

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 14x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1787-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADE							· ·	- ()	, , ,		/						
Q	40-Pin PDIP	40-Pin UQFN	44-Pin TQFP	44-Pin QFN	ADC	Reference	Comparator	Op Amps	8-bit DAC	Timers	PSMC	ССР	EUSART	MSSP	Interrupt	dn-IInd	Basic
RC1	16	31	35	35	—			—	—	T10SI	PSMC1B	CCP2	—	—	IOC	Y	_
RC2	17	32	36	36	—	—		_	—	_	PSMC1C	CCP1	—	_	IOC	Y	
RC3	18	33	37	37	—	—		-	—	_	PSMC1D	_	_	SCL SCK	IOC	Y	—
RC4	23	38	42	42	-	—	-	-	_	-	PSMC1E	—		SDI SDA	IOC	Y	—
RC5	24	39	43	43	—	—	—	—	_	—	PSMC1F	—	—	SDO	IOC	Y	—
RC6	25	40	44	44	—	—	-	-	—		PSMC2A	-	TX CK	—	IOC	Y	—
RC7	26	1	1	1	-	—		—	_	—	PSMC2B	—	RX DT	—	IOC	Y	—
RD0	19	34	38	38	—	—	-	OPA3IN+	_	—	—	_	_	_	—	Y	—
RD1	20	35	39	39	AN21	_	C1IN4- C2IN4- C3IN4- C4IN4-	OPA3OUT	_		_	_	_	_	_	Y	_
RD2	21	36	40	40	—	—	-	OPA3IN-	_	—	—	—	—	_	—	Y	_
RD3	22	37	41	41	—	_	_	—	_	—	—	_	—	—	_	Y	
RD4	27	2	2	2	—	—	_		_	—	PSMC3F	—	—		—	Y	—
RD5	28	3	3	3	—		_	—	_	—	PSMC3E	—	—		—	Y	
RD6	29	4	4	4		—	C3OUT	—	_	—	PSMC3D	—	—	—		Y	—
RD7	30	5	5	5	—	—	C4OUT	-	_	-	PSMC3C	_	_	_		Y	_
RE0	8	23	25	25	AN5	—	—	_	_	—	—	CCP3	—	_	—	Y	—
RE1	9	24	26	26	AN6		_	-	_	-	PSMC3B	_	_	_		Y	_
RE2	10	25	27	27	AN7	—	—			—	PSMC3A	—	-	—	—	Y	—
RE3	1	16	18	18	—	—	-	—	—	—	—	—	—	—	IOC	Y	MCLR VPP
VDD	11,32	7,26	7,28	7,8, 28	-	—		—	—	—	—	—	-	—	-		Vdd
Vss	12,31	6,27	6,29	6,30,	—	_	-	—	_	—	—	—	—	_	—	_	Vss

TABLE 2: 40/44-PIN ALLOCATION TABLE (PIC16(L)F1784/7) (Continued)

Note 1: Alternate pin function selected with the APFCON1 (Register 13-1) and APFCON2 (Register 13-2) registers.

3.1.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IN	DEX
call constants	
; THE CONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower 8 bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The high directive will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants			
RETLW I	DATA0	;Index0	data
RETLW I	DATA1	;Index1	data
RETLW I	DATA2		
RETLW I	DATA3		
my_functio	n		
; LOTS	S OF CODE		
MOVLW	LOW constan	ts	
MOVWF	FSR1L		
MOVLW	HIGH consta	nts	
MOVWF	FSR1H		
MOVIW	0[FSR1]		
; THE PROGR	AM MEMORY IS	IN W	

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	c 11-15										
x0Ch											
or x8Ch											
to	_	Unimplemente	Inimplemented							_	_
x6Fh											
or xEFh											

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

1: These registers can be addressed from any bank.

2: Unimplemented, read as '1'.

3: PIC16(L)F1784/7 only.

