

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 14x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1787t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F178X Family Types

Device	Data Sheet Index	Program Memory Flash (words)	Data EEPROM (bytes)	Data SRAM (bytes)	I/O'S ⁽²⁾	12-bit ADC (ch)	Comparators	Operational Amplifiers	DAC (8/5-bit)	Timers (8/16-bit)	Programmable Switch Mode Controllers (PSMC)	ССР	EUSART	MSSP (I ² C TM /SPI)	Debug ⁽¹⁾	ХГР
PIC16(L)F1782	(1)	2048	256	256	25	11	3	2	1/0	2/1	2	2	1	1	Ι	Y
PIC16(L)F1783	(1)	4096	256	512	25	11	3	2	1/0	2/1	2	2	1	1	Ι	Υ
PIC16(L)F1784	(2)	4096	256	512	36	15	4	3	1/0	2/1	3	3	1	1	Ι	Υ
PIC16(L)F1786	(2)	8192	256	1024	25	11	4	2	1/0	2/1	3	3	1	1	Ι	Υ
PIC16(L)F1787	(2)	8192	256	1024	36	15	4	3	1/0	2/1	3	3	1	1	Ι	Υ
PIC16(L)F1788	(3)	16384	256	2048	25	11	4	2	1/3	2/1	4	3	1	1	I	Υ
PIC16(L)F1789	(3)	16384	256	2048	36	15	4	3	1/3	2/1	4	3	1	1	Ι	Υ

Note 1: I - Debugging, Integrated on Chip; H - Debugging, available using Debug Header.

2: One pin is input-only.

Data Sheet Index: (Unshaded devices are described in this document.)

- 1: DS40001579 PIC16(L)F1782/3 Data Sheet, 28-Pin Flash, 8-bit Advanced Analog MCUs.
- 2: DS40001637 PIC16(L)F1784/6/7 Data Sheet, 28/40/44-Pin Flash, 8-bit Advanced Analog MCUs.

3: DS40001675 PIC16(L)F1788/9 Data Sheet, 28/40/44-Pin Flash, 8-bit Advanced Analog MCUs.

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

TABLE 1: 28-PIN ALLOCATION TABLE (PIC16(L)F1786) (Continued)

0/I	28-Pin SPDIP, SOIC, SSOP	28-Pin QFN,	ADC	Reference	Comparator	Operation Amplifiers	8-bit DAC	Timers	DMSP	ССР	EUSART	MSSP	Interrupt	Pull-up	Basic
RB7	28	25	—	_	—	-	DAC1OUT2	—	_	—	RX ⁽¹⁾ DT ⁽¹⁾	SCK ⁽¹⁾ SCL ⁽¹⁾	IOC	Y	ICSPDAT
RC0	11	8	_	—	—	—	—	T1OSO T1CKI	PSMC1A	—	-	_	IOC	Y	—
RC1	12	9	_	—	_	—	—	T10SI	PSMC1B	CCP2	-	_	IOC	Y	—
RC2	13	10	_	—	—	—	—	—	PSMC1C PSMC3B	CCP1	-	_	IOC	Y	—
RC3	14	11	—	—	—	—	—	—	PSMC1D	—		SCK SCL	IOC	Y	—
RC4	15	12	_	—	—	—	—	—	PSMC1E	—	-	SDI SDA	IOC	Y	—
RC5	16	13	—	—	—	—	_	—	PSMC1F PSMC3A	—	_	SDO	IOC	Y	—
RC6	17	14	_	—	—	—	—	—	PSMC2A	CCP3	TX CK	—	IOC	Y	—
RC7	18	15	—	—	C4OUT	—	—	—	PSMC2B	—	RX DT	—	IOC	Y	—
RE3	1	26	_	—	_	_	_	—	_	—	—	—	IOC	Y	MCLR VPP
Vdd	20	17		—	—	_	—	—	—	—	—	—	_	-	Vdd
Vss	8, 19	5, 16	_	—	—	—	—	—	—	—	—	—	—	-	Vss

PIC16(L)F1784/6/7

Note 1: Alternate pin function selected with the APFCON1 (Register 13-1) and APFCON2 (Register 13-2) registers.

