

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1784-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-5: PIC16(L)F1787 MEMORY MAP (BANKS 0-7)

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	Core Registers (Table 3-2)	080h	Core Registers (Table 3-2)	100h	Core Registers (Table 3-2)	180h	Core Registers (Table 3-2)	200h	Core Registers (Table 3-2)	280h	Core Registers (Table 3-2)	300h	Core Registers (Table 3-2)	380h	Core Registers (Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	ODCONB	30Dh	SLRCONB	38Dh	INLVLB
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	_	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
00Fh	PORTD	08Fh	TRISD	10Fh	LATD	18Fh	ANSELD	20Fh	WPUD	28Fh	ODCOND	30Fh	SLRCOND	38Fh	INLVLD
010h	PORTE	090h	TRISE	110h	LATE	190h	ANSELE	210h	WPUE	290h	ODCONE	310h	SLRCONE	390h	INLVLE
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	EEADRL	211h	SSP1BUF	291h	CCPR1L	311h	_	391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	EEADRH	212h	SSP1ADD	292h	CCPR1H	312h	_	392h	IOCAN
013h	_	093h	_	113h	CM2CON0	193h	EEDATL	213h	SSP1MSK	293h	CCP1CON	313h	—	393h	IOCAF
014h	PIR4	094h	PIE4	114h	CM2CON1	194h	EEDATH	214h	SSP1STAT	294h	—	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	EECON1	215h	SSP1CON1	295h	—	315h	_	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSP1CON2	296h	—	316h	—	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	SSP1CON3	297h	—	317h	—	397h	IOCCP
018h	T1CON	098h	OSCTUNE	118h	DAC1CON0	198h	—	218h	—	298h	CCPR2L	318h	—	398h	IOCCN
019h	T1GCON	099h	OSCCON	119h	DAC1CON1	199h	RCREG	219h	—	299h	CCPR2H	319h	_	399h	IOCCF
01Ah	TMR2	09Ah	OSCSTAT	11Ah	CM4CON0	19Ah	TXREG	21Ah	—	29Ah	CCP2CON	31Ah	—	39Ah	_
01Bh	PR2	09Bh	ADRESL	11Bh	CM4CON1	19Bh	SPBRGL	21Bh	—	29Bh	—	31Bh	—	39Bh	_
01Ch	T2CON	09Ch	ADRESH	11Ch	APFCON2	19Ch	SPBRGH	21Ch	—	29Ch	—	31Ch	—	39Ch	—
01Dh	—	09Dh	ADCON0	11Dh	APFCON1	19Dh	RCSTA	21Dh	—	29Dh	—	31Dh	—	39Dh	IOCEP
01Eh	—	09Eh	ADCON1	11Eh	CM3CON0	19Eh	TXSTA	21Eh	—	29Eh	—	31Eh	—	39Eh	IOCEN
01Fh	_	09Fh	ADCON2	11Fh	CM3CON1	19Fh	BAUDCON	21Fh	—	29Fh	—	31Fh	—	39Fh	IOCEF
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General Purpose Register 80 Bytes		General Purpose Register 80 Bytes	13Fh 140h	General Purpose Register 80 Bytes		General Purpose Register 80 Bytes								
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
	Common RAM 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: PIC16F1787 only.

5.1 Power-On Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

5.1.1 POWER-UP TIMER (PWRT)

The Power-up Timer provides a nominal 64 ms time-out on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in Configuration Words.

The Power-up Timer starts after the release of the POR and BOR.

For additional information, refer to Application Note AN607, *"Power-up Trouble Shooting"* (DS00607).

