



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 32MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, POR, PSMC, PWM, WDT                                |
| Number of I/O              | 24                                                                         |
| Program Memory Size        | 14KB (8K x 14)                                                             |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 256 x 8                                                                    |
| RAM Size                   | 1K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 5.5V                                                                |
| Data Converters            | A/D 11x12b; D/A 1x8b                                                       |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 28-SSOP (0.209", 5.30mm Width)                                             |
| Supplier Device Package    | 28-SSOP                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f1786t-i-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# PIC16(L)F1784/6/7





# 3.3.4 DEVICE MEMORY MAPS

The memory maps for Bank 0 through Bank 31 are shown in the tables in this section.

# TABLE 3-3: PIC16(L)F1784 MEMORY MAP (BANKS 0-7)

|       | BANK 0                         |      | BANK 1                         |                      | BANK 2                         |      | BANK 3                         |          | BANK 4                         |      | BANK 5                         |              | BANK 6                                  |       | BANK 7                        |
|-------|--------------------------------|------|--------------------------------|----------------------|--------------------------------|------|--------------------------------|----------|--------------------------------|------|--------------------------------|--------------|-----------------------------------------|-------|-------------------------------|
| 000h  | Core Registers<br>(Table 3-2)  | 080h | Core Registers<br>(Table 3-2)  | 100h                 | Core Registers<br>(Table 3-2)  | 180h | Core Registers<br>(Table 3-2)  | 200h     | Core Registers<br>(Table 3-2)  | 280h | Core Registers<br>(Table 3-2)  | 300h         | Core Registers<br>(Table 3-2)           | 380h  | Core Registers<br>(Table 3-2) |
| 00Bh  |                                | 08Bh |                                | 10Bh                 |                                | 18Bh |                                | 20Bh     |                                | 28Bh |                                | 30Bh         |                                         | 38Bh  |                               |
| 00Ch  | PORTA                          | 08Ch | TRISA                          | 10Ch                 | LATA                           | 18Ch | ANSELA                         | 20Ch     | WPUA                           | 28Ch | ODCONA                         | 30Ch         | SLRCONA                                 | 38Ch  | INLVLA                        |
| 00Dh  | PORTB                          | 08Dh | TRISB                          | 10Dh                 | LATB                           | 18Dh | ANSELB                         | 20Dh     | WPUB                           | 28Dh | ODCONB                         | 30Dh         | SLRCONB                                 | 38Dh  | INLVLB                        |
| 00Eh  | PORTC                          | 08Eh | TRISC                          | 10Eh                 | LATC                           | 18Eh | —                              | 20Eh     | WPUC                           | 28Eh | ODCONC                         | 30Eh         | SLRCONC                                 | 38Eh  | INLVLC                        |
| 00Fh  | PORTD                          | 08Fh | TRISD                          | 10Fh                 | LATD                           | 18Fh | ANSELD                         | 20Fh     | WPUD                           | 28Fh | ODCOND                         | 30Fh         | SLRCOND                                 | 38Fh  | INLVLD                        |
| 010h  | PORTE                          | 090h | TRISE                          | 110h                 | LATE                           | 190h | ANSELE                         | 210h     | WPUE                           | 290h | ODCONE                         | 310h         | SLRCONE                                 | 390h  | INLVLE                        |
| 011h  | PIR1                           | 091h | PIE1                           | 111h                 | CM1CON0                        | 191h | EEADRL                         | 211h     | SSP1BUF                        | 291h | CCPR1L                         | 311h         | —                                       | 391h  | IOCAP                         |
| 012h  | PIR2                           | 092h | PIE2                           | 112h                 | CM1CON1                        | 192h | EEADRH                         | 212h     | SSP1ADD                        | 292h | CCPR1H                         | 312h         | —                                       | 392h  | IOCAN                         |
| 013h  | —                              | 093h | _                              | 113h                 | CM2CON0                        | 193h | EEDATL                         | 213h     | SSP1MSK                        | 293h | CCP1CON                        | 313h         | —                                       | 393h  | IOCAF                         |
| 014h  | PIR4                           | 094h | PIE4                           | 114h                 | CM2CON1                        | 194h | EEDATH                         | 214h     | SSP1STAT                       | 294h |                                | 314h         | —                                       | 394h  | IOCBP                         |
| 015h  | TMR0                           | 095h | OPTION_REG                     | 115h                 | CMOUT                          | 195h | EECON1                         | 215h     | SSP1CON1                       | 295h |                                | 315h         | —                                       | 395h  | IOCBN                         |
| 016h  | TMR1L                          | 096h | PCON                           | 116h                 | BORCON                         | 196h | EECON2                         | 216h     | SSP1CON2                       | 296h | _                              | 316h         | —                                       | 396h  | IOCBF                         |
| 017h  | TMR1H                          | 097h | WDTCON                         | 117h                 | FVRCON                         | 197h | VREGCON <sup>(1)</sup>         | 217h     | SSP1CON3                       | 297h | —                              | 317h         | —                                       | 397h  | IOCCP                         |
| 018h  | T1CON                          | 098h | OSCTUNE                        | 118h                 | DAC1CON0                       | 198h | —                              | 218h     |                                | 298h | CCPR2L                         | 318h         | —                                       | 398h  | IOCCN                         |
| 019h  | T1GCON                         | 099h | OSCCON                         | 119h                 | DAC1CON1                       | 199h | RCREG                          | 219h     | _                              | 299h | CCPR2H                         | 319h         | —                                       | 399h  | IOCCF                         |
| 01Ah  | TMR2                           | 09Ah | OSCSTAT                        | 11Ah                 | CM4CON0                        | 19Ah | TXREG                          | 21Ah     | _                              | 29Ah | CCP2CON                        | 31Ah         | —                                       | 39Ah  | _                             |
| 01Bh  | PR2                            | 09Bh | ADRESL                         | 11Bh                 | CM4CON1                        | 19Bh | SPBRGL                         | 21Bh     |                                | 29Bh |                                | 31Bh         | —                                       | 39Bh  | —                             |
| 01Ch  | T2CON                          | 09Ch | ADRESH                         | 11Ch                 | APFCON2                        | 19Ch | SPBRGH                         | 21Ch     |                                | 29Ch | _                              | 31Ch         | —                                       | 39Ch  | —                             |
| 01Dh  | —                              | 09Dh | ADCON0                         | 11Dh                 | APFCON1                        | 19Dh | RCSTA                          | 21Dh     | —                              | 29Dh | —                              | 31Dh         | —                                       | 39Dh  | IOCEP                         |
| 01Eh  | —                              | 09Eh | ADCON1                         | 11Eh                 | CM3CON0                        | 19Eh | TXSTA                          | 21Eh     |                                | 29Eh |                                | 31Eh         | —                                       | 39Eh  | IOCEN                         |
| 01Fh  | —                              | 09Fh | ADCON2                         | 11Fh                 | CM3CON1                        | 19Fh | BAUDCON                        | 21Fh     |                                | 29Fh | —                              | 31Fh         | —                                       | 39Fh  | IOCEF                         |
| 020h  | General<br>Purpose<br>Register | 0A0h | General<br>Purpose<br>Register | 120h<br>13Fh<br>140h | General<br>Purpose<br>Register | 1A0h | General<br>Purpose<br>Register | 220h     | General<br>Purpose<br>Register | 2A0h | General<br>Purpose<br>Register | 320h<br>32Fh | General Purpose<br>Register<br>16 Bytes | 3A0h  | Unimplemented<br>Read as '0'  |
| 06Fh  | 80 Bytes                       | 0EFh | 80 Bytes                       | 16Fh                 | 80 Bytes                       | 1EFh | 80 Bytes                       | 26Fh     | 80 Bytes                       | 2EFh | 80 Bytes                       | 36Fh         | Unimplemented<br>Read as '0'            | 3EFh  |                               |
| 070h  | Common RAM<br>70h – 7Fh        | 0F0h | Accesses<br>70h – 7Fh          | 170h                 | Accesses<br>70h – 7Fh          | 1F0h | Accesses<br>70h – 7Fh          | 270h     | Accesses<br>70h – 7Fh          | 2F0h | Accesses<br>70h – 7Fh          | 370h         | Accesses<br>70h – 7Fh                   | 3F0h  | Accesses<br>70h – 7Fh         |
| 0/111 |                                |      |                                | 17111                |                                |      |                                | <u> </u> |                                |      |                                | 0/111        |                                         | 01111 |                               |

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: PIC16F1784 only.

# PIC16(L)F1784/6/7

| Addr               | Name                 | Bit 7          | Bit 6                                                                       | Bit 5             | Bit 4                                   | Bit 3                   | Bit 2                 | Bit 1                 | Bit 0                 | Value on<br>POR, BOR | Value on<br>all other<br>Resets |
|--------------------|----------------------|----------------|-----------------------------------------------------------------------------|-------------------|-----------------------------------------|-------------------------|-----------------------|-----------------------|-----------------------|----------------------|---------------------------------|
| Ban                | k 0                  |                |                                                                             |                   |                                         |                         |                       |                       |                       |                      |                                 |
| 00Ch               | PORTA                | PORTA Data L   | atch when wr                                                                | itten: PORTA p    | ins when read                           |                         |                       |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 00Dh               | PORTB                | PORTB Data L   | atch when w                                                                 | ritten: PORTB p   | oins when read                          |                         |                       |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 00Eh               | PORTC                | PORTC Data I   | _atch when w                                                                | ritten: PORTC     | oins when read                          |                         |                       |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 00Fh               | PORTD <sup>(3)</sup> | PORTD Data I   | _atch when w                                                                | ritten: PORTD     | oins when read                          |                         |                       |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 010h               | PORTE                | —              | _                                                                           | —                 | _                                       | RE3                     | RE2 <sup>(3)</sup>    | RE1 <sup>(3)</sup>    | RE0 <sup>(3)</sup>    | xxxx                 | uuuu                            |
| 011h               | PIR1                 | TMR1GIF        | ADIF                                                                        | RCIF              | RCIF TXIF SSP1IF CCP1IF TMR2IF TMR1IF 0 |                         |                       |                       |                       | 0000 0000            | 0000 0000                       |
| 012h               | PIR2                 | OSFIF          | C2IF                                                                        | C1IF              | EEIF                                    | BCL1IF                  | C4IF                  | C3IF                  | CCP2IF                | 0000 0-00            | 0000 0-00                       |
| 13h                | PIR3                 | —              | —                                                                           | —                 | CCP3IF                                  | —                       | —                     | _                     | —                     | 0                    | 0000 0000                       |
| 014h               | PIR4                 | —              | PSMC3TIF                                                                    | PSMC2TIF          | PSMC1TIF                                | —                       | PSMC3SIF              | PSMC2SIF              | PSMC1SIF              | -000 -000            | -000 -000                       |
| 015h               | TMR0                 | Timer0 Module  | e Register                                                                  |                   |                                         |                         |                       |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 016h               | TMR1L                | Holding Regist | ter for the Lea                                                             | ist Significant B | yte of the 16-bit                       | TMR1 Regist             | er                    |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 017h               | TMR1H                | Holding Regist | Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  |                   |                                         |                         |                       | xxxx xxxx             | uuuu uuuu             |                      |                                 |
| 018h               | T1CON                | TMR1CS1        | TMR1CS0                                                                     | T1CKPS1           | T1CKPS0                                 | T1OSCEN                 | T1SYNC                | _                     | TMR10N                | 0000 00-0            | uuuu uu-u                       |
| 019h               | T1GCON               | TMR1GE         | T1GPOL                                                                      | T1GTM             | T1GSPM                                  | T <u>1GGO</u> /<br>DONE | T1GVAL                | T1GS                  | S<1:0>                | 0000 0x00            | uuuu uxuu                       |
| 016h               | TMR2                 | Holding Regist | Holding Register for the Least Significant Byte of the 16-bit TMR2 Register |                   |                                         |                         |                       |                       |                       |                      | uuuu uuuu                       |
| 017h               | PR2                  | Holding Regist | ter for the Mo                                                              | st Significant By | te of the 16-bit                        | TMR2 Registe            | er                    |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 018h               | T2CON                | —              |                                                                             | T2OUT             | PS<3:0>                                 |                         | TMR2ON                | T2CKP                 | S<1:0>                | -000 0000            | -000 0000                       |
| 01Dh<br>to<br>01Fh | _                    | Unimplemente   | Unimplemented                                                               |                   |                                         |                         |                       |                       |                       | _                    | _                               |
| Ban                | k 1                  |                |                                                                             |                   |                                         |                         |                       |                       |                       |                      |                                 |
| 08Ch               | TRISA                | PORTA Data D   | Direction Regi                                                              | ster              |                                         |                         |                       |                       |                       | 1111 1111            | 1111 1111                       |
| 08Dh               | TRISB                | PORTB Data     | Direction Regi                                                              | ster              |                                         |                         |                       |                       |                       | 1111 1111            | 1111 1111                       |
| 08Eh               | TRISC                | PORTC Data I   | Direction Regi                                                              | ister             |                                         |                         |                       |                       |                       | 1111 1111            | 1111 1111                       |
| 08Fh               | TRISD <sup>(3)</sup> | PORTD Data I   | Direction Regi                                                              | ister             |                                         |                         |                       |                       |                       | 1111 1111            | 1111 1111                       |
| 090h               | TRISE                | —              | —                                                                           | _                 | —                                       | _(2)                    | TRISE2 <sup>(3)</sup> | TRISE1 <sup>(3)</sup> | TRISE0 <sup>(3)</sup> | 1111                 | 1111                            |
| 091h               | PIE1                 | TMR1GIE        | ADIE                                                                        | RCIE              | TXIE                                    | SSP1IE                  | CCP1IE                | TMR2IE                | TMR1IE                | 0000 0000            | 0000 0000                       |
| 092h               | PIE2                 | OSFIE          | C2IE                                                                        | C1IE              | EEIE                                    | BCL1IE                  | C4IE                  | C3IE                  | CCP2IE                | 0000 0-00            | 0000 0-00                       |
| 093h               | PIE3                 | —              | —                                                                           | _                 | CCP3IE                                  | _                       | —                     | _                     | _                     | 0                    | 0000 0000                       |
| 094h               | PIE4                 | —              | PSMC3TIE                                                                    | PSMC2TIE          | PSMC1TIE                                | _                       | PSMC3SIE              | PSMC2SIE              | PSMC1SIE              | -000 -000            | -000 -000                       |
| 095h               | OPTION_REG           | WPUEN          | INTEDG                                                                      | TMR0CS            | TMR0SE                                  | PSA                     |                       | PS<2:0>               |                       | 1111 1111            | 1111 1111                       |
| 096h               | PCON                 | STKOVF         | STKUNF                                                                      | —                 | RWDT                                    | RMCLR                   | RI                    | POR                   | BOR                   | 00-1 11qq            | qq-q qquu                       |
| 097h               | WDTCON               | —              | —                                                                           |                   | ١                                       | WDTPS<4:0>              |                       |                       | SWDTEN                | 01 0110              | 01 0110                         |
| 098h               | OSCTUNE              | —              | —                                                                           |                   |                                         | TUN<                    | 5:0>                  |                       |                       | 00 0000              | 00 0000                         |
| 099h               | OSCCON               | SPLLEN         |                                                                             | IRCF              | <3:0>                                   |                         | —                     | SCS                   | <1:0>                 | 0011 1-00            | 0011 1-00                       |
| 09Ah               | OSCSTAT              | T10SCR         | PLLR                                                                        | OSTS              | HFIOFR                                  | HFIOFL                  | MFIOFR                | LFIOFR                | HFIOFS                | 00q000               | dddd0d                          |
| 09Bh               | ADRESL               | A/D Result Re  | gister Low                                                                  |                   |                                         |                         |                       |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 09Ch               | ADRESH               | A/D Result Re  | gister High                                                                 |                   |                                         |                         |                       |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 09Dh               | ADCON0               | ADRMD          |                                                                             |                   | CHS<4:0>                                |                         |                       | GO/DONE               | ADON                  | 0000 0000            | 0000 0000                       |
| 09Eh               | ADCON1               | ADFM           |                                                                             | ADCS<2:0>         |                                         | _                       | ADNREF                | ADPRE                 | F<1:0>                | 0000 -000            | 0000 -000                       |
| 09Fh               | ADCON2               |                | TRIGS                                                                       | EL<3:0>           |                                         |                         | CHSN                  | <3:0>                 |                       | 000000               | 000000                          |

#### **TABLE 3-12**: SPECIAL FUNCTION REGISTER SUMMARY

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

These registers can be addressed from any bank. Unimplemented, read as '1'. PIC16(L)F1784/7 only. Note 1:

2:

3:

PIC16F1784/6/7 only. 4:

### 3.6.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.

FIGURE 3-11: LINEAR DATA MEMORY MAP



#### 3.6.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire program Flash memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower 8 bits of each memory location is accessible via INDF. Writing to the program Flash memory cannot be accomplished via the FSR/INDF interface. All instructions that access program Flash memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 3-12: PROGRAM FLASH MEMORY MAP



DS40001637C-page 52

# PIC16(L)F1784/6/7

| REGISTER         | 4-2. CON                                                   | FIGZ. CONFI                                                      | JURATION                                                   |                                           |                                        |                   |       |  |  |  |
|------------------|------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|----------------------------------------|-------------------|-------|--|--|--|
|                  |                                                            | R/P-1                                                            | R/P-1                                                      | R/P-1                                     | R/P-1                                  | R/P-1             | R/P-1 |  |  |  |
|                  |                                                            | LVP                                                              | DEBUG                                                      | LPBOR                                     | BORV                                   | STVREN            | PLLEN |  |  |  |
|                  |                                                            | bit 13                                                           |                                                            |                                           |                                        |                   | ł     |  |  |  |
| r                |                                                            |                                                                  |                                                            |                                           |                                        |                   |       |  |  |  |
| U-1              | U-1                                                        | R/P-1                                                            | U-1                                                        | U-1                                       | U-1                                    | R/P-1             | R/P-1 |  |  |  |
| —                | —                                                          | VCAPEN                                                           | —                                                          | —                                         | —                                      | — WRT<1:0>        |       |  |  |  |
| bit 7            | -                                                          |                                                                  |                                                            |                                           |                                        |                   | k     |  |  |  |
|                  |                                                            |                                                                  |                                                            |                                           |                                        |                   |       |  |  |  |
| Legend:          |                                                            |                                                                  |                                                            |                                           |                                        |                   |       |  |  |  |
| R = Readable     | e bit                                                      | P = Programma                                                    | able bit                                                   | U = Unimplemented bit, read as '1'        |                                        |                   |       |  |  |  |
| '0' = Bit is cle | ared                                                       | '1' = Bit is set                                                 |                                                            | -n = Value when blank or after Bulk Erase |                                        |                   |       |  |  |  |
| bit 13           | LVP: Low-Vol<br>1 = Low-volta<br>0 = High-volta            | tage Programming<br>ge prog <u>ramm</u> ing e<br>ige on MCLR mus | g Enable bit <sup>(1)</sup><br>nabled<br>t be used for pro | gramming                                  |                                        |                   |       |  |  |  |
| bit 12           | <b>DEBUG:</b> In-C<br>1 = In-Circuit I<br>0 = In-Circuit I | ircuit Debugger M<br>Debugger disabled<br>Debugger enabled       | ode bit <sup>(3)</sup><br>d, ICSPCLK and<br>I, ICSPCLK and | ICSPDAT are ge<br>ICSPDAT are de          | eneral purpose I/<br>dicated to the de | O pins<br>ebugger |       |  |  |  |
| bit 11           |                                                            | Power BOR Enab                                                   | la hit                                                     |                                           |                                        |                   |       |  |  |  |

#### **REGISTER 4-2:** CONFIG2: CONFIGURATION WORD 2

| Legend:                   |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R = Readable              | e bit                                                                                                                                                | P = Programmable bit                                                                                                                                                                                                                                                                                                                                                   | U = Unimplemented bit, read as '1'                                                                                                                                                                                                                                                              |
| '0' = Bit is cle          | ared                                                                                                                                                 | '1' = Bit is set                                                                                                                                                                                                                                                                                                                                                       | -n = Value when blank or after Bulk Erase                                                                                                                                                                                                                                                       |
|                           |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |
| bit 13                    | LVP: Low-Volt<br>1 = Low-voltag<br>0 = High-voltag                                                                                                   | age Programming Enable bit <sup>(1)</sup><br>le prog <u>ramm</u> ing enabled<br>ge on MCLR must be used for pr                                                                                                                                                                                                                                                         | ogramming                                                                                                                                                                                                                                                                                       |
| bit 12                    | <b>DEBUG:</b> In-Ci<br>1 = In-Circuit I<br>0 = In-Circuit I                                                                                          | rcuit Debugger Mode bit <sup>(3)</sup><br>Debugger disabled, ICSPCLK and<br>Debugger enabled, ICSPCLK and                                                                                                                                                                                                                                                              | d ICSPDAT are general purpose I/O pins<br>I ICSPDAT are dedicated to the debugger                                                                                                                                                                                                               |
| bit 11                    | <b>LPBOR:</b> Low-<br>1 = Low-Powe<br>0 = Low-Powe                                                                                                   | Power BOR Enable bit<br>r Brown-out Reset is disabled<br>r Brown-out Reset is enabled                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                 |
| bit 10                    | <b>BORV:</b> Brown-<br>1 = Brown-out<br>0 = Brown-out                                                                                                | -out Reset Voltage Selection bit <sup>(4</sup><br>Reset voltage (VBOR), low trip po<br>Reset voltage (VBOR), high trip p                                                                                                                                                                                                                                               | )<br>pint selected.<br>point selected.                                                                                                                                                                                                                                                          |
| bit 9                     | STVREN: Stac<br>1 = Stack Ove<br>0 = Stack Ove                                                                                                       | ck Overflow/Underflow Reset Ena<br>rflow or Underflow will cause a R<br>rflow or Underflow will not cause                                                                                                                                                                                                                                                              | able bit<br>eset<br>a Reset                                                                                                                                                                                                                                                                     |
| bit 8                     | <b>PLLEN:</b> PLL E<br>1 = 4xPLL ena<br>0 = 4xPLL disa                                                                                               | Enable bit<br>Ibled<br>abled                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                 |
| bit 7-6                   | Unimplement                                                                                                                                          | ed: Read as '1'                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |
| bit 5                     | VCAPEN: Volt<br>1 = VCAP funct<br>0 = VCAP funct                                                                                                     | age Regulator Capacitor Enable<br>tionality is disabled on RA6<br>tionality is enabled on RA6                                                                                                                                                                                                                                                                          | bit <sup>(2)</sup>                                                                                                                                                                                                                                                                              |
| bit 4-2                   | Unimplement                                                                                                                                          | ed: Read as '1'                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |
| bit 1-0                   | WRT<1:0>: FI<br><u>4 kW Flash me</u><br>11 = Wr<br>10 = 00<br>01 = 00<br>00 = 00<br><u>8 kW Flash me</u><br>11 = Wr<br>10 = 00<br>01 = 00<br>00 = 00 | ash Memory Self-Write Protectio<br>emory (PIC16(L)F1784 only):<br>rite protection off<br>0h to 1FFh write-protected, 200h<br>0h to 7FFh write-protected, 800h<br>0h to FFFh write-protected, no ar<br>emory (PIC16(L)F1786/7 only):<br>rite protection off<br>00h to 01FFh write-protected, 02<br>00h to 0FFFh write-protected, 10<br>00h to 1FFFh write-protected, no | n bits<br>to FFFh may be modified by EECON control<br>to FFFh may be modified by EECON control<br>ddresses may be modified by EECON control<br>200h to 1FFFh may be modified by EECON control<br>000h to 1FFFh may be modified by EECON control<br>o addresses may be modified by EECON control |
| Note 1: 1<br>2: N<br>3: 1 | The LVP bit cannot<br>Not implemented of<br>The DEBUG bit in<br>and programmers.                                                                     | t be programmed to '0' when Pro<br>in "LF" devices.<br>Configuration Words is managed<br>For normal device operation, this                                                                                                                                                                                                                                             | gramming mode is entered via LVP.<br>automatically by device development tools including debuggers<br>s bit should be maintained as a '1'.                                                                                                                                                      |

4: See VBOR parameter for specific trip point voltages.

bit 8

bit 0



5: INTF is enabled to be set any time during the Q4-Q1 cycles.

### 13.6 Register Definitions: PORTB

#### REGISTER 13-11: PORTB: PORTB REGISTER

| R/W-x/u                                 | R/W-x/u | R/W-x/u           | R/W-x/u | R/W-x/u                                               | R/W-x/u | R/W-x/u | R/W-x/u |  |  |  |
|-----------------------------------------|---------|-------------------|---------|-------------------------------------------------------|---------|---------|---------|--|--|--|
| RB7                                     | RB6     | RB5               | RB4     | RB3                                                   | RB2     | RB1     | RB0     |  |  |  |
| bit 7                                   |         |                   |         |                                                       |         |         | bit 0   |  |  |  |
|                                         |         |                   |         |                                                       |         |         |         |  |  |  |
| Legend:                                 |         |                   |         |                                                       |         |         |         |  |  |  |
| R = Readable b                          | bit     | W = Writable I    | bit     | U = Unimplemented bit, read as '0'                    |         |         |         |  |  |  |
| u = Bit is unchanged x = Bit is unknown |         |                   | iown    | -n/n = Value at POR and BOR/Value at all other Resets |         |         |         |  |  |  |
| '1' = Bit is set                        |         | '0' = Bit is clea | ared    |                                                       |         |         |         |  |  |  |

bit 7-0 **RB<7:0>**: PORTB General Purpose I/O Pin bits<sup>(1)</sup> 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

#### REGISTER 13-12: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7  | TRISB6  | TRISB5  | TRISB4  | TRISB3  | TRISB2  | TRISB1  | TRISB0  |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

#### REGISTER 13-13: LATB: PORTB DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7   | LATB6   | LATB5   | LATB4   | LATB3   | LATB2   | LATB1   | LATB0   |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 LATB<7:0>: PORTB Output Latch Value bits<sup>(1)</sup>

**Note 1:** Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

**Note 1:** Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

# 20.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Independent comparator control
- Programmable input selection
- · Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- · Programmable Speed/Power optimization
- · PWM shutdown
- Programmable and fixed voltage reference

#### 20.1 Comparator Overview

A single comparator is shown in Figure 20-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

The comparators available for this device are located in Table 20-1.

#### TABLE 20-1: COMPARATOR AVAILABILITY PER DEVICE

| Device            | C1 | C2 | C3 | C4 |
|-------------------|----|----|----|----|
| PIC16(L)F1784/6/7 | •  | •  | ٠  | ٠  |



#### SINGLE COMPARATOR



# 23.1 Timer2 Operation

The clock input to the Timer2 modules is the system instruction clock (Fosc/4).

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, T2CKPS<1:0> of the T2CON register. The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see Section 23.2 "Timer2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, whereas the PR2 register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- Watchdog Timer (WDT) Reset
- · Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction

Note: TMR2 is not cleared when T2CON is written.

# 23.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2-to-PR2 match) provides the input for the 4-bit counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF of the PIR1 register. The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE, of the PIE1 register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0>, of the T2CON register.

## 23.3 Timer2 Output

The unscaled output of TMR2 is available primarily to the CCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSP module operating in SPI mode. Additional information is provided in Section 26.0 "Master Synchronous Serial Port (MSSP) Module"

# 23.4 Timer2 Operation During Sleep

The Timer2 timers cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and PR2 registers will remain unchanged while the processor is in Sleep mode.

| U-0                                                                            | U-0        | R/W-0/0         | R/W-0/0        | U-0              | U-0              | R/W-0/0 | R/W-0/0 |
|--------------------------------------------------------------------------------|------------|-----------------|----------------|------------------|------------------|---------|---------|
| _                                                                              | —          | PxCPRE<1:0>     |                | —                |                  | PxCSR   | C<1:0>  |
| bit 7                                                                          |            |                 |                |                  |                  |         | bit 0   |
|                                                                                |            |                 |                |                  |                  |         |         |
| Legend:                                                                        |            |                 |                |                  |                  |         |         |
| R = Readable bit W = Writable bit                                              |            |                 |                | U = Unimpler     | nented bit, read | as '0'  |         |
| u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at a |            |                 |                | R/Value at all o | ther Resets      |         |         |
| '1' = Bit is set '0' = Bit is cleared                                          |            |                 |                |                  |                  |         |         |
|                                                                                |            |                 |                |                  |                  |         |         |
| bit 7-6                                                                        | Unimplemen | ted: Read as '  | 0'             |                  |                  |         |         |
| bit 5-4                                                                        | PxCPRE<1:0 | >: PSMCx Clo    | ck Prescaler S | Selection bits   |                  |         |         |
|                                                                                | 11 = PSMCx | Clock frequence | cy/8           |                  |                  |         |         |
|                                                                                | 10 = PSMCx | Clock frequence | cy/4           |                  |                  |         |         |
|                                                                                | 01 = PSMCx | Clock frequence | cy/2           |                  |                  |         |         |
|                                                                                |            | Clock Trequence | cy/1           |                  |                  |         |         |
| bit 3-2                                                                        | Unimplemen | ted: Read as '  | 0'             |                  |                  |         |         |

#### REGISTER 24-6: PSMCxCLK: PSMC CLOCK CONTROL REGISTER

bit 1-0 **PxCSRC<1:0>:** PSMCx Clock Source Selection bits

- 11 = Reserved
- 10 = PSMCxCLK pin
- 01 = 64 MHz clock in from PLL
- 00 = Fosc system clock

#### REGISTER 24-7: PSMCxOEN: PSMC OUTPUT ENABLE CONTROL REGISTER

| U-0   | U-0 | R/W-0/0              | R/W-0/0              | R/W-0/0              | R/W-0/0              | R/W-0/0 | R/W-0/0 |
|-------|-----|----------------------|----------------------|----------------------|----------------------|---------|---------|
| —     | —   | PxOEF <sup>(1)</sup> | PxOEE <sup>(1)</sup> | PxOED <sup>(1)</sup> | PxOEC <sup>(1)</sup> | PxOEB   | PxOEA   |
| bit 7 |     |                      |                      |                      |                      |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **PxOEy:** PSMCx Output y Enable bit<sup>(1)</sup>

1 = PWM output is active on PSMCx output y pin

0 = PWM output is not active, normal port functions in control of pin

**Note 1:** These bits are not implemented on PSMC2.

| U-0                                                               | R/W-0/0                                 | R/W-0/0               | R/W-0/0               | R/W-0/0               | R/W-0/0               | R/W-0/0          | R/W-0/0      |
|-------------------------------------------------------------------|-----------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|--------------|
|                                                                   | PxPOLIN                                 | PxPOLF <sup>(1)</sup> | PxPOLE <sup>(1)</sup> | PxPOLD <sup>(1)</sup> | PxPOLC <sup>(1)</sup> | PxPOLB           | PxPOLA       |
| bit 7                                                             |                                         |                       |                       |                       | ·                     |                  | bit 0        |
|                                                                   |                                         |                       |                       |                       |                       |                  |              |
| Legend:                                                           |                                         |                       |                       |                       |                       |                  |              |
| R = Readable                                                      | e bit                                   | W = Writable          | bit                   | U = Unimpler          | mented bit, read      | as '0'           |              |
| u = Bit is uncl                                                   | u = Bit is unchanged x = Bit is unknown |                       |                       | -n/n = Value a        | at POR and BOI        | R/Value at all c | other Resets |
| '1' = Bit is set                                                  | '1' = Bit is set '0' = Bit is cleared   |                       |                       |                       |                       |                  |              |
|                                                                   |                                         |                       |                       |                       |                       |                  |              |
| bit 7                                                             | Unimplemen                              | ted: Read as '        | 0'                    |                       |                       |                  |              |
| bit 6                                                             | PxPOLIN: PS                             | SMCxIN Polarit        | y bit                 |                       |                       |                  |              |
|                                                                   | 1 = PSMCx                               | IN input is activ     | e-low                 |                       |                       |                  |              |
|                                                                   | 0 = PSMCx                               | IN input is activ     | e-high                |                       |                       |                  |              |
| bit 5-0 <b>PxPOLy:</b> PSMCx Output y Polarity bit <sup>(1)</sup> |                                         |                       |                       |                       |                       |                  |              |
|                                                                   | 1 = PWMP                                | SMCx output y         | is active-low         |                       |                       |                  |              |
|                                                                   | 0 = PWMP                                | SMCx output y         | is active-high        |                       |                       |                  |              |
| Note 1: Th                                                        | ese bits are not                        | implemented of        | on PSMC2.             |                       |                       |                  |              |

#### REGISTER 24-8: PSMCxPOL: PSMC POLARITY CONTROL REGISTER

| REGISTER 24-9: | PSMCxBLNK: PSMC BLANKING CONTROL REGISTER |
|----------------|-------------------------------------------|

| U-0   | U-0 | R/W-0/0 | R/W-0/0 | U-0 | U-0 | R/W-0/0 | R/W-0/0 |
|-------|-----|---------|---------|-----|-----|---------|---------|
| —     | —   | PxFEBM1 | PxFEBM0 | _   | —   | PxREBM1 | PxREBM0 |
| bit 7 |     |         |         |     |     |         | bit 0   |

| Legend:                                                               |          |                      |                                                       |  |  |
|-----------------------------------------------------------------------|----------|----------------------|-------------------------------------------------------|--|--|
| R = Readable bit                                                      |          | W = Writable bit     | U = Unimplemented bit, read as '0'                    |  |  |
| u = Bit is unchanged                                                  |          | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |  |  |
| '1' = Bit is set                                                      |          | '0' = Bit is cleared |                                                       |  |  |
|                                                                       |          |                      |                                                       |  |  |
| bit 7-6                                                               | Unimpler | nented: Read as '0'  |                                                       |  |  |
| bit 5-4 <b>PxFEBM&lt;1:0&gt;</b> PSMC Falling Edge Blanking Mode bits |          |                      | anking Mode bits                                      |  |  |
| 11 = Reserved – do not use                                            |          |                      |                                                       |  |  |
| 10 = Reserved – do not use                                            |          |                      |                                                       |  |  |

- 01 = Immediate blanking
- 00 = No blanking
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 PxREBM<1:0> PSMC Rising Edge Blanking Mode bits
  - 11 = Reserved do not use
  - 10 = Reserved do not use
  - 01 = Immediate blanking
  - 00 = No blanking

#### REGISTER 26-5: SSPMSK: SSP MASK REGISTER

| R/W-1/1                 | R/W-1/1                                                                                                                                                                                                                                                                                                                                                                                | R/W-1/1            | R/W-1/1 | R/W-1/1                                               | R/W-1/1         | R/W-1/1 | R/W-1/1 |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|-------------------------------------------------------|-----------------|---------|---------|--|
|                         |                                                                                                                                                                                                                                                                                                                                                                                        |                    | MSK     | <7:0>                                                 |                 |         |         |  |
| bit 7                   |                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |                                                       |                 |         | bit 0   |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |                                                       |                 |         |         |  |
| Legend:<br>R = Readable | a hit                                                                                                                                                                                                                                                                                                                                                                                  | W = Writable       | hit     | II = I Inimpler                                       | nented hit read | las 'O' |         |  |
| u = Bit is unchanged    |                                                                                                                                                                                                                                                                                                                                                                                        | x = Bit is unknown |         | -n/n = Value at POR and BOR/Value at all other Resets |                 |         |         |  |
| '1' = Bit is set        | t                                                                                                                                                                                                                                                                                                                                                                                      | '0' = Bit is cle   | ared    |                                                       |                 |         |         |  |
| bit 7-1                 | MSK<7:1>:                                                                                                                                                                                                                                                                                                                                                                              | Mask bits          |         |                                                       |                 |         |         |  |
|                         | 1 = The received address bit n is compared to SSPADD <n> to detect <math>I^2C</math> address match<br/>0 = The received address bit n is not used to detect <math>I^2C</math> address match</n>                                                                                                                                                                                        |                    |         |                                                       |                 |         |         |  |
| bit 0                   | <ul> <li>MSK&lt;0&gt;: Mask bit for I<sup>2</sup>C Slave mode, 10-bit Address</li> <li>I<sup>2</sup>C Slave mode, 10-bit address (SSPM&lt;3:0&gt; = 0111 or 1111):</li> <li>1 = The received address bit 0 is compared to SSPADD&lt;0&gt; to detect I<sup>2</sup>C address match</li> <li>0 = The received address bit 0 is not used to detect I<sup>2</sup>C address match</li> </ul> |                    |         |                                                       |                 |         |         |  |

I<sup>2</sup>C Slave mode, 7-bit address, the bit is ignored

'0' = Bit is cleared

# REGISTER 26-6: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER (I<sup>2</sup>C MODE)

| R/W-0/0          | R/W-0/0 | R/W-0/0         | R/W-0/0 | R/W-0/0                                               | R/W-0/0          | R/W-0/0  | R/W-0/0 |  |
|------------------|---------|-----------------|---------|-------------------------------------------------------|------------------|----------|---------|--|
|                  |         |                 | ADD     | <7:0>                                                 |                  |          |         |  |
| bit 7            |         |                 |         |                                                       |                  |          | bit 0   |  |
|                  |         |                 |         |                                                       |                  |          |         |  |
| Legend:          |         |                 |         |                                                       |                  |          |         |  |
| R = Readable I   | oit     | W = Writable    | bit     | U = Unimpler                                          | nented bit, read | d as '0' |         |  |
| u = Bit is uncha | anged   | x = Bit is unkn | iown    | -n/n = Value at POR and BOR/Value at all other Resets |                  |          |         |  |

| Master | mode: |  |
|--------|-------|--|

1' = Bit is set

| bit 7-0 | ADD<7:0>: Baud Rate Clock Divider bits          |
|---------|-------------------------------------------------|
|         | SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc |

#### <u>10-Bit Slave mode — Most Significant Address Byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I<sup>2</sup>C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

#### <u>10-Bit Slave mode — Least Significant Address Byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

#### 7-Bit Slave mode:

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

# 27.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- · Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 27-1 and Figure 27-2.

### FIGURE 27-1: EUSART TRANSMIT BLOCK DIAGRAM



| R/W-0/0          | R/W-0/0                        | R/W-0/0                         | R/W-0/0         | R/W-0/0         | R-0/0             | R-0/0             | R-0/0       |  |  |  |
|------------------|--------------------------------|---------------------------------|-----------------|-----------------|-------------------|-------------------|-------------|--|--|--|
| SPEN             | RX9                            | SREN                            | CREN            | ADDEN           | FERR              | OERR              | RX9D        |  |  |  |
| bit 7            |                                | •                               | I.              |                 |                   |                   | bit 0       |  |  |  |
|                  |                                |                                 |                 |                 |                   |                   |             |  |  |  |
| Legend:          |                                |                                 |                 |                 |                   |                   |             |  |  |  |
| R = Readable     | bit                            | W = Writable                    | bit             | U = Unimpler    | mented bit, read  | as '0'            |             |  |  |  |
| u = Bit is uncha | anged                          | x = Bit is unkr                 | nown            | -n/n = Value a  | at POR and BO     | R/Value at all o  | ther Resets |  |  |  |
| '1' = Bit is set |                                | '0' = Bit is clea               | ared            |                 |                   |                   |             |  |  |  |
|                  |                                |                                 |                 |                 |                   |                   |             |  |  |  |
| bit 7            | SPEN: Serial                   | Port Enable bit                 |                 |                 |                   |                   |             |  |  |  |
|                  | 1 = Serial po                  | rt enabled (con                 | figures RX/D    | Γ and TX/CK p   | ins as serial por | t pins)           |             |  |  |  |
| L 11 O           |                                | rt disabled (nei                | d in Reset)     |                 |                   |                   |             |  |  |  |
| DIT 6            |                                | ceive Enable b                  | IT              |                 |                   |                   |             |  |  |  |
|                  | 1 = Selects 9<br>0 = Selects 8 | -bit reception                  |                 |                 |                   |                   |             |  |  |  |
| bit 5            | SREN: Single                   | Receive Enab                    | le bit          |                 |                   |                   |             |  |  |  |
|                  | Asynchronous                   | <u>s mode</u> :                 |                 |                 |                   |                   |             |  |  |  |
|                  | Don't care                     |                                 |                 |                 |                   |                   |             |  |  |  |
|                  | Synchronous                    | mode – Maste                    | <u>r</u> :      |                 |                   |                   |             |  |  |  |
|                  | 1 = Enables                    | single receive                  |                 |                 |                   |                   |             |  |  |  |
|                  | 0 = Disables                   | single receive                  | ntion is comple | ete             |                   |                   |             |  |  |  |
|                  | Synchronous                    | mode – Slave                    |                 | 010.            |                   |                   |             |  |  |  |
|                  | Don't care                     |                                 |                 |                 |                   |                   |             |  |  |  |
| bit 4            | CREN: Contir                   | nuous Receive                   | Enable bit      |                 |                   |                   |             |  |  |  |
|                  | Asynchronous                   | <u>s mode</u> :                 |                 |                 |                   |                   |             |  |  |  |
|                  | 1 = Enables                    | receiver                        |                 |                 |                   |                   |             |  |  |  |
|                  | 0 = Disables                   | receiver                        |                 |                 |                   |                   |             |  |  |  |
|                  | <u>Synchronous</u>             | <u>mode</u> :<br>continuous rec | aiva until anat | ole hit CREN is | cleared (CREN     | overrides SPE     | =NI)        |  |  |  |
|                  | 0 = Disables                   | continuous rec                  | eive until enat |                 |                   |                   | )           |  |  |  |
| bit 3            | ADDEN: Add                     | ress Detect En                  | able bit        |                 |                   |                   |             |  |  |  |
|                  | Asynchronous                   | s mode 9-bit (R                 | X9 = 1):        |                 |                   |                   |             |  |  |  |
|                  | 1 = Enables                    | address detect                  | ion, enable int | terrupt and loa | d the receive bu  | ffer when RSR     | <8> is set  |  |  |  |
|                  | 0 = Disables                   | address detect                  | tion, all bytes | are received a  | nd ninth bit can  | be used as par    | ity bit     |  |  |  |
|                  | Asynchronous                   | s mode 8-bit (H                 | (x9 = 0):       |                 |                   |                   |             |  |  |  |
| <b>h</b> # 0     |                                | <b></b>                         |                 |                 |                   |                   |             |  |  |  |
| DIL 2            | 1 - Froming                    | ng Error bit<br>orror (oon bo u | ndatad by raa   |                 | register and read | vivo povt volid l | hyto)       |  |  |  |
|                  | 0 = No framing                 | ng error                        | pualeu by rea   |                 | egister and rece  |                   | Dyte)       |  |  |  |
| bit 1            | OERR: Overr                    | un Error bit                    |                 |                 |                   |                   |             |  |  |  |
|                  | 1 = Overrun<br>0 = No overru   | error (can be cl<br>un error    | eared by clea   | ring bit CREN   | )                 |                   |             |  |  |  |
| bit 0            | RX9D: Ninth I                  | bit of Received                 | Data            |                 |                   |                   |             |  |  |  |
|                  | This can be a                  | ddress/data bit                 | or a parity bit | and must be o   | calculated by us  | er firmware.      |             |  |  |  |

# REGISTER 27-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

## 27.4.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPBRGH:SPBRGL register pair. After the ABDOVF bit has been set, the counter continues to count until the fifth rising edge is detected on the RX pin. Upon detecting the fifth RX edge, the hardware will set the RCIF interrupt flag and clear the ABDEN bit of the BAUDCON register. The RCIF flag can be subsequently cleared by reading the RCREG register. The ABDOVF flag of the BAUDCON register can be cleared by software directly.

To terminate the auto-baud process before the RCIF flag is set, clear the ABDEN bit then clear the ABDOVF bit of the BAUDCON register. The ABDOVF bit will remain set if the ABDEN bit is not cleared first.

### 27.4.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDCON register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 27-7), and asynchronously if the device is in Sleep mode (Figure 27-8). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

# 27.4.3.1 Special Considerations

#### Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be ten or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

#### Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

#### WUE Bit

The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared in hardware by a rising edge on RX/DT. The interrupt condition is then cleared in software by reading the RCREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

# 27.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

#### 27.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for synchronous master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

### 27.5.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

#### 27.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

#### 27.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note: The TSR register is not mapped in data memory, so it is not available to the user.

- 27.5.1.4 Synchronous Master Transmission Set-up:
- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 27.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXREG register.

### 27.5.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are unread characters in the receive FIFO.

| Note: | If the RX/DT function is on an analog pin, |
|-------|--------------------------------------------|
|       | the corresponding ANSEL bit must be        |
|       | cleared for the receiver to function.      |

### 27.5.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

**Note:** If the device is configured as a slave and the TX/CK function is on an analog pin, the corresponding ANSEL bit must be cleared.

# 27.5.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. When this happens the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

### 27.5.1.8 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift 9-bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

# 27.5.1.9 Synchronous Master Reception Set-up:

- 1. Initialize the SPBRGH, SPBRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- 8. Interrupt flag bit RCIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCIE was set.
- 9. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

# PIC16(L)F1784/6/7

### TABLE 30-4: I/O PORTS (CONTINUED)

Standard Operating Conditions (unless otherwise stated)

| Param<br>No. | Sym.  | Characteristic                                   | Min. | Тур† | Max. | Units | Conditions                                                             |  |  |  |
|--------------|-------|--------------------------------------------------|------|------|------|-------|------------------------------------------------------------------------|--|--|--|
|              |       | Capacitive Loading Specs on Output Pins          |      |      |      |       |                                                                        |  |  |  |
| D101*        | COSC2 | OSC2 pin                                         | _    | _    | 15   | pF    | In XT, HS and LP modes when<br>external clock is used to drive<br>OSC1 |  |  |  |
| D101A*       | Сю    | All I/O pins                                     | —    | —    | 50   | pF    |                                                                        |  |  |  |
|              |       | VCAP Capacitor Charging                          |      |      |      |       |                                                                        |  |  |  |
| D102         |       | Charging current                                 | —    | 200  | —    | μΑ    |                                                                        |  |  |  |
| D102A        |       | Source/sink capability when<br>charging complete |      | 0.0  | _    | mA    |                                                                        |  |  |  |

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

**2:** Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

**4:** Including OSC2 in CLKOUT mode.

#### TABLE 30-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

| Standard Operating Conditions (unless otherwise stated) |        |                                                          |              |              |      |          |                                              |  |  |  |
|---------------------------------------------------------|--------|----------------------------------------------------------|--------------|--------------|------|----------|----------------------------------------------|--|--|--|
| Param<br>No.                                            | Sym.   | Characteristic                                           | Min.         | Тур†         | Max. | Units    | Conditions                                   |  |  |  |
| 30                                                      | ТмсL   | MCLR Pulse Width (low)                                   | 2<br>5       |              |      | μS<br>μS | VDD = 3.3-5V, -40°C to +85°C<br>VDD = 3.3-5V |  |  |  |
| 31                                                      | TWDTLP | Low-Power Watchdog Timer<br>Time-out Period              | 10           | 16           | 27   | ms       | VDD = 3.3V-5V<br>1:16 Prescaler used         |  |  |  |
| 32                                                      | Tost   | Oscillator Start-up Timer Period <sup>(1), (2)</sup>     | _            | 1024         | _    | Tosc     | (Note 3)                                     |  |  |  |
| 33*                                                     | TPWRT  | Power-up Timer Period, $\overline{PWRTE} = 0$            | 40           | 65           | 140  | ms       |                                              |  |  |  |
| 34*                                                     | Tioz   | I/O high-impedance from MCLR Low or Watchdog Timer Reset |              |              | 2.0  | μS       |                                              |  |  |  |
| 35                                                      | VBOR   | Brown-out Reset Voltage                                  | 2.55         | 2.70         | 2.85 | V        | BORV = 0<br>BORV = 1 (E dovice)              |  |  |  |
|                                                         |        |                                                          | 2.30<br>1.80 | 2.45<br>1.90 | 2.0  | v        | BORV=1 (F device)                            |  |  |  |
| 35A                                                     | Vlpbor | Low-Power Brown-out                                      | 1.8          | 2.1          | 2.5  | V        | LPBOR = 1                                    |  |  |  |
| 36*                                                     | VHYST  | Brown-out Reset Hysteresis                               | 0            | 25           | 75   | mV       | -40°C to +85°C                               |  |  |  |
| 37*                                                     | TBORDC | Brown-out Reset DC Response<br>Time                      | 1            | 3            | 35   | μS       | $VDD \leq VBOR$                              |  |  |  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- 2: By design.
- 3: Period of the slower clock.
- 4: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1  $\mu$ F and 0.01  $\mu$ F values in parallel are recommended.

**Note 1:** Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

# 32.0 DEVELOPMENT SUPPORT

The PIC<sup>®</sup> microcontrollers (MCU) and dsPIC<sup>®</sup> digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB<sup>®</sup> X IDE Software
   Compilers/Assemblers/Linkers
- MPLAB XC Compiler
- MPASM<sup>™</sup> Assembler
- MPLINK<sup>™</sup> Object Linker/ MPLIB<sup>™</sup> Object Librarian
- MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
  - MPLAB X SIM Software Simulator
- · Emulators
  - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
  - MPLAB ICD 3
  - PICkit™ 3
- Device Programmers
  - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

# 32.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows<sup>®</sup>, Linux and Mac  $OS^{®}$  X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- · Built-in support for Bugzilla issue tracker