TABLE 3-12:	SPECIAL FUNCTION REGISTER SUMMARY	(CONTINUED))
-------------	-----------------------------------	-------------	---

								/			
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban											
38Ch	INLVLA	Input Type Cor	ntrol for POR	ΓA						0000 0000	0000 0000
38Dh	INLVLB	Input Type Cor	ntrol for POR	ГВ						0000 0000	0000 0000
38Eh	INLVLC	Input Type Cor	ntrol for POR	ГС						1111 1111	1111 1111
38Fh	INLVLD ⁽³⁾	Input Type Co	ntrol for POR	ГD						1111 1111	1111 1111
390h	INLVLE	—	_	_	_	INLVLE3	INLVLE2 ⁽³⁾	INLVLE1 ⁽³⁾	INLVLE0 ⁽³⁾	1111	1111
391h	IOCAP				IOCAP	<7:0>				0000 0000	0000 0000
392h	IOCAN				IOCAN	<7:0>				0000 0000	0000 0000
393h	IOCAF				IOCAF	<7:0>				0000 0000	0000 0000
394h	IOCBP				IOCBP	<7:0>				0000 0000	0000 0000
395h	IOCBN				IOCBN	<7:0>				0000 0000	0000 0000
396h	IOCBF				IOCBF	<7:0>				0000 0000	0000 0000
397h	IOCCP				IOCCP	<7:0>				0000 0000	0000 0000
398h	IOCCN				IOCCN	<7:0>				0000 0000	0000 0000
399h	IOCCF				IOCCF	<7:0>				0000 0000	0000 0000
39Ah		Linimalomento	d								
39Ch	—	Unimplemente	u							_	_
39Dh	IOCEP	—	—	_	_	IOCEP3	_	_	_	0	0
39Eh	IOCEN	—	—	—	—	IOCEN3	—	—	—	0	0
39Fh	IOCEF	IOCEF3								0	0
Ban	k 8-9					•				•	
40Ch											
or											

40Ch				
or				
41Fh				
and	_	Unimplemented	_	—
48Ch				
or				
49Fh				

Bank 10

Dan	K IU									
50Ch 510h	_	Unimplemente	d						_	—
511h	OPA1CON	OPA1EN	OPA1SP	—	—	_	_	OPA1PCH<1:0>	0000	0000
512h	—	Unimplemente	d						—	—
513h	OPA2CON	OPA2EN	OPA2SP	—	—	_	_	OPA2PCH<1:0>	0000	0000
514h	—	Unimplemente	d						—	—
515h	OPA3CON ⁽³⁾	OPA3EN	OPA3SP	_	_	_	_	OPA3PCH<1:0>	0000	0000
51Ah	CLKRCON	CLKREN	CLKROE	CLKRSLR	CLKRD	C<1:0>	(CLKRDIV<2:0>	0011 0000	0011 0000
51Bh 51Fh	_	Unimplemente	d						_	_

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Legend:

Shaded locations are unimplemented, read as '0'. 1: These registers can be addressed from any bank.

Note 2:

Unimplemented, read as '1'. 3:

PIC16(L)F1784/7 only. PIC16F1784/6/7 only. 4:

5.13 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

5.14 Register Definitions: Power Control

REGISTER 5-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR
bit 7							bit 0

Legend:		
HC = Bit is cleared by hardw	are	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	STKOVF: Stack Overflow Flag bit
	1 = A Stack Overflow occurred
	0 = A Stack Overflow has not occurred or cleared by firmware
bit 6	STKUNF: Stack Underflow Flag bit
	1 = A Stack Underflow occurred
	0 = A Stack Underflow has not occurred or cleared by firmware
bit 5	Unimplemented: Read as '0'
bit 4	RWDT: Watchdog Timer Reset Flag bit
	1 = A Watchdog Timer Reset has not occurred or set to '1' by firmware
	0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3	RMCLR: MCLR Reset Flag bit
	1 = A MCLR Reset has not occurred or set to '1' by firmware
	0 = A MCLR Reset has occurred (cleared by hardware)
bit 2	RI: RESET Instruction Flag bit
	1 = A RESET instruction has not been executed or set to '1' by firmware
	0 = A RESET instruction has been executed (cleared by hardware)
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	1 = No Brown-out Reset occurred
	0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset
	occurs)

The PCON register bits are shown in Register 5-2.