5.2 Brown-Out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- · BOR is always on
- · BOR is off when in Sleep
- · BOR is controlled by software
- · BOR is always off

Refer to Table 5-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 5-2 for more information.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Instruction Execution upon: Release of POR or Wake-up from Sleep
11	х	Х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)
1.0	T.	Awake	Active	Weite for DOD ready (DODDDY = 1)
10	Х	Sleep	Disabled	Waits for BOR ready (BORRD $f = 1$)
01	1	х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)
ÛĹ	0	х	Disabled	Paging immediately (POPPDV =)
00	х	х	Disabled	begins inimediately (BORRDT = x)

TABLE 5-1:BOR OPERATING MODES

Note 1: In these specific cases, "Release of POR" and "Wake-up from Sleep", there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

5.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

5.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

5.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

6.6 Register Definitions: Oscillator Control

REGISTER 6-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0
SPLLEN		IRCF	<3:0>		_	SCS	<1:0>
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set	t	'0' = Bit is clea	ared				
bit 7	SPLLEN: So <u>If PLLEN in (</u> SPLLEN bit i <u>If PLLEN in (</u> 1 = 4x PLL I 0 = 4x PLL i	ftware PLL Ena <u>Configuration W</u> s ignored. 4x P <u>Configuration W</u> s enabled s disabled	able bit ′ <u>ords = 1:</u> LL is always e ′ <u>ords = 0:</u>	nabled (subject	t to oscillator re	equirements)	
bit 6-3	$0 = 4x PLL \text{ is disabled}$ $16-3 \qquad IRCF<3:0>: Internal Oscillator Frequency Select bits$ $1111 = 16 \text{ MHz HF or 32 MHz HF}^{(2)}$ $1110 = 8 \text{ MHz or 32 MHz HF}^{(2)}$ $1101 = 4 \text{ MHz HF}$ $1100 = 2 \text{ MHz HF}$ $1010 = 2 \text{ MHz HF}$ $1011 = 1 \text{ MHz HF}$ $1010 = 500 \text{ kHz HF}^{(1)}$ $1001 = 250 \text{ kHz HF}^{(1)}$ $1000 = 125 \text{ kHz HF}^{(1)}$ $0111 = 500 \text{ kHz MF} (\text{default upon Reset})$ $0110 = 250 \text{ kHz MF}$ $0101 = 125 \text{ kHz MF}$ $0101 = 31.25 \text{ kHz MF}$						
bit 2 bit 1-0	Unimplemen SCS<1:0>: S 1x = Internal 01 = Timer1 00 = Clock d	Unimplemented: Read as '0' SCS<1:0>: System Clock Select bits 1x = Internal oscillator block 01 = Timer1 oscillator 00 = Clock determined by FOSC<2:0> in Configuration Words.					
Note 1: Du	uplicate frequen	cy derived from	HFINTOSC.				

2: 32 MHz when SPLLEN bit is set. Refer to Section 6.2.2.6 "32 MHz Internal Oscillator Frequency Selection".

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	PSMC3TIF	PSMC2TIF	PSMC1TIF		PSMC3SIF	PSMC2SIF	PSMC1SIF
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is u	unchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is	set	'0' = Bit is clea	ared				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6	PSMC3TIF: F	SMC3 Time B	ase Interrupt F	-lag bit			
	1 = Interrupt i 0 = Interrupt i	s pending s not pending					
bit 5	PSMC2TIF: F	SMC2 Time B	ase Interrupt F	-lag bit			
	1 = Interrupt i	s pending					
		s not pending					
bit 4		SMC1 Time B	ase Interrupt I	lag bit			
	\perp = Interrupt i 0 = Interrupt i	s penaing s not pendina					
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	PSMC3SIF: F	PSMC3 Auto-st	° hutdown Flag	bit			
	1 = Interrupt i	s pending	in a second s	~			
	0 = Interrupt i	s not pending					
bit 1	PSMC2SIF: F	PSMC2 Auto-sh	nutdown Flag	bit			
	1 = Interrupt i	s pending					
		s not pending					
bit 0	PSMC1SIF: ⊦	'SMC1 Auto-st	hutdown Flag	bit			
	1 = Interrupt i	s pending					
	0 – menuper	s not pending					
Note:	Interrupt flag bits a	re set when an	interrupt				
	condition occurs, re	egardless of the	e state of				
	Enable bit GIE o	f the INTCON	register				
	User software	should ensu	ure the				
	appropriate interru	upt flag bits a	are clear				
	prior to enabling a	n interrupt.					