Note

4: PIC16F1784/6/7 only.

REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0 FOSC<2:0>: Oscillator Selection bits
 - 111 = ECH: External Clock, High-Power mode (4-20 MHz): device clock supplied to CLKIN pin
 - 110 = ECM: External Clock, Medium-Power mode (0.5-4 MHz): device clock supplied to CLKIN pin
 - 101 = ECL: External Clock, Low-Power mode (0-0.5 MHz): device clock supplied to CLKIN pin
 - 100 = INTOSC oscillator: I/O function on CLKIN pin
 - 011 = EXTRC oscillator: External RC circuit connected to CLKIN pin
 - 010 = HS oscillator: High-speed crystal/resonator connected between OSC1 and OSC2 pins
 - 001 = XT oscillator: Crystal/resonator connected between OSC1 and OSC2 pins
 - 000 = LP oscillator: Low-power crystal connected between OSC1 and OSC2 pins
- **Note 1:** The entire data EEPROM will be erased when the code protection is turned off during an erase.Once the Data Code Protection bit is enabled, (CPD = 0), the Bulk Erase Program Memory Command (through ICSP) can disable the Data Code Protection (CPD =1). When a Bulk Erase Program Memory Command is executed, the entire Program Flash Memory, Data EEPROM and configuration memory will be erased.

FIGURE 5-3:	RESET START-UP SEQUENCE
VDD	
Internal POR	
Power-up Timer	
MCLR	
Internal RESET	
	Oscillator Modes – – – – – – – – – – – – – – – – – – –
External Crystal	◄ Tost►
Oscillator Start-up Timer	
Oscillator	
Fosc_	
Internal Oscillator	
Oscillator	
Fosc	
External Clock (EC)	
CLKIN	
Fosc -	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS<2:0>			198
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	C4IE	C3IE	CCP2IE	95
PIE3	_	_	_	CCP3IE			_		96
PIE4	_	PSMC3TIE	PSMC2TIE	PSMC1TIE	—	PSMC3SIE	PSMC2SIE	PSMC1SIE	97
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	C4IF	C3IF	CCP2IF	99
PIR3		_	_	CCP3IF			_		100
PIR4		PSMC3TIF	PSMC2TIF	PSMC1TIF	_	PSMC3SIF	PSMC2SIF	PSMC1SIF	101

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

24.3.2 COMPLEMENTARY PWM

The complementary PWM uses the same events as the single PWM, but two waveforms are generated instead of only one.

The two waveforms are opposite in polarity to each other. The two waveforms may also have dead-band control as well.

24.3.2.1 Mode Features and Controls

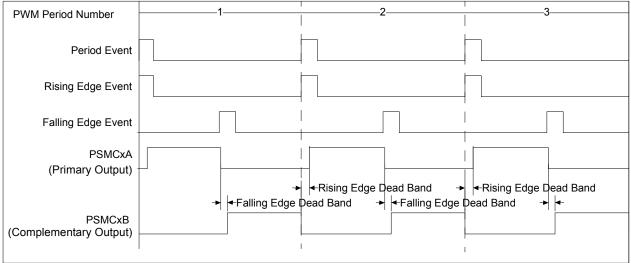
- · Dead-band control available
- PWM primary output can be steered to the following pins:
 - PSMCxA
 - PSMCxC
 - PSMCxE
- PWM complementary output can be steered to the following pins:
 - PSMCxB
 - PSMCxD
 - PSMCxE

24.3.2.2 Waveform Generation

Rising Edge Event

- Complementary output is set inactive
- · Optional rising edge dead band is activated
- · Primary output is set active

Falling Edge Event


- · Primary output is set inactive
- · Optional falling edge dead band is activated
- Complementary output is set active

Code for setting up the PSMC generate the complementary single-phase waveform shown in Figure 24-5, and given in Example 24-2.

