

Welcome to E-XFL.COM

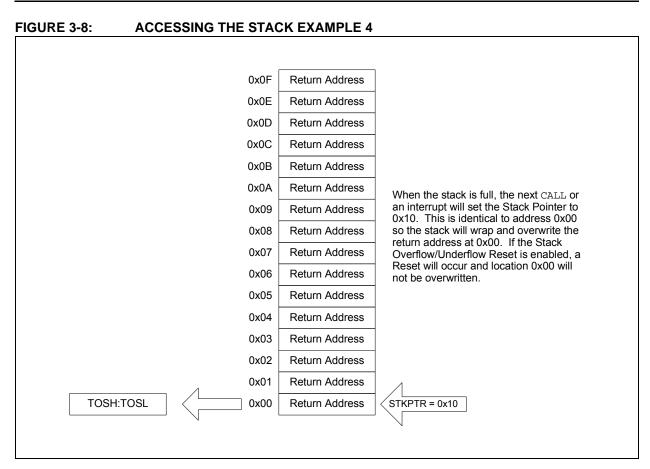
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1784-e-ml


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	BANK 16		BANK 16		BANK 16
811h	PSMC1CON	831h	PSMC2CON	851h	PSMC3CON
812h	PSMC1MDL	832h	PSMC2MDL	852h	PSMC3MDL
813h	PSMC1SYNC	833h	PSMC2SYNC	853h	PSMC3SYNC
814h	PSMC1CLK	834h	PSMC2CLK	854h	PSMC3CLK
815h	PSMC10EN	835h	PSMC2OEN	855h	PSMC3OEN
816h	PSMC1POL	836h	PSMC2POL	856h	PSMC3POL
817h	PSMC1BLNK	837h	PSMC2BLNK	857h	PSMC3BLNK
818h	PSMC1REBS	838h	PSMC2REBS	858h	PSMC3REBS
819h	PSMC1FEBS	839h	PSMC2FEBS	859h	PSMC3FEBS
81Ah	PSMC1PHS	83Ah	PSMC2PHS	85Ah	PSMC3PHS
81Bh	PSMC1DCS	83Bh	PSMC2DCS	85Bh	PSMC3DCS
81Ch	PSMC1PRS	83Ch	PSMC2PRS	85Ch	PSMC3PRS
81Dh	PSMC1ASDC	83Dh	PSMC2ASDC	85Dh	PSMC3ASDC
81Eh	PSMC1ASDD	83Eh	PSMC2ASDD	85Eh	PSMC3ASDD
81Fh	PSMC1ASDS	83Fh	PSMC2ASDS	85Fh	PSMC3ASDS
820h	PSMC1INT	840h	PSMC2INT	860h	PSMC3INT
821h	PSMC1PHL	841h	PSMC2PHL	861h	PSMC3PHL
822h	PSMC1PHH	842h	PSMC2PHH	862h	PSMC3PHH
823h	PSMC1DCL	843h	PSMC2DCL	863h	PSMC3DCL
824h	PSMC1DCH	844h	PSMC2DCH	864h	PSMC3DCH
825h	PSMC1PRL	845h	PSMC2PRL	865h	PSMC3PRL
826h	PSMC1PRH	846h	PSMC2PRH	866h	PSMC3PRH
827h	PSMC1TMRL	847h	PSMC2TMRL	867h	PSMC3TMRL
828h	PSMC1TMRH	848h	PSMC2TMRH	868h	PSMC3TMRH
829h	PSMC1DBR	849h	PSMC2DBR	869h	PSMC3DBR
82Ah	PSMC1DBF	84Ah	PSMC2DBF	86Ah	PSMC3DBF
82Bh	PSMC1BLKR	84Bh	PSMC2BLKR	86Bh	PSMC3BLKR
82Ch	PSMC1BLKF	84Ch	PSMC2BLKF	86Ch	PSMC3BLKF
82Dh	PSMC1FFA	84Dh	PSMC2FFA	86Dh	PSMC3FFA
82Eh	PSMC1STR0	84Eh	PSMC2STR0	86Eh	PSMC3STR0
82Fh	PSMC1STR1	84Fh	PSMC2STR1	86Fh	PSMC3STR1
830h	_	850h		870h	—

TABLE 3-10: PIC16(L)F1784/6/7 MEMORY MAP (BANK 16 DETAILS)

Legend: Unimplemented data memory locations, read as '0'.