REGISTER 8-9: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

20.7 Comparator Negative Input Selection

The CxNCH<2:0> bits of the CMxCON0 register direct an analog input pin or analog ground to the inverting input of the comparator:

- CxIN- pin
- Analog Ground

Some inverting input selections share a pin with the operational amplifier output function. Enabling both functions at the same time will direct the operational amplifier output to the comparator inverting input.

Note: To use CxINy+ and CxINy- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

20.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section 30.0** "**Electrical Specifications**" for more details.

20.9 Zero Latency Filter

In high-speed operation, and under proper circuit conditions, it is possible for the comparator output to oscillate. This oscillation can have adverse effects on the hardware and software relying on this signal. Therefore, a digital filter has been added to the comparator output to suppress the comparator output oscillation. Once the comparator output changes, the output is prevented from reversing the change for a nominal time of 20 ns. This allows the comparator output to stabilize without affecting other dependent devices. Refer to Figure 20-3.

FIGURE 20-3: COMPARATOR ZERO LATENCY FILTER OPERATION

21.2 Register Definitions: Option Register

REGISTER 21-1: OPTION_REG: OPTION REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>	
bit 7							bit (
Legend:							
R = Readable	R = Readable bit W = Writable bit			U = Unimplen	nented bit, read	l as '0'	
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	WPUEN: We	ak Pull-Up Ena	ble bit				
	1 = All weak	pull-ups are dis	abled (except	MCLR, IT IT IS E	enabled)		
hit 6		n-ups are enabl	ed by marvidu	al WF UX later	values		
JILO	1 = Interrupt	on rising odgo					
	1 = Interrupt 0 = Interrupt	on falling edge	of INT pin				
bit 5	TMR0CS: Tir	mer0 Clock Sou	rce Select bit				
	1 = Transitior	n on TOCKI pin					
	0 = Internal in	nstruction cycle	clock (Fosc/4	!)			
bit 4	TMR0SE: Tir	mer0 Source Ec	lge Select bit				
	1 = Incremen	it on high-to-lov	v transition on	T0CKI pin			
	0 = Incremen	it on low-to-higł	n transition on	T0CKI pin			
bit 3	PSA: Presca	ler Assignment	bit				
	1 = Prescale	r is not assigne	d to the Timer	0 module			
	0 = Prescale	r is assigned to	the Timer0 m	odule			
bit 2-0	PS<2:0>: Pre	escaler Rate Se	elect bits				
	Bit	Value Timer0	Rate				
	(000 1:2					
	(001 1:4					
	(e				
	-		2				
	-	100 1:0	4				
	-	1:10	28				

TABLE 21-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS<2:0>			198
TMR0	Timer0 Module Register							196*	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	131

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

* Page provides register information.

22.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- · 2-bit prescaler
- · Dedicated 32 kHz oscillator circuit
- · Optionally synchronized comparator out
- Multiple Timer1 gate (count enable) sources
- · Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function
- Auto-conversion Trigger (with CCP)
- · Selectable Gate Source Polarity

- Gate Toggle mode
- Gate Single-pulse mode
- Gate Value Status
- Gate Event Interrupt
- Figure 22-1 is a block diagram of the Timer1 module.

FIGURE 22-1: TIMER1 BLOCK DIAGRAM

24.3.3 PUSH-PULL PWM

The push-pull PWM is used to drive transistor bridge circuits. It uses at least two outputs and generates PWM signals that alternate between the two outputs in even and odd cycles.

Variations of the push-pull waveform include four outputs with two outputs being complementary or two sets of two identical outputs. Refer to Sections 24.3.4 through 24.3.6 for the other Push-Pull modes.

24.3.3.1 Mode Features

- · No dead-band control available
- · No steering control available
- · Output is on the following two pins only:
 - PSMCxA
 - PSMCxB

Note: This is a subset of the 6-pin output of the push-pull PWM output, which is why pin functions are fixed in these positions, so they are compatible with that mode. See Section 24.3.6 "Push-Pull PWM with Four Full-Bridge and Complementary Outputs"

24.3.3.2 Waveform Generation

Odd numbered period rising edge event:

PSMCxA is set active

Odd numbered period falling edge event:

· PSMCxA is set inactive

Even numbered period rising edge event:

PSMCxB is set active

Even numbered period falling edge event:

PSMCxB is set inactive

FIGURE 24-6: PUSH-PULL PWM WAVEFORM

Code for setting up the PSMC generate the complementary single-phase waveform shown in Figure 24-6, and given in Example 24-3.