8.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 or PIE2 registers)

The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 8.5 "Automatic Context Saving".")
- PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

Note 1:	Individual	inte	rrupt	flag	bits	are are	set,
	regardless	of	the	state	of	any	other
	enable bits						

2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

8.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 8-2 and Figure 8.3 for more details.

11.6 Register Definitions: Watchdog Control

REGISTER 11-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
—	—			WDTPS<4:0>	•		SWDTEN
bit 7		-					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-m/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-1	WDTPS<4:0>	-: Watchdog Ti	mer Period S	elect bits ⁽¹⁾			
	Bit Value = P	Prescale Rate					
	11111 = Re	served. Result	s in minimum	interval (1:32)			
	•						
	•						
	10011 = Re	served. Result	s in minimum	interval (1:32)			
		00		, , , , , , , , , , , , , , , , , , ,			
	10010 = 1:8	388608 (2 ²³) (Interval 256s	nominal)			
	10001 = 1:4	194304 (2 ²²) (Interval 128s	nominal)			
	10000 = 1.2	097152(2 ⁻¹)(048576(2 ²⁰)(Interval 32s n	ominal)			
	01111 = 1.1 01110 = 1.5	24288 (2 ¹⁹) (Ir	iterval 16s no	minal)			
	01101 = 1:2	62144 (2 ¹⁸) (Ir	iterval 8s non	ninal)			
	01100 = 1:1	31072 (2 ¹⁷) (Ir	iterval 4s non	ninal)			
	01011 = 1:6	5536 (Interval	2s nominal)	(Reset value)			
	01010 = 1:3	2768 (Interval	1s nominal)				
	01001 = 1:1	6384 (Interval	512 ms nomi	nal)			
	01000 = 1.8	006 (Interval 2	56 ms nomina 28 ms nomina	al)			
	00111 = 1.4 00110 = 1.2	090 (Interval 6	4 ms nominal				
	00110 = 1.2 00101 = 1.1	024 (Interval 3	2 ms nominal)			
	00100 = 1:5	12 (Interval 16	ms nominal)	,			
	00011 = 1:2	56 (Interval 8 r	ns nominal)				
	00010 = 1:1	28 (Interval 4 r	ns nominal)				
	00001 = 1:6	4 (Interval 2 m	s nominal)				
	00000 = 1:3	2 (Interval 1 m	s nominal)				
bit 0	SWDTEN: So	oftware Enable/	Disable for W	/atchdog Timer	bit		
	If WDTE<1:0>	> = 1x:		0			
	This bit is igno	ored.					
	If WDTE<1:02	> = <u>01</u> :					
	1 = WDT is t	urned on					
	0 = WDT is t	urned off					
	<u>II WUIE<1:0</u>	<u>> = 00</u> :					
	i nis pit is igno	uleu.					

Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.

13.8 Register Definitions: PORTC

REGISTER 13-19: PORTC: PORTC REGISTER

	i a m ya u	R/W-X/U	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RC6	RC5	RC4	RC3	RC2	RC1	RC0	
						bit 0	
	W = Writable I	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
	'0' = Bit is clea	ared					
	RC6	RC6 RC5 W = Writable ged x = Bit is unkn '0' = Bit is clea	RC6 RC5 RC4 W = Writable bit ged x = Bit is unknown '0' = Bit is cleared	RC6 RC5 RC4 RC3 W = Writable bit U = Unimpler ged x = Bit is unknown -n/n = Value a '0' = Bit is cleared '''	RC6 RC5 RC4 RC3 RC2 W = Writable bit U = Unimplemented bit, read ged x = Bit is unknown -n/n = Value at POR and BOF '0' = Bit is cleared	RC6 RC5 RC4 RC3 RC2 RC1 W = Writable bit U = Unimplemented bit, read as '0' ged x = Bit is unknown -n/n = Value at POR and BOR/Value at all o '0' = Bit is cleared	

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

REGISTER 13-20: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISC<7:0>: PORTC Tri-State Control bits 1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

REGISTER 13-21: LATC: PORTC DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATC7 | LATC6 | LATC5 | LATC4 | LATC3 | LATC2 | LATC1 | LATC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

14.6 Register Definitions: Interrupt-on-Change Control

REGISTER 14-1: IOCxP: INTERRUPT-ON-CHANGE POSITIVE EDGE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
IOCxP7	IOCxP6	IOCxP5	IOCxP4	IOCxP3	IOCxP2	IOCxP1	IOCxP0	
bit 7							bit 0	
Legend:								
R = Readable b	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0 IOCxP<7:0>: Interrupt-on-Change Positive Edge Enable bits⁽¹⁾

- 1 = Interrupt-on-Change enabled on the pin for a positive going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

Note 1: For IOCEP register, bit 3 (IOCEP3) is the only implemented bit in the register.