3.5.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.6 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- · Traditional Data Memory
- Linear Data Memory
- Program Flash Memory

5.13 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

5.14 Register Definitions: Power Control

REGISTER 5-2: PCON: POWER CONTROL REGISTER

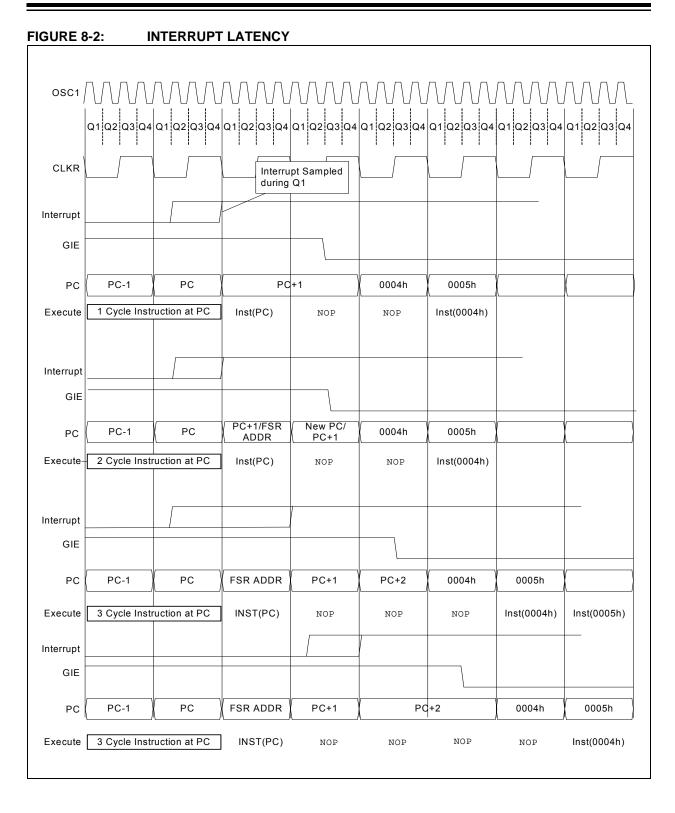
R/W/HS-0/q	R/W/HS-0/q	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	-	RWDT	RMCLR	RI	POR	BOR
bit 7						•	bit 0

Legend:		
HC = Bit is cleared by har	dware	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	STKOVF: Stack Overflow Flag bit
	1 = A Stack Overflow occurred
	0 = A Stack Overflow has not occurred or cleared by firmware
bit 6	STKUNF: Stack Underflow Flag bit
	1 = A Stack Underflow occurred
	0 = A Stack Underflow has not occurred or cleared by firmware
bit 5	Unimplemented: Read as '0'
bit 4	RWDT: Watchdog Timer Reset Flag bit
	1 = A Watchdog Timer Reset has not occurred or set to '1' by firmware
	0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3	RMCLR: MCLR Reset Flag bit
	1 = A MCLR Reset has not occurred or set to '1' by firmware
	 A MCLR Reset has occurred (cleared by hardware)
bit 2	RI: RESET Instruction Flag bit
	1 = A RESET instruction has not been executed or set to '1' by firmware
	0 = A RESET instruction has been executed (cleared by hardware)
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	1 = No Brown-out Reset occurred
	0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset
	occurs)

The PCON register bits are shown in Register 5-2.

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH REFERENCE CLOCK SOURCES


Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CLKRCON	CLKREN	CLKROE	CLKRSLR	CLKRI	DC<1:0>	C	LKRDIV<2:0>	>	86	
Lonondi	Levend: unimplemented leasting read as (a). Cheded calls are not used by reference cleak sources									

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by reference clock sources.

TABLE 7-2: SUMMARY OF CONFIGURATION WORD WITH REFERENCE CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8			FCMEN	IESO	CLKOUTEN	BOREI	N<1:0>	CPD	54
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE	E1<:0>	FOSC<2:0>			54

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by reference clock sources.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
0-0	PSMC3TIE	PSMC2TIE	PSMC1TIE	<u> </u>	PSMC3SIE	PSMC2SIE	PSMC1SIE
bit 7	TOMOUTIL	TOMOZITE	TOMOTHE		TOMOGOL	TOMOZOIL	bit 0
Legend:							
R = Readable		W = Writable		•	mented bit, read		
u = Bit is unc	•	x = Bit is unkr		-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is se	t	'0' = Bit is clea	ared				
bit 7	Unimplemen	ted: Read as '	כי				
bit 6	PSMC3TIE: F	PSMC3 Time B	ase Interrupt E	Enable bit			
		PSMC3 time ba PSMC3 time b					
bit 5	PSMC2TIE: F	PSMC2 Time B	ase Interrupt E	Enable bit			
		PSMC2 time ba PSMC2 time b					
bit 4	PSMC1TIE: F	SMC1 Time B	ase Interrupt E	Enable bit			
		PSMC1 time ba					
	0 = Disables	PSMC1 time b	ase generated	d interrupts			
bit 3	Unimplemen	ted: Read as '	כ'				
bit 2	PSMC3SIE: F	PSMC3 Auto-S	hutdown Inter	rupt Enable bit	t		
		PSMC3 auto-sl					
		PSMC3 auto-s		-			
bit 1		PSMC2 Auto-S			t		
		PSMC2 auto-sl					
		PSMC2 auto-s		•			
bit 0		PSMC1 Auto-S		-	t		
		PSMC1 auto-sl PSMC1 auto-s					
		i Givio i auto-s		ιαριο			
	it PEIE of the IN						
Se	et to enable any p	peripheral inter	rupt.				

REGISTER 8-5: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

12.6 Write Verify

Depending on the application, good programming practice may dictate that the value written to the data EEPROM or program memory should be verified (see Example 12-7) to the desired value to be written. Example 12-7 shows how to verify a write to EEPROM.

EXAMPLE 12-7: EEPROM WRITE VERIFY

BANKSEI	l eedatl	;
MOVF	EEDATL, W	;EEDATL not changed
		;from previous write
BSF	EECON1, R) ;YES, Read the
		;value written
XORWF	EEDATL, W	;
BTFSS	STATUS, Z	;Is data the same
GOTO	WRITE_ERR	;No, handle error
:		;Yes, continue
1		

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	138
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2	INLVLB1	INLVLB0	139
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	137
ODCONB	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	139
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	137
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	139
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	137
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	138

TABLE 13-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

13.8 Register Definitions: PORTC

REGISTER 13-19: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RC6	RC5	RC4	RC3	RC2	RC1	RC0
						bit 0
t	W = Writable I	oit	U = Unimplen	nented bit, read	as '0'	
nged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
	'0' = Bit is clea	ared				
	t	t W = Writable I nged x = Bit is unkn	t W = Writable bit	t W = Writable bit U = Unimpler nged x = Bit is unknown -n/n = Value a	t W = Writable bit U = Unimplemented bit, read aged x = Bit is unknown $-n/n = Value at POR and BOI$	t W = Writable bit U = Unimplemented bit, read as '0' nged x = Bit is unknown -n/n = Value at POR and BOR/Value at all o

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

REGISTER 13-20: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISC<7:0>: PORTC Tri-State Control bits 1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

REGISTER 13-21: LATC: PORTC DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATC7 | LATC6 | LATC5 | LATC4 | LATC3 | LATC2 | LATC1 | LATC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

19.4 Operation During Sleep

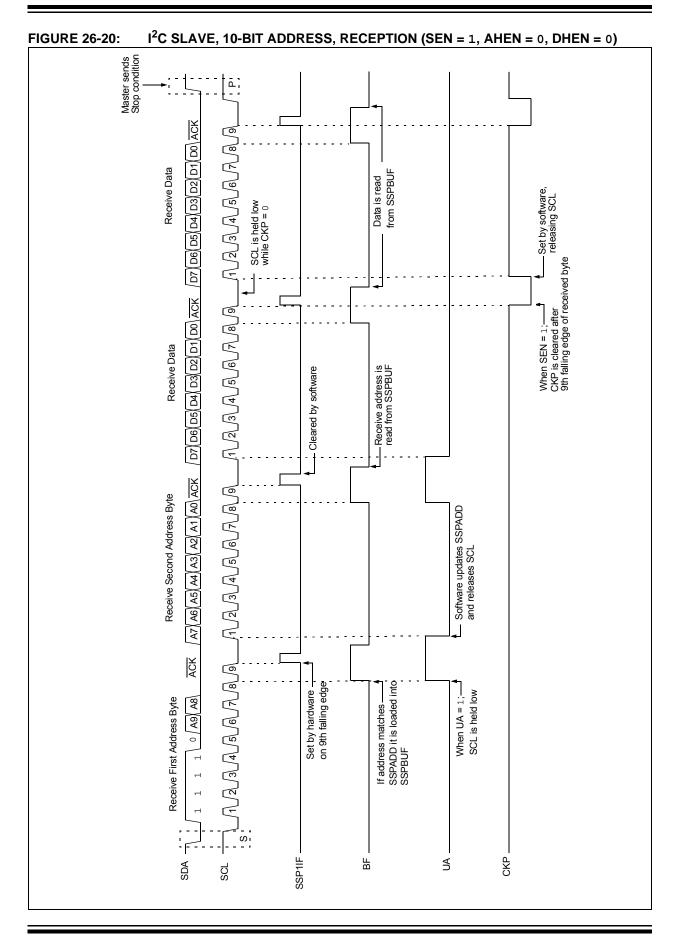
When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DAC1CON0 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

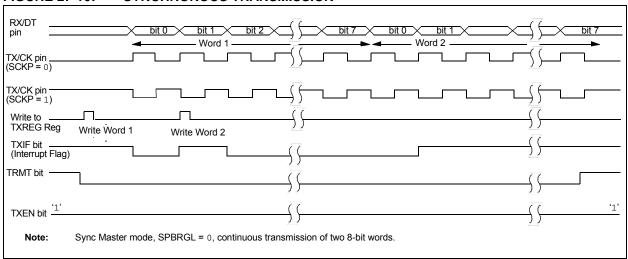
19.5 Effects of a Reset

A device Reset affects the following:

- DAC is disabled.
- DAC output voltage is removed from the DAC10UT pin.
- The DAC1R<7:0> range select bits are cleared.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	PxPOLIN	PxPOLF ⁽¹⁾	PxPOLE ⁽¹⁾	PxPOLD ⁽¹⁾	PxPOLC ⁽¹⁾	PxPOLB	PxPOLA
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set '0' = Bit is cleared							
bit 7	Unimplemen	ted: Read as '	0'				
bit 6	PxPOLIN: PS	MCxIN Polarit	y bit				
	1 = PSMCx	IN input is activ	e-low				
	0 = PSMCx	IN input is activ	e-high				
bit 5-0	PxPOLy: PSI	MCx Output y F	Polarity bit ⁽¹⁾				
	1 = PWM P	SMCx output y	is active-low				
	0 = PWM P	SMCx output y	is active-high				
Note 1: Th	hese bits are not	implemented c	n PSMC2.				


REGISTER 24-8: PSMCxPOL: PSMC POLARITY CONTROL REGISTER


REGISTER 24-9:	PSMCxBLNK: PSMC BLANKING CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	PxFEBM1	PxFEBM0	—	—	PxREBM1	PxREBM0
bit 7							bit 0

Legend:			
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged		x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is :	set	'0' = Bit is cleared	
bit 7-6	Unimplen	nented: Read as '0'	
DIL 7-0	ommpien	nemeu. Reau as 0	
bit 5-4	lanking Mode bits		
	11 = Rese	erved – do not use	
	10 = Rese	erved – do not use	