EXAMPLE 24-3: **PUSH-PULL SETUP**

- ; Push-Pull PWM PSMC setup
- ; Fully synchronous operation
- ; Period = 10 us

BCF

TRISC, 1

; Duty cycle = 50% (25% each phase) BANKSEL PSMC1CON MOVLW 0×02 ; set period MOVWF PSMC1PRH MOVLW $0 \times 7 F$ MOVWF PSMC1PRL MOVLW 0x01 ; set duty cycle MOVWF PSMC1DCH MOVLW 0x3F MOVWF PSMC1DCL CLRF PSMC1PHH ; no phase offset PSMC1PHL CLRF MOVLW 0x01 ; PSMC clock=64 MHz MOVWF PSMC1CLK ; output on A and B, normal polarity MOVLW B'0000011' MOVWF PSMC10EN CLRF PSMC1POL ; set time base as source for all events BSF PSMC1PRS, P1PRST BSF PSMC1PHS, P1PHST BSF PSMC1DCS, P1DCST ; enable PSMC in Push-Pull Mode ; this also loads steering and time buffers MOVLW B'11000010' MOVWF PSMC1CON BANKSEL TRISC BCF TRISC, 0 ; enable pin drivers

24.3.12 3-PHASE PWM

The 3-Phase mode of operation is used in 3-phase power supply and motor drive applications configured as three half-bridges. A half-bridge configuration consists of two power driver devices in series, between the positive power rail (high side) and negative power rail (low side). The three outputs come from the junctions between the two drivers in each half-bridge. When the steering control selects a phase drive, power flows from the positive rail through a high-side power device to the load and back to the power supply through a low-side power device.

In this mode of operation, all six PSMC outputs are used, but only two are active at a time.

The two active outputs consist of a high-side driver and low-side driver output.

24.3.12.1 Mode Features

- · No dead-band control is available
- PWM can be steered to the following six pairs:
 - PSMCxA and PSMCxD
 - PSMCxA and PSMCxF
 - PSMCxC and PSMCxF
 - PSMCxC and PSMCxB
 - PSMCxE and PSMCxB
 - PSMCxE and PSMCxD

24.3.12.2 Waveform Generation

3-phase steering has a more complex waveform generation scheme than the other modes. There are several factors which go into what waveforms are created.

The PSMC outputs are grouped into three sets of drivers: one for each phase. Each phase has two associated PWM outputs: one for the high-side drive and one for the low-side drive.

High Side drives are indicated by 1H, 2H and 3H.

Low Side drives are indicated by 1L, 2L, 3L.

Phase grouping is mapped as shown in Table 24-1. There are six possible phase drive combinations. Each phase drive combination activates two of the six outputs and deactivates the other four. Phase drive is selected with the steering control as shown in Table 24-2.

TABLE 24-1: PHASE GROUPING

PSMC grouping						
PSMCxA	1H					
PSMCxB	1L					
PSMCxC	2H					
PSMCxD	2L					
PSMCxE	3H					
PSMCxF	3L					

			PSMCxSTR0 Value ⁽¹⁾								
PSMC outputs		00h	01h	02h	04h	08h	10h	20h			
PSMCxA	1H	inactive	active	active	inactive	inactive	inactive	inactive			
PSMCxB	1L	inactive	inactive	inactive	inactive	active	active	inactive			
PSMCxC	2H	inactive	inactive	inactive	active	active	inactive	inactive			
PSMCxD	2L	inactive	active	inactive	inactive	inactive	inactive	active			
PSMCxE	3H	inactive	inactive	inactive	inactive	inactive	active	active			
PSMCxF	3L	inactive	inactive	active	active	inactive	inactive	inactive			

TABLE 24-2: 3-PHASE STEERING CONTROL

Note 1: Steering for any value other than those shown will default to the output combination of the Least Significant steering bit that is set.