EXAMPLE 24-2: COMPLEMENTARY SINGLE-PHASE SETUP

Complementary Single-phase PWM PSMC setup ; ; Fully synchronous operation ; Period = 10 us ; Duty cycle = 50% ; Deadband = 93.75 +15.6/-0 ns BANKSEL PSMC1CON MOVLW 0x02 ; set period MOVWF PSMC1PRH MOVLW 0x7FMOVWE PSMC1PRL ; set duty cycle MOVLW 0x01 MOVWF PSMC1DCH MOVLW 0x3F MOVWF PSMC1DCL CLRE PSMC1PHH ; no phase offset CLRF PSMC1PHL MOVLW 0x01 ; PSMC clock=64 MHz MOVWF PSMC1CLK ; output on A, normal polarity MOVLW B'00000011'; A and B enables MOVWF PSMC10EN MOVWF PSMC1STR0 CLRF PSMC1POL ; set time base as source for all events BSF PSMC1PRS, P1PRST BSF PSMC1PHS, P1PHST PSMC1DCS, P1DCST BSF ; set rising and falling dead-band times MOVLW D'6' MOVWF PSMC1DBR MOVWF PSMC1DBF ; enable PSMC in Complementary Single Mode ; this also loads steering and time buffers ; and enables rising and falling deadbands MOVLW B'11110001' PSMC1CON MOVWF BANKSEL TRISC BCF TRISC, 0 ; enable pin drivers BCF TRISC, 1

FIGURE 24-5: COMPLEMENTARY PWM WAVEFORM – PSMCXSTR0 = 03H

24.3.7 PULSE-SKIPPING PWM

The pulse-skipping PWM is used to generate a series of fixed-length pulses that can be triggered at each period event. A rising edge event will be generated when any enabled asynchronous rising edge input is active when the period event occurs, otherwise no event will be generated.

The rising edge event occurs based upon the value in the PSMCxPH register pair.

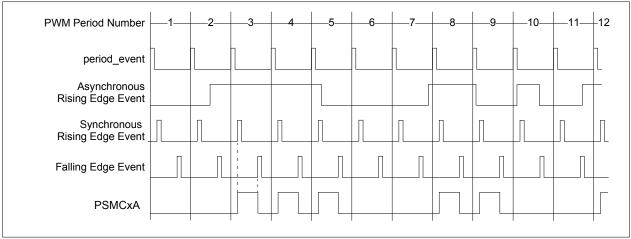
The falling edge event always occurs according to the enabled event inputs without qualification between any two inputs.

24.3.7.1 Mode Features

- · No dead-band control available
- No steering control available
- PWM is output to only one pin:
 - PSMCxA

24.3.7.2 Waveform Generation

Rising Edge Event


If any enabled asynchronous rising edge event = 1 when there is a period event, then upon the next synchronous rising edge event:

PSMCxA is set active

Falling Edge Event

PSMCxA is set inactive

Note: To use this mode, an external source must be used for the determination of whether or not to generate the set pulse. If the phase time base is used, it will either always generate a pulse or never generate a pulse based on the PSMCxPH value.

FIGURE 24-10: PULSE-SKIPPING PWM WAVEFORM

3-Phase State	1	2	3	4	5	6
PSMCxSTR0	01h	02h	04h	08h	10h	20h
Period Event						
Rising Edge Event						
Falling Edge Event						
PSMCxA (1H)						
PSMCxB (1L)						
PSMCxC (2H)						
PSMCxD (2L)						
PSMCxE (3H)						
PSMCxF (3L)						

FIGURE 24-15: 3-PHASE PWM STEERING WAVEFORM (PXHSMEN = 0 AND PXLSMEN = 1)