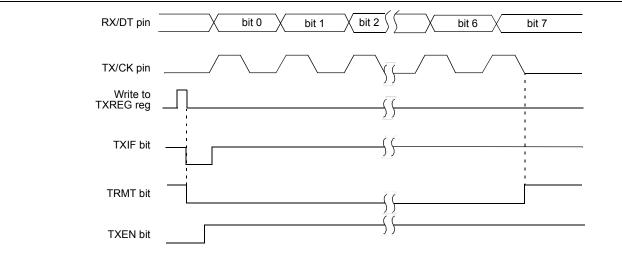

- 01 = Immediate blanking
- 00 = No blanking
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 PxREBM<1:0> PSMC Rising Edge Blanking Mode bits
 - 11 = Reserved do not use
 - 10 = Reserved do not use
 - 01 = Immediate blanking
 - 00 = No blanking

FIGURE 27-10: SYNCHRONOUS TRANSMISSION

FIGURE 27-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 27-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON1	C2OUTSEL	CC1PSEL	SDOSEL	SCKSEL	SDISEL	TXSEL	RXSEL	CCP2SEL	127
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	347
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	346
SPBRGL		BRG<7:0>							348
SPBRGH				BRG<	15:8>				348
TRISC	TRISC7	TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0							
TXREG	EUSART Transmit Data Register								337*
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	345
Logond	– unimplomo	ated leastion	read as 'o'	Chadad calls	ore not use	d for overebro	nous mostor	tranamiaaian	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission.

* Page provides register information.

29.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- · Byte Oriented
- · Bit Oriented
- · Literal and Control

The literal and control category contains the most varied instruction word format.

Table 29-3 lists the instructions recognized by the MPASM $^{\rm TM}$ assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)

TABLE 29-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 29-2: ABBREVIATION DESCRIPTIONS

Field	Description			
PC	Program Counter			
TO	Time-Out bit			
С	Carry bit			
DC	Digit Carry bit			
Z	Zero bit			
PD	Power-Down bit			

 One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

29.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	VIHH	Voltage on MCLR/VPP/RE3 pin	8.0	—	9.0	V	(Note 3)
D111	IDDP	Supply Current during Programming	—	—	10	mA	
D112		VDD for Bulk Erase	2.7	—	VDDMAX	V	
D113	VPEW	VDD for Write or Row Erase	VDDMIN	—	VDDMAX	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	—	—	1.0	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—		5.0	mA	
		Data EEPROM Memory					
D116	ED	Byte Endurance	100K	—	_	E/W	-40°C to +85°C
D117	VDRW	VDD for Read/Write	VDDMIN	—	VDDMAX	V	
D118	TDEW	Erase/Write Cycle Time	—	4.0	5.0	ms	
D119	TRETD	Characteristic Retention	—	40	_	Year	Provided no other specifications are violated
D120	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	100k	_	_	E/W	-40°C to +85°C
		Program Flash Memory					
D121	Eр	Cell Endurance	10K	—	_	E/W	-40°C to +85°C (Note 1)
D122	Vpr	VDD for Read	VDDMIN	—	VDDMAX	V	
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms	
D124	TRETD	Characteristic Retention	—	40	-	Year	Provided no other specifications are violated

Standard Operating Conditions (unless otherwise stated)

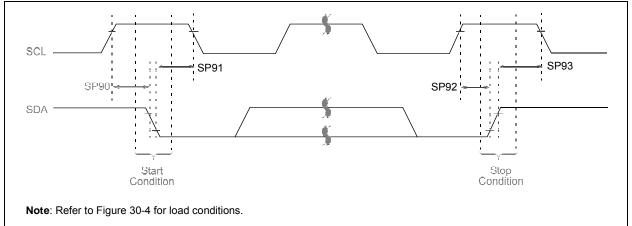
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Refer to Section 12.2 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

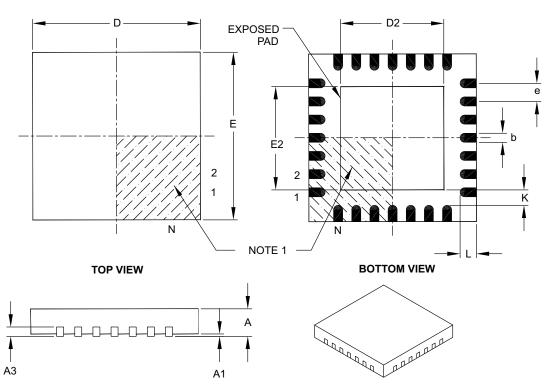
TABLE 30-20: SPI MODE REQUIREMENTS


Param No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
SP70*	TssL2scH, TssL2scL	$\overline{\mathrm{SS}}\downarrow$ to $\mathrm{SCK}\downarrow$ or $\mathrm{SCK}\uparrow$ input		2.25*Tcy		—	ns	
SP71*	TscH	SCK input high time (Slave mode)		Tcy + 20	_	_	ns	
SP72*	TscL	SCK input low time (Slave mode)		Tcy + 20	_	_	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge		100	_	—	ns	
SP74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	_	—	ns	
SP75*	TDOR	SDO data output rise time	3.0-5.5V	_	10	25	ns	
			1.8-5.5V	_	25	50	ns	
SP76*	TDOF	SDO data output fall time		_	10	25	ns	
SP77*	TssH2doZ	SS↑ to SDO output high-impedance		10	_	50	ns	
SP78*	TscR	SCK output rise time (Master mode)	3.0-5.5V	_	10	25	ns	
			1.8-5.5V	_	25	50	ns	
SP79*	TscF	SCK output fall time (Master mode)		_	10	25	ns	
SP80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	3.0-5.5V	_		50	ns	
			1.8-5.5V	—	_	145	ns	
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge		Тсу		—	ns	
SP82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge		_		50	ns	
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40		-	ns	

Standard Operating Conditions (unless otherwise stated)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

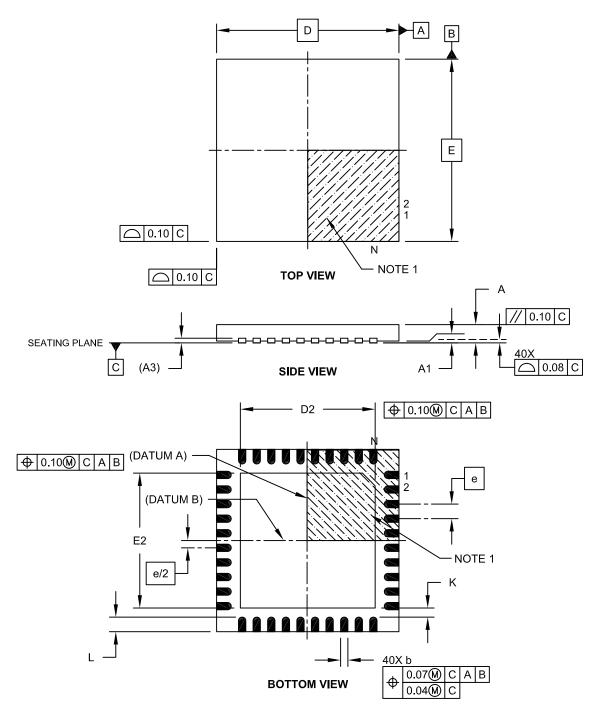

FIGURE 30-20: I²C[™] BUS START/STOP BITS TIMING

*

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	;	
]	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N	28			
Pitch	е		0.65 BSC		
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.20	
Contact Width	b	0.23	0.30	0.35	
Contact Length	L	0.50	0.55	0.70	
Contact-to-Exposed Pad		0.20	_	_	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ - X <u>/XX XXX</u> T Tape and Reel Temperature Package Pattern Option Range	Industrial temperature PDIP package
Device:	PIC16F1784, PIC16LF1784, PIC16F1786, PIC16LF1786, PIC16F1787, PIC16LF1787	b) PIC16F1786- E/SS Extended temperature, SSOP package
Tape and Reel Option:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾	
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package: ⁽²⁾		Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	2: Small form-factor packaging options may be available. Please check <u>www.microchip.com/packaging</u> for small-form factor package availability, or contact your local Sales Office.