High/Low Side Modulation Enable

It is also possible to enable the PWM output on the low side or high side drive independently using the PxLSMEN and PXHSMEN bits of the PSMC Steering Control 1 (PSMCxSTR1) register (Register 24-32).

When the PxHSMEN bit is set, the active-high side output listed in Table 24-2 is modulated using the normal rising edge and falling edge events.

When the PxLSMEN bit is set, the active-low side output listed in Table 24-2 is modulated using the normal rising edge and falling edge events.

When both the PxHSMEN and PxLSMEN bits are cleared, the active outputs listed in Table 24-2 go immediately to the rising edge event states and do not change.

Rising Edge Event

· Active outputs are set to their active states

Falling Edge Event

· Active outputs are set to their inactive state

24.4 Dead-Band Control

The dead-band control provides non-overlapping PWM signals to prevent shoot-through current in series connected power switches. Dead-band control is available only in modes with complementary drive and when changing direction in the ECCP compatible Full-Bridge modes.

The module contains independent 8-bit dead-band counters for rising edge and falling edge dead-band control.

24.4.1 DEAD-BAND TYPES

There are two separate dead-band generators available, one for rising edge events and the other for falling edge events.

24.4.1.1 Rising Edge Dead Band

Rising edge dead-band control is used to delay the turn-on of the primary switch driver from when the complementary switch driver is turned off.

Rising edge dead band is initiated with the rising edge event.

Rising edge dead-band time is adjusted with the PSMC Rising Edge Dead-Band Time (PSMCxDBR) register (Register 24-26).

If the PSMCxDBR register value is changed when the PSMC is enabled, the new value does not take effect until the first period event after the PSMCxLD bit is set.

24.4.1.2 Falling Edge Dead Band

Falling edge dead-band control is used to delay the turn-on of the complementary switch driver from when the primary switch driver is turned off.

Falling edge dead band is initiated with the falling edge event.

Falling edge dead-band time is adjusted with the PSMC Falling Edge Dead-Band Time (PSMCxDBF) register (Register 24-27).

If the PSMCxDBF register value is changed when the PSMC is enabled, the new value does not take effect until the first period event after the PSMCxLD bit is set.

24.4.2 DEAD-BAND ENABLE

When a mode is selected that may use dead-band control, dead-band timing is enabled by setting one of the enable bits in the PSMC Control (PSMCxCON) register (Register 24-1).

Rising edge dead band is enabled with the PxDBRE bit.

Rising edge dead band is enabled with the PxDBFE bit.

Enable changes take effect immediately.

24.4.3 DEAD-BAND CLOCK SOURCE

The dead-band counters are incremented on every rising edge of the psmc_clk signal.

24.4.4 DEAD-BAND UNCERTAINTY

When the rising and falling edge events that trigger the dead-band counters come from asynchronous inputs, there will be uncertainty in the actual dead-band time of each cycle. The maximum uncertainty is equal to one psmc_clk period. The one clock of uncertainty may still be introduced, even when the dead-band count time is cleared to zero.

24.4.5 DEAD-BAND OVERLAP

There are two cases of dead-band overlap and each is treated differently due to system requirements.

24.4.5.1 Rising to Falling Overlap

In this case, the falling edge event occurs while the rising edge dead-band counter is still counting. The following sequence occurs:

- 1. Dead-band rising count is terminated.
- 2. Dead-band falling count is initiated.
- 3. Primary output is suppressed.

24.4.5.2 Falling to Rising Overlap

In this case, the rising edge event occurs while the falling edge dead-band counter is still counting. The following sequence occurs:

- 1. Dead-band falling count is terminated.
- 2. Dead-band rising count is initiated.
- 3. Complementary output is suppressed.

24.4.5.3 Rising Edge-to-Rising Edge or Falling Edge-to-Falling Edge

In cases where one of the two dead-band counters is set for a short period, or disabled all together, it is possible to get rising-to-rising or falling-to-falling overlap. When this is the case, the following sequence occurs:

- 1. Dead-band count is terminated.
- 2. Dead-band count is restarted.
- 3. Output waveform control freezes in the present state.
- 4. Restarted dead-band count completes.
- 5. Output control resumes normally.