REGISTER 14-2: IOCxN: INTERRUPT-ON-CHANGE NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCxN7 | IOCxN6 | IOCxN5 | IOCxN4 | IOCxN3 | IOCxN2 | IOCxN1 | IOC×N0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 IOCxN<7:0>: Interrupt-on-Change Negative Edge Enable bits⁽¹⁾

1 = Interrupt-on-Change enabled on the pin for a negative going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

Note 1: For IOCEN register, bit 3 (IOCEN3) is the only implemented bit in the register.

15.4 Register Definitions: FVR Control

REGISTER 15-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	FVRRDY ⁽¹⁾ TSEN TSRNG CDAFVR<1:0		/R<1:0>	:1:0> ADFVR<1:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is unc	hanged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set	t	'0' = Bit is cle	ared	q = Value dep	ends on condit	ion	
bit 7	FVREN: Fixed 1 = Fixed Vol 0 = Fixed Vol	d Voltage Refe Itage Referenc Itage Referenc	rence Enable e is enabled e is disabled	bit			
bit 6	FVRRDY: Fix 1 = Fixed Vol 0 = Fixed Vol	ed Voltage Rei Itage Referenc Itage Referenc	ference Ready e output is rea e output is no	y Flag bit ⁽¹⁾ ady for use t ready or not e	nabled		
bit 5	TSEN: Temperat 1 = Temperat 0 = Temperat	erature Indicato ture Indicator is ture Indicator is	or Enable bit ⁽³ s enabled s disabled)			
bit 4	TSRNG: Tem 1 = Vout = V 0 = Vout = V	perature Indica ′DD - 4V⊤ (High ′DD - 2V⊤ (Low	ator Range Se Range) Range)	election bit ⁽³⁾			
bit 3-2	CDAFVR<1:0 11 = Compara 10 = Compara 01 = Compara 00 = Compara	Comparator ator and DAC I ator and DAC I ator and DAC I ator and DAC I	and DAC Fix Fixed Voltage Fixed Voltage Fixed Voltage Fixed Voltage	ed Voltage Ref Reference Per Reference Per Reference Per Reference Per	erence Selectic ipheral output is ipheral output is ipheral output is ipheral output is	on bit s 4x (4.096V) ⁽² s 2x (2.048V) ⁽² s 1x (1.024V) s off.)
bit 1-0	ADFVR<1:0>: ADC Fixed Voltage Reference Selection bit 11 = ADC Fixed Voltage Reference Peripheral output is 4x (4.096V) ⁽²⁾ 10 = ADC Fixed Voltage Reference Peripheral output is 2x (2.048V) ⁽²⁾ 01 = ADC Fixed Voltage Reference Peripheral output is 1x (1.024V) 00 = ADC Fixed Voltage Reference Peripheral output is off.						
Note 1: F	/RRDY is always	s '1' on "F" dev	ices only.				

- 2: Fixed Voltage Reference output cannot exceed VDD.
- 3: See Section 16.0 "Temperature Indicator Module" for additional information.

TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		ADFVI	R<1:0>	162

Legend: Shaded cells are not used with the Fixed Voltage Reference.

24.1.1 PERIOD EVENT

The period event determines the frequency of the active pulse. Period event sources include any combination of the following:

- PSMCxTMR counter match
- · PSMC input pin
- sync_C1OUT
- sync_C2OUT
- sync_C3OUT
- sync C4OUT

Period event sources are selected with the PSMC Period Source (PSMCxPRS) register (Register 24-14).

Section 24.2.1.2 "16-bit Period Register" contains details on configuring the PSMCxTMR counter match for synchronous period events.

All period events cause the PSMCxTMR counter to reset on the counting clock edge immediately following the period event. The PSMCxTMR counter resumes counting from zero on the counting clock edge after the period event Reset.

During a period, the rising event and falling event are each permitted to occur only once. Subsequent rising or falling events that may occur within the period are suppressed, thereby preventing output chatter from spurious inputs.

24.1.2 RISING EDGE EVENT

The rising edge event determines the start of the active drive period. The rising edge event is also referred to as the phase because two synchronized PSMC peripherals may have different rising edge events relative to the period start, thereby creating a phase relationship between the two PSMC peripheral outputs.

Depending on the PSMC mode, one or more of the PSMC outputs will change in immediate response to the rising edge event. Rising edge event sources include any combination of the following:

- Synchronous:
- PSMCxTMR time base counter match
- Asynchronous:
 - PSMC input pin
 - sync_C1OUT
 - sync_C2OUT
 - sync_C3OUT
 - sync C4OUT

Rising edge event sources are selected with the PSMC Phase Source (PSMCxPHS) register (Register 24-12).

For configuring the PSMCxTMR time base counter match for synchronous rising edge events, see **Section 24.2.1.3 "16-bit Phase Register"**.

The first rising edge event in a cycle period is the only one permitted to cause action. All subsequent rising edge events in the same period are suppressed to prevent the PSMC output from chattering in the presence of spurious event inputs. A rising edge event is also suppressed when it occurs after a falling edge event in the same period.

The rising edge event also triggers the start of two other timers when needed: falling edge blanking and dead-band period. For more detail refer to Section 24.2.8 "Input Blanking" and Section 24.4 "Dead-Band Control".

When the rising edge event is delayed from the period start, the amount of delay subtracts from the total amount of time available for the drive duty cycle. For example, if the rising edge event is delayed by 10% of the period time, the maximum duty cycle for that period is 90%. A 100% duty cycle is still possible in this example, but duty cycles from 90% to 100% are not possible.

24.1.3 FALLING EDGE EVENT

The falling edge event determines the end of the active drive period. The falling edge event is also referred to as the duty cycle because varying the falling edge event, while keeping the rising edge event and period events fixed, varies the active drive duty cycle.

Depending on the PSMC mode, one or more of the PSMC outputs will change in immediate response to the falling edge event. Falling edge event sources include any combination of the following:

- Synchronous:
 - PSMCxTMR time base counter match
- Asynchronous:
 - PSMC input pin
 - sync_C1OUT
 - sync_C2OUT
 - sync C3OUT
 - sync C4OUT

Falling edge event sources are selected with PSMC Duty Cycle Source (PSMCxDCS) register (Register 24-13).

For configuring the PSMCxTMR time base counter match for synchronous falling edge events, see **Section 24.2.1.4 "16-bit Duty Cycle Register"**.

The first falling edge event in a cycle period is the only one permitted to cause action. All subsequent falling edge events in the same period are suppressed to prevent the PSMC output from chattering in the presence of spurious event inputs.

A falling edge event suppresses any subsequent rising edges that may occur in the same period. In other words, if an asynchronous falling event input should come late and occur early in the period, following that for which it was intended, the rising edge in that period will be suppressed. This will have a similar effect as pulse skipping.

The falling edge event also triggers the start of two other timers: rising edge blanking and dead-band period. For more detail refer to **Section 24.2.8 "Input Blanking"** and **Section 24.4 "Dead-Band Control"**.

© 2012-2014 Microchip Technology Inc.

24.5 Output Steering

Output steering allows for PWM signals generated by the PSMC module to be placed on different pins under software control. Synchronized steering will hold steering changes until the first period event after the PSMCxLD bit is set. Unsynchronized steering changes will take place immediately.

Output steering is available in the following modes:

- 3-phase PWM
- Single PWM
- Complementary PWM

24.5.1 3-PHASE STEERING

3-phase steering is available in the 3-Phase Modulation mode only. For more details on 3-phase steering refer to **Section 24.3.12 "3-Phase PWM"**.

24.5.2 SINGLE PWM STEERING

In Single PWM Steering mode, the single PWM signal can be routed to any combination of the PSMC output pins. Examples of unsynchronized single PWM steering are shown in Figure 24-16.

FIGURE 24-16: SINGLE PWM STEERING WAVEFORM (NO SYNCHRONIZATION)

PxSTRB
PxSTRC
PxSTRDPSMCxD
With synchronization disabled, it is possible to get glitches on the PWM outputs.

26.4 I²C MODE OPERATION

All MSSP I²C communication is byte oriented and shifted out MSb first. Six SFR registers and two interrupt flags interface the module with the PIC[®] microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I²C devices.

26.4.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the 8th falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

26.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I^2C specification.

26.4.3 SDA AND SCL PINS

Selection of any l^2C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

Note: Data is tied to output zero when an I²C mode is enabled.

26.4.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT bit of the SSPCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 26-2:I²C BUS TERMS

TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and terminates a transfer.
Slave	The device addressed by the master.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDA and SCL lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPADD.
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/W bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus hold SCL low to stall communication.
Bus Collision	Any time the SDA line is sampled low by the module while it is out- putting and expected high state

26.6.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full flag bit, BF and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSP1IF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 26-27).

After the write to the SSPBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSP1IF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

26.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPSTAT register is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

26.6.6.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write does not occur).

WCOL must be cleared by software before the next transmission.

26.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPCON2 register is cleared when the slave has sent an Acknowledge ($\overrightarrow{ACK} = 0$) and is set when the slave does not Acknowledge ($\overrightarrow{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

26.6.6.4 Typical transmit sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPCON2 register.
- 2. SSP1IF is set by hardware on completion of the Start.
- 3. SSP1IF is cleared by software.
- 4. The MSSP module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPBUF with the slave address to transmit.
- 6. Address is shifted out the SDA pin until all 8 bits are transmitted. Transmission begins as soon as SSPBUF is written to.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register.
- 8. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSP1IF bit.
- 9. The user loads the SSPBUF with eight bits of data.
- 10. Data is shifted out the SDA pin until all 8 bits are transmitted.
- 11. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- 13. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSP-CON2 register. Interrupt is generated once the Stop/Restart condition is complete.

FIGURE 27-10: SYNCHRONOUS TRANSMISSION

FIGURE 27-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 27-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
C2OUTSEL	CC1PSEL	SDOSEL	SCKSEL	SDISEL	TXSEL	RXSEL	CCP2SEL	127
ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	347
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94
TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	346
BRG<7:0>								
BRG<15:8>								348
TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142
EUSART Transmit Data Register								
CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	345
	Bit 7 C2OUTSEL ABDOVF GIE TMR1GIE SPEN SPEN TRISC7 CSRC	Bit 7Bit 6C2OUTSELCC1PSELABDOVFRCIDLGIEPEIETMR1GIEADIFTMR1GIFADIFSPENRX9TRISC7TRISC6TRSRC4TX9	Bit 7Bit 6Bit 5C2OUTSELCC1PSELSDOSELABDOVFRCIDLImmodelGIEPEIETMR0IETMR1GIEADIERCIETMR1GIFADIFRCIFSPENRX9SRENTRISC7TRISC6TRISC5CSRCTX9TXEN	Bit 7Bit 6Bit 5Bit 4C2OUTSELCC1PSELSDOSELSCKSELABDOVFRCIDLJONSELSCKPGIEPEIETMR0IEINTETMR1GIEADIERCIETXIETMR1GIFADIFRCIETXIESPENRX9SRENCRENSPENTRISC6TRISC6SRENTRISC7TRISC6TRISC5TRISC6CSRCTX9SXENSYNC	Bit 7Bit 6Bit 5Bit 4Bit 3C2OUTSEICC1PSEISDOSEISCKSEISDISEIABDOVFRCIDL-SCKPBRG16GIEPEIETMR0IEINTEIOCIETMR1GIEADIERCIETXIESSP11ETMR1GIFADIFRCIFTXIFSSP11FSPENRX9SRENCRENADDENSPENRX9SRENCRENADDENTRISC7TRISC6TRISC5TRISC4TRISC3CSRCTX9TXENSYNCSENDB	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2C2OUTSELCC1PSELSDOSELSCKSELSDISELTXSELABDOVFRCIDL-SCKPBRG16-GIEPEIETMR0IEINTEIOCIETMR0IFTMR1GIEADIERCIETXIESSP1IECCP1IETMR1GIFADIFRCIFTXIFSSP1IFCCP1IFSPENRX9SRENCRENADDENFERRSPENRX9SRENCRENADDENFERRTRISC7TRISC6TRISC5TRISC4TRISC5TSTATSYNCSENDBBRGH	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1C2OUTSELCC1PSELSDOSELSCKSELSDISELTXSELRXSELABDOVFRCIDL-SCKPBRG16-WUEGIEPEIETMROIEINTEIOCIETMROIFINTFTMR1GIEADIERCIETXIESSP1IECCP1IETMR2IETMR1GIFADIFRCIFTXIFSSP1IECCP1IFTMR2IESPENRX9SRENCRENADDENFERROERRBRGYSRENCRENADDENFERROERRTISC7TRISC6TRISC5TRISC4TRISC5TRISC4TRISC5TRISC4CSRC4TX9SYNCSENDBBRGHTRM1	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0C2OUTSELCC1PSELSDOSELSCKSELSDISELTXSELRXSELCCP2SELABDOVFRCIDL-SCKPBRG16-WUEABDENGIEPEIETMR0IEINTEIOCIETMR0IFINTEIOCIFTMR1GIEADIERCIETXIESSP1IECCP1IETMR2IETMR1IETMR1GIFADIFRCIFTXIFSSP1IFCCP1IFTMR2IETMR1IESPENRX9SRENCRENADDENFERROERRRX9DSPENRX9SRENCRENADDENFERROERRRX9DTRISC7TRISC6TRISC5TRISC4TRISC3TRISC4TRISC4TRISC4TRISC4CSRCTX9TXENSYNCSENDBBRGHTRMTTX9D

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission.

* Page provides register information.

Standard Operating Conditions (unless otherwise stated)											
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—	_	70	ns	VDD = 3.3-5.0V				
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—	_	72	ns	VDD = 3.3-5.0V				
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	_	20	ns					
OS14	TioV2ckH	Port input valid before CLKOUT↑ ⁽¹⁾	Tosc + 200 ns	_	_	ns					
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.3-5.0V				
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	_	_	ns	VDD = 3.3-5.0V				
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	_	_	ns					
OS18*	TioR	Port output rise time	—	40	72	ns	VDD = 1.8V				
				15	32		VDD = 3.3-5.0V				
OS19*	TioF	Port output fall time	—	28	55	ns	VDD = 1.8V				
			_	15	30		VDD = 3.3-5.0V				
OS20*	Tinp	INT pin input high or low time	25	_	_	ns					
OS21*	Tioc	Interrupt-on-change new input level time	25	_	_	ns					

TABLE 30-9: CLKOUT AND I/O TIMING PARAMETERS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-49: IPD, Comparator, NP Mode (CxSP = 1), PIC16LF1784/6/7 Only.

FIGURE 31-50: IPD, Comparator, NP Mode (CxSP = 1), PIC16F1784/6/7 Only.

FIGURE 31-51: VOH vs. IOH Over Temperature, VDD = 5.0V, PIC16F1784/6/7 Only.

FIGURE 31-54: VOL vs. IOL Over Temperature, VDD = 3.0V.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-103: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V, PIC16F1784/6/7 Only.

FIGURE 31-105: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 1.8V, PIC16LF1784/6/7 Only.

FIGURE 31-107: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V, PIC16LF1784/6/7 Only.

FIGURE 31-104: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC16F1784/6/7 Only.

FIGURE 31-106: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC16LF1784/6/7 Only.

FIGURE 31-108: Op Amp, Common Mode Rejection Ratio (CMRR), VDD = 3.0V.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-126: Typical DAC DNL Error, VDD = 3.0V, VREF = External 3V.

FIGURE 31-127: Typical DAC INL Error, VDD = 3.0V, VREF = External 3V.

FIGURE 31-128: Typical DAC INL Error, VDD = 5.0V, VREF = External 5V, PIC16F1784/6/7 Only.

FIGURE 31-130: Absolute Value of DAC DNL Error, VDD = 3.0V, VREF = VDD.

FIGURE 31-129: Typical DAC INL Error, VDD = 5.0V, VREF = External 5V, PIC16F1784/6/7 Only.

FIGURE 31-131: Absolute Value of DAC INL Error, VDD = 3.0V.