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
PxPHSIN	—	—	PxPHSC4	PxPHSC3	PxPHSC2	PxPHSC1	PxPHST			
bit 7							bit (
Legend:						(2)				
R = Readable		W = Writable		•	mented bit, read					
u = Bit is uncl	•	x = Bit is unki		-n/n = Value a	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is cle	ared							
bit 7		MCx Rising F	dae Event occ	urs on PSMCx	/IN nin					
bit i		•	•	SMCxIN pin go						
	0	N pin will not o		, Ç						
bit 6-5	Unimplemen	Unimplemented: Read as '0'								
bit 4	PxPHSC4: P	SMCx Rising E	dge Event oco	curs on sync_C	C4OUT output					
	0	Q			itput goes true					
		40UT will not o	•	•						
bit 3		-	-	curs on sync_C						
	0	dge event will 30UT will not c			itput goes true					
bit 2			•	curs on sync (
		•	•		itput goes true					
	0	20UT will not o		_	ilput good li uo					
bit 1										
	1 = Rising e									
	0 = sync_C	10UT will not o	ause rising ed	lge event						
bit 0	PxPHST: PSI	MCx Rising Ed	ge Event occu	irs on Time Ba	se match					
	0	U		SMCxTMR = F	SMCxPH					
	0 = Time ba	se will not cau	se rising edge	event						

REGISTER 24-12: PSMCxPHS: PSMC PHASE SOURCE REGISTER⁽¹⁾

Note 1: Sources are not mutually exclusive: more than one source can cause a rising edge event.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or 2 bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

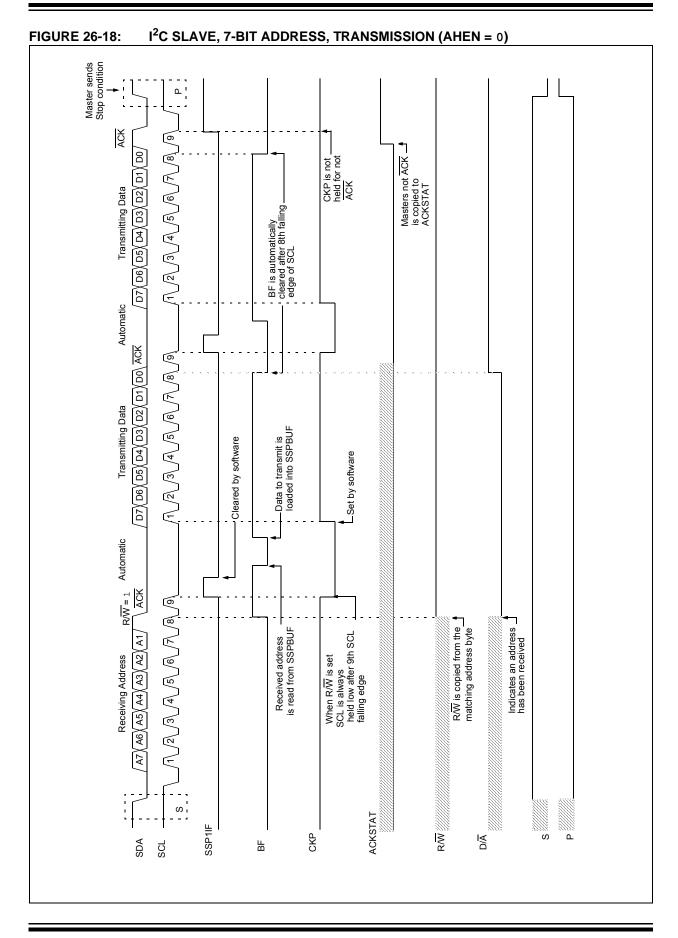
When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (see Figure 25-4).

25.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 25-4.

EQUATION 25-4: PWM RESOLUTION


Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 25-2:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)
-------------	--

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

© 2012-2014 Microchip Technology Inc.