24.5.4 SYNCHRONIZED PWM STEERING

In Single, Complementary and 3-phase PWM modes, it is possible to synchronize changes to steering selections with the period event. This is so that PWM outputs do not change in the middle of a cycle and therefore, disrupt operation of the application.

Steering synchronization is enabled by setting the PxSSYNC bit of the PSMC Steering Control 1 (PSMCxSTR1) register (Register 24-32).

When synchronized steering is enabled while the PSMC module is enabled, steering changes do not take effect until the first period event after the PSMCxLD bit is set.

Examples of synchronized steering are shown in Figure 24-18.

24.5.5 INITIALIZING SYNCHRONIZED STEERING

If synchronized steering is to be used, special care should be taken to initialize the PSMC Steering Control 0 (PSMCxSTR0) register (Register 24-31) in a safe configuration before setting either the PSMCxEN or PSMCxLD bits. When either of those bits are set, the PSMCxSTR0 value at that time is loaded into the synchronized steering output buffer. The buffer load occurs even if the PxSSYNC bit is low. When the PxSSYNC bit is set, the outputs will immediately go to the drive states in the preloaded buffer.

FIGURE 24-18: PWM STEERING WITH SYNCHRONIZATION WAVEFORM

26.2.1 SPI MODE REGISTERS

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSPSTAT)
- MSSP Control register 1 (SSPCON1)
- MSSP Control register 3 (SSPCON3)
- MSSP Data Buffer register (SSPBUF)
- MSSP Address register (SSPADD)
- MSSP Shift register (SSPSR) (Not directly accessible)

SSPCON1 and SSPSTAT are the control and STATUS registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper 2 bits of the SSPSTAT are read/write.

In one SPI master mode, SSPADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 26.7 "Baud Rate Generator"**.

SSPSR is the shift register used for shifting data in and out. SSPBUF provides indirect access to the SSPSR register. SSPBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPSR and SSPBUF together create a buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSP1IF interrupt is set.

During transmission, the SSPBUF is not buffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

26.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 26-29).

26.6.8.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).

26.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPSTAT register is set. A TBRG later, the PEN bit is cleared and the SSP1IF bit is set (Figure 26-30).

26.6.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 26-30: ACKNOWLEDGE SEQUENCE WAVEFORM

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
ABDOVF	RCIDL	—	SCKP	BRG16		WUE	ABDEN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BOF	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	ABDOVF: Au	to-Baud Detec	t Overflow bit				
	1 = Auto-bau	d timer overflow	ved				
	0 = Auto-bau	d timer did not	overflow				
	Synchronous	mode:					
bit 6	RCIDI · Recei	ive Idle Flag bi	t				
Sit o	Asynchronous	s mode:					
	1 = Receiver	is idle					
	0 = Start bit h	as been receiv	ed and the re	ceiver is receiv	ving		
	Don't care	<u>moue</u> .					
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	SCKP: Synch	ronous Clock I	Polarity Select	bit			
	Asynchronous	<u>s mode</u> :					
	1 = Transmit i 0 = Transmit i	nverted data to non-inverted da	o the TX/CK p ata to the TX/0	in CK pin			
	Synchronous	mode:					
	1 = Data is clo 0 = Data is clo	ocked on rising	edge of the c	Clock			
bit 3	BRG16: 16-bi	it Baud Rate G	enerator bit				
	1 = 16-bit Ba	ud Rate Gener	ator is used				
	0 = 8-bit Bau	d Rate Genera	tor is used				
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	WUE: Wake-u	up Enable bit					
	Asynchronous	<u>s mode</u> :	folling of stars	NI			
	⊥ = Receiver will autom	atically clear a	fter RCIF is se	No character	will be received,	byte RCIF WII	I DE SEL VVUE
	0 = Receiver	is operating no	ormally				
	Synchronous	mode:					
	Don't care						
bit 0	ABDEN: Auto	-Baud Detect	Enable bit				
	$\frac{ASYNCHronous}{1 = Auto Ray}$	<u>s mode</u> : Id Detect mode	is enabled (c	lears when a	ito-baud is comp	lete)	
	0 = Auto-Bau	Id Detect mