽²⁾			
	If PxMODE<3	:0> = 000x (Si	ngle-phase P\	NM or Comple	ementary PWM):		
	1 = Single P	WM output is a	active on pin P		N/M drivo is in ir	pactivo stato	
		$\frac{1}{3.0} = 1100$	nhase Steerin	יוו רטויוטגט. ד _{ממ} ן.(1)		Idelive Slale	
	1 = PSMCx(C and PSMCxF	are high. PSI	ري. MCxA, PMSC>	B, PSMCxD and	d PMSCxE are	e low.
	0 = 3-phase	output combin	ation is not ac	tive			

REGISTER 24-31: PSMCxSTR0: PSMC STEERING CONTROL REGISTER 0

25.3 PWM Overview

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 25-3 shows a typical waveform of the PWM signal.

25.3.1 STANDARD PWM OPERATION

The standard PWM function described in this section is available and identical for all CCP modules.

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the CCPx pin with up to 10 bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- · PR2 registers
- T2CON registers
- · CCPRxL registers
- · CCPxCON registers

Figure 25-4 shows a simplified block diagram of PWM operation.

- Note 1: The corresponding TRIS bit must be cleared to enable the PWM output on the CCPx pin.
 - 2: Clearing the CCPxCON register will relinquish control of the CCPx pin.

FIGURE 25-3: CCP PWM OUTPUT SIGNAL

SIMPLIFIED PWM BLOCK DIAGRAM

FIGURE 26-35: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

26.8 Register Definitions: MSSP Control

R/M-0/0	R/W/-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
SMP			P	S		114	RE
pit 7	ORL	DIA	I	5	10,44	UA	bit
.egend:							
R = Readable	bit	W = Writable	bit	U = Unimpleme	ented bit, read as	'0'	
u = Bit is uncha	anged	x = Bit is unkr	own	-n/n = Value at	POR and BOR/Va	alue at all other F	Resets
1' = Bit is set		'0' = Bit is clea	ared				
oit 7	SMP: SPI Data	a Input Sample I	pit				
	<u>SPI Master mo</u> 1 = Input data 0 = Input data	ode: sampled at end sampled at mid	of data output ti	me t time			
	SMP must be o	<u>le:</u> cleared when SI	PI is used in Slav	ve mode			
	In I ² C Master of 1 = Slew rate 0 = Slew rate	or Slave mode: control disabled control enabled	for standard spe for high speed r	eed mode (100 k node (400 kHz)	Hz and 1 MHz)		
oit 6	CKE: SPI Cloc	ck Edge Select b	oit (SPI mode on	(v)			
	<u>In SPI Master</u> 1 = Transmit o	or Slave mode: ccurs on transiti	on from active to	Idle clock state			
	In I ² C™ mode 1 = Enable inp 0 = Disable SM	<u>only:</u> out logic so that t /Bus specific in	hresholds are co	ompliant with SM	Bus specification		
bit 5	D/A: Data/Add 1 = Indicates th 0 = Indicates the states the stat	lress bit (I ² C mo hat the last byte hat the last byte	de only) received or tran received or tran	smitted was data smitted was addr	ress		
oit 4	P: Stop bit						
	(I ² C mode only 1 = Indicates the 0 = Stop bit was	y. This bit is clea hat a Stop bit ha as not detected l	red when the Ms is been detected ast	SSP module is di last (this bit is '0	sabled, SSPEN is ' on Reset)	cleared.)	
oit 3	S: Start bit						
	(I ² C mode only 1 = Indicates the 0 = Start bit was	y. This bit is clea hat a Start bit ha as not detected	red when the Ms is been detected ast	SSP module is di last (this bit is '0	sabled, SSPEN is ' on Reset)	cleared.)	
pit 2	R/W: Read/Wr	ite bit informatio	n (I ² C mode onl	V)			
	This bit holds the to the next Sta	he R/W bit inforr rt bit, Stop bit, o	nation following t r not ACK bit.	he last address n	natch. This bit is o	nly valid from the	e address mate
	<u>In I²C Slave m</u> 1 = Read 0 = Write	iode:					
	In I ² C Master r	mode:					
	1 = Transmit	is in progress	-				
	0 = Transmit OR-ing th	is not in progres	s RSEN, PEN, R	CEN or ACKEN v	will indicate if the I	MSSP is in Idle n	node.
oit 1	UA: Update Ac 1 = Indicates th	ddress bit (10-bi hat the user nee	t I ² C mode only) ds to update the	address in the S	SPADD register		

REGISTER 26-2: SSPCON1: SSP CONTROL REGISTER 1

R/C/HS-0	/0 R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPOV	SSPEN	CKP		SSPM<	3:0>	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplemer	ited bit, read as '0'		
u = Bit is unc	hanged	x = Bit is unknowr	ı	-n/n = Value at F	OR and BOR/Value at	all other Resets	
'1' = Bit is set	:	'0' = Bit is cleared		HS = Bit is set by	/ hardware	C = User cleared	
bit 7	WCOL: Write Co <u>Master mode:</u> 1 = A write to th 0 = No collision <u>Slave mode:</u> 1 = The SSPBL 0 = No collision	Ilision Detect bit ne SSPBUF register) JF register is written v	r was attempted vhile it is still trans	while the I ² C condimination of the previous v	ions were not valid for word (must be cleared ir	a transmission to n software)	be started
bit 6	SSPOV: Receive In <u>SPI mode:</u> 1 = A new byte Overflow ca setting over SSPBUF re 0 = No overflow In I ² C mode: 1 = A byte is re (must be cl 0 = No overflow	E Overflow Indicator is received while the in only occur in Slave flow. In Master mode gister (must be clear v eccived while the St eared in software). v	bit ⁽¹⁾ SSPBUF registe e mode. In Slave , the overflow bit i ed in software). SPBUF register	r is still holding the p mode, the user mus s not set since each is still holding the p	revious data. In case of t read the SSPBUF, even new reception (and tran previous byte. SSPOV	overflow, the data on if only transmitti Ismission) is initiate is a "don't care"	a in SSPSR is lost. ng data, to avoid ed by writing to the in Transmit mode
bit 5	SSPEN: Synchro In both modes, w In <u>SPI mode:</u> 1 = Enables ser 0 = Disables se <u>In I²C mode:</u> 1 = Enables the 0 = Disables se	nous Serial Port En rhen enabled, these rial port and configure rial port and configure serial port and configure rial port and configure	able bit pins must be pro- es SCK, SDO, SI ures these pins a gures the SDA ar ures these pins a	operly configured a DI and \overline{SS} as the sound is I/O port pins and SCL pins as the sound sound sound the sound sound the sound sound the sound soun	s input or output irce of the serial port pi purce of the serial port p	ns ⁽²⁾ Dins ⁽³⁾	
bit 4	CKP: Clock Pola In <u>SPI mode</u> : 1 = Idle state for0 = Idle state forIn I2C Slave modSCL release cont1 = Enable clock0 = Holds clock ldIn I2C Master moUnused in this m	rity Select bit clock is a high level clock is a low level <u>e:</u> trol bw (clock stretch). (I <u>de:</u> ode	Used to ensure o	lata setup time.)			
bit 3-0	SSPM<3:0>: Syr 0000 = SPI Mast 0001 = SPI Mast 0010 = SPI Mast 0010 = SPI Mast 0100 = SPI Slave 0101 = SPI Slave 0110 = l^2C Slave 0111 = l^2C Slave 1000 = l^2C Mast 1001 = Reservec 1010 = Reservec 1101 = Reservec 1101 = Reservec 1101 = Reservec 1101 = l^2C Slave 1111 = l^2C Slave 1111 = l^2C Slave	achronous Serial Po ter mode, clock = Fo ter mode, clock = Fo ter mode, clock = Fo ter mode, clock = Co ter mode, clock = Co e mode, clock = SCo e mode, 7-bit addres e mode, 10-bit addres ter mode, clock = Fo der mode, clock = Fo der mode, clock = Fo der mode, clock = Fo der mode, clock = Co der mode,	rt Mode Select b DSC/4 DSC/16 DSC/64 MR2 output/2 K pin, <u>SS</u> pin con SS DSC / (4 * (SSPAL DSC/(4 * (SSPAL DSC/(4 * (SSPAL er mode (Slave i SS with Start and SS with Start and	its htrol enabled htrol disabled, SS c DD+1)) ⁽⁴⁾ D+1)) ⁽⁵⁾ dle) Stop bit interrupts e d Stop bit interrupts e	an be used as I/O pin enabled enabled		
Note 1: 2: 3: 4: 5:	In Master mode, the ow When enabled, these p When enabled, the SDA SSPADD values of 0, 1 SSPADD value of '0' is	erflow bit is not set s ins must be properly A and SCL pins mus or 2 are not suppor not supported. Use	since each new r y configured as in st be configured a ted for I ² C mode SSPM = 0000 in	reception (and trans nput or output. as inputs. nstead.	mission) is initiated by	[,] writing to the SS	PBUF register.

27.5.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

27.5.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see **Section 27.5.1.3 "Synchronous Master Transmission")**, except in the case of the Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- 5. If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 27.5.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.

TABLE 27-9: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON1	C2OUTSEL	CC1PSEL	SDOSEL	SCKSEL	SDISEL	TXSEL	RXSEL	CCP2SEL	127
BAUDCON	ABDOVF	RCIDL	-	SCKP	BRG16	-	WUE	ABDEN	347
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	346
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142
TXREG			EUS	ART Transm	it Data Regis	ster			337*
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	345

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave transmission.

Page provides register information.

30.4 Thermal Considerations

Param No.	Sym.	Characteristic	Тур.	Units	Conditions
TH01	θJA	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package
			80	°C/W	28-pin SOIC package
			90	°C/W	28-pin SSOP package
			27.5	°C/W	28-pin QFN 6x6mm package
			47.2	°C/W	40-pin DIP package
			41	°C/W	40-pin UQFN 5x5
			46	°C/W	44-pin TQFP package
			24.4	°C/W	44-pin QFN 8x8mm package
TH02	θJC	Thermal Resistance Junction to Case	31.4	°C/W	28-pin SPDIP package
			24	°C/W	28-pin SOIC package
			24	°C/W	28-pin SSOP package
			24	°C/W	28-pin QFN 6x6mm package
			24.7	°C/W	40-pin DIP package
			5.5	°C/W	40-pin UQFN 5x5
			14.5	°C/W	44-pin TQFP package
			20	°C/W	44-pin QFN 8x8mm package
TH03	Тјмах	Maximum Junction Temperature	150	°C	
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾
TH06	Pı/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$
TH07	Pder	Derated Power	_	W	Pder = PDmax (Τj - Τa)/θja ⁽²⁾

Standard Operating Conditions (unless otherwise stated)

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature

3: T_J = Junction Temperature

PIC16(L)F1784/6/7

FIGURE 30-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

|--|

Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic			Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High Pulse Width		No Prescaler	0.5 Tcy + 20	—	_	ns	
				With Prescaler	10	_		ns	
41*	T⊤0L	T0CKI Low Pulse Width		No Prescaler	0.5 Tcy + 20	—		ns	
				With Prescaler	10	—		ns	
42*	TT0P	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	_		ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	_	_	ns	
			Synchronous, with Prescaler		15	—		ns	
			Asynchronous		30	_	_	ns	
46*	TT1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20	_	_	ns	
			Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30	_		ns	
47*	T⊤1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	_		ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	—	_	ns	
48	F⊤1	Timer1 Oscillator Input Frequency Range (oscillator enabled by setting bit T1OSCEN)			32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from External Clock Edge to Timer Increment			2 Tosc	_	7 Tosc	—	Timers in Sync mode

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.