REGISTER 26-2: SSPCON1: SSP CONTROL REGISTER 1

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPOV	SSPEN	CKP		SSPM	I<3:0>	
bit 7							bit C
Legend:					ted bit read as (O)		
R = Readable bit		W = Writable bit	-	•	ted bit, read as '0'	et ell ether Decete	
u = Bit is unchan	gea	x = Bit is unknow			OR and BOR/Value		
1' = Bit is set		'0' = Bit is cleared	1	HS = Bit is set by	/ hardware	C = User cleared	
bit 7	0 = No collision <u>Slave mode:</u>	ne SSPBUF registe			ions were not valid f vord (must be cleared		be started
bit 6	In SPI mode: 1 = A new byte Overflow ca setting overflow SSPBUF re 0 = No overflow In I ² C mode: 1 = A byte is re	n only occur in Slav flow. In Master mode gister (must be clea v eceived while the S eared in software).	e SSPBUF registe e mode. In Slave e, the overflow bit i red in software).	mode, the user musi s not set since each	revious data. In case t read the SSPBUF, e new reception (and tr revious byte. SSPC	even if only transmitti ansmission) is initiate	ng data, to avoid ed by writing to the
bit 5	In both modes, w In <u>SPI mode:</u> 1 = Enables ser 0 = Disables se <u>In I²C mode:</u> 1 = Enables the	ial port and configur rial port and config	e pins must be proves SCK, SDO, SE ures these pins a igures the SDA an	is I/O port pins id SCL pins as the so	s input or output irce of the serial port purce of the serial por	(2)	
bit 4	0 = Idle state for In I ² C Slave mod SCL release cont 1 = Enable clock	clock is a high leve clock is a low level <u>e:</u> rol ow (clock stretch). (<u>de:</u>		lata setup time.)			
bit 3-0	0000 = SPI Mast 0001 = SPI Mast 0010 = SPI Mast 0010 = SPI Mast 0100 = SPI Slave 0101 = SPI Slave 0110 = I ² C Slave 1000 = I ² C Slave 1000 = Reservec 1010 = Reservec 1011 = I ² C firmw 1001 = Reservec 1101 = Reservec 1101 = Reservec	e mode, 7-bit addre e mode, 10-bit addr er mode, clock = Fo er mode, clock = F are controlled Mas i e mode, 7-bit addre	osc/4 osc/16 osc/64 MR2 output/2 K pin, <u>SS</u> pin cor SS ess osc / (4 * (SSPAD ter mode (Slave i ss with Start and	ntrol enabled htrol disabled, SS c DD+1)) ⁽⁴⁾ D+1)) ⁽⁵⁾	an be used as I/O pi enabled enabled	n	
2: Wh 3: Wh 4: SS	Master mode, the over nen enabled, these pi nen enabled, the SDA PADD values of 0, 1 PADD value of '0' is	ins must be properl A and SCL pins mu or 2 are not suppo	y configured as ir st be configured a rted for I ² C mode	nput or output. as inputs.	mission) is initiated	by writing to the SS	PBUF register.

REGISTER 26-5: SSPMSK: SSP MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
			MSK	<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleared		ared						
bit 7-1	MSK<7:1>:	Mask bits						
	1 = The received address bit n is compared to SSPADD <n> to detect I^2C address match 0 = The received address bit n is not used to detect I^2C address match</n>							
bit 0	I ² C Slave me 1 = The rec 0 = The rec	ask bit for I ² C S ode, 10-bit addr eived address b eived address b	ess (SSPM<3 it 0 is compar it 0 is not use	0 = 0111 or ed to SSPADD d to detect I^2C	<0> to detect l ²		tch	

I²C Slave mode, 7-bit address, the bit is ignored

'0' = Bit is cleared

REGISTER 26-6: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
10,00-070	10/00-0/0	10,00-0/0	10/07-0/0	10,00-0/0	10,00-070	10,00-0/0	10/0/0/0
			ADD	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	

Master	mode:	

1' = Bit is set

bit 7-0	ADD<7:0>: Baud Rate Clock Divider bits
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode — Most Significant Address Byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode — Least Significant Address Byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

27.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- · Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 27-1 and Figure 27-2.

FIGURE 27-1: EUSART TRANSMIT BLOCK DIAGRAM

ΜΟΥΨΙ	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	$\begin{array}{l} n \in [0,1] \\ mm \in [00,01,10,11] \\ -32 \leq k \leq 31 \end{array}$
Operation:	$\label{eq:statestarding} \begin{split} W &\to INDFn \\ Effective \ address \ is \ determined \ by \\ \bullet \ FSR + 1 \ (preincrement) \\ \bullet \ FSR - 1 \ (predecrement) \\ \bullet \ FSR + k \ (relative \ offset) \\ After \ the \ Move, \ the \ FSR \ value \ will \\ be \ either: \\ \bullet \ FSR + 1 \ (all \ increments) \\ \bullet \ FSR + 1 \ (all \ decrements) \\ Unchanged \end{split}$

Status	Affected:	None
olulus	/ mcolou.	

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/ after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h - FFFFh. Incrementing/ decrementing it beyond these bounds will cause it to wraparound.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \to OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.

RESET	Software Reset						
Syntax:	[label] RESET						
Operands:	None						
Operation:	Execute a device Reset. Resets the RI flag of the PCON register.						
Status Affected:	None						
Description:	This instruction provides a way to execute a hardware Reset by software.						

TABLE 30-3: POWER-DOWN CURRENTS (IPD)^(1,2,4) (CONTINUED)

PIC16LF1	784/6/7	Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode									
PIC16F17	84/6/7	Low-Power Sleep Mode, VREGPM = 1									
Param	Device Characteristics	Min.	Тур†	Max. +85°C	Max. +125°C	Units	Conditions				
No.							Vdd	Note			
Power-down Base Current (IPD) ⁽²⁾											
D029			0.05	2	9	μA	1.8	ADC Current (Note 3),			
		_	0.08	3	10	μA	3.0	no conversion in progress			
D029			0.3	4	12	μA	2.3	ADC Current (Note 3),			
		_	0.4	5	13	μA	3.0	no conversion in progress			
			0.5	7	16	μA	5.0				
D030			250	—	—	μA	1.8	ADC Current (Note 3),			
			280	_	_	μA	3.0	conversion in progress			
D030			230	—	—	μA	2.3	ADC Current (Note 3, Note 4,			
			250	—	—	μA	3.0	Note 5), conversion in progress			
		_	350	—	—	μA	5.0				
D031			250	650	—	μA	3.0	Op Amp (High power)			
D031			250	650	—	μA	3.0	Op Amp (High power) (Note 5)			
			350	850	—	μA	5.0				
D032		_	250	650	_	μA	1.8	Comparator, Normal-Power mode			
		—	300	700	_	μA	3.0				
D032		_	280	650	—	μA	2.3	Comparator, Normal-Power mode			
			300	700	_	μA	3.0	(Note 5)			
			310	700	—	μA	5.0				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC oscillator source is FRC.

4: 0.1 μF capacitor on VCAP.

5: VREGPM = 0.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 µF, TA = 25°C.

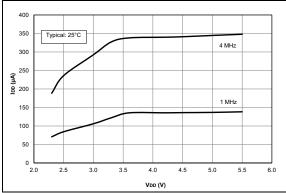


FIGURE 31-13: IDD Typical, EC Oscillator MP Mode, PIC16F1784/6/7 Only.

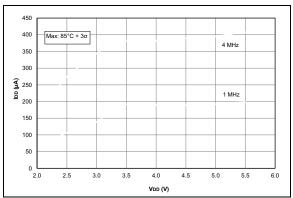


FIGURE 31-14: IDD Maximum, EC Oscillator MP Mode, PIC16F1784/6/7 Only.

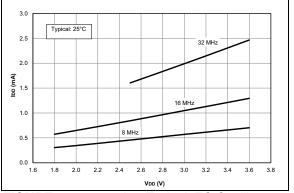


FIGURE 31-15: IDD Typical, EC Oscillator HP Mode, PIC16LF1784/6/7 Only.

FIGURE 31-16: IDD Maximum, EC Oscillator HP Mode, PIC16LF1784/6/7 Only.

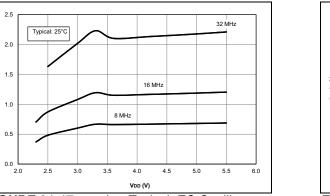
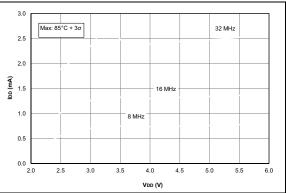
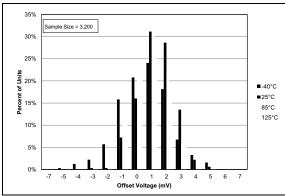



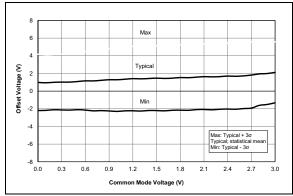
FIGURE 31-17: IDD Typical, EC Oscillator HP Mode, PIC16F1784/6/7 Only.

IDD Maximum, EC Oscillator FIGURE 31-18: HP Mode, PIC16F1784/6/7 Only.

2.5


2.0

1.5 (WA)


0.5

8 1.0

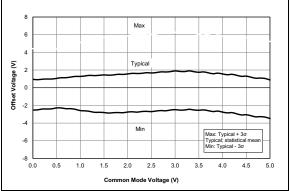

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-109: Op Amp, Output Voltage Histogram, VDD = 3.0V, VCM = VDD/2.

FIGURE 31-110: Op Amp, Offset Over Common Mode Voltage, VDD = 3.0V, Temp. = 25°C.

FIGURE 31-111: Op Amp, Offset Over Common Mode Voltage, VDD = 5.0V, Temp. = 25°C, PIC16F1784/6/7 Only.

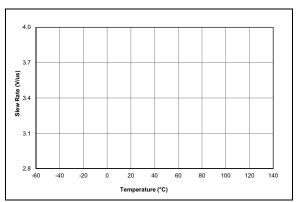


FIGURE 31-113: Op Amp, Output Slew Rate, Falling Edge, PIC16LF1784/6/7 Only.

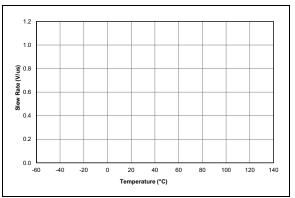


FIGURE 31-112: Op Amp, Output Slew Rate, Rising Edge, PIC16LF1784/6/7 Only.

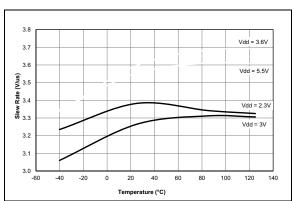
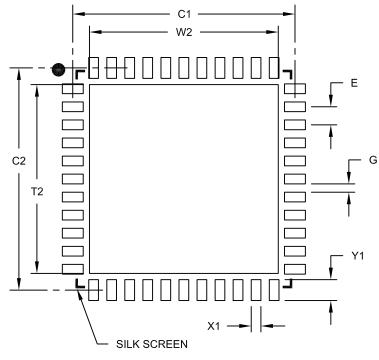



FIGURE 31-114: Op Amp, Output Slew Rate, Rising Edge, PIC16F1784/6/7 Only.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS					
Dimensior	MIN	NOM	MAX			
Contact Pitch	E	0.65 BSC				
Optional Center Pad Width	W2			6.60		
Optional Center Pad Length	T2			6.60		
Contact Pad Spacing	C1		8.00			
Contact Pad Spacing	C2		8.00			
Contact Pad Width (X44)	X1			0.35		
Contact Pad Length (X44)	Y1			0.85		
Distance Between Pads	G	0.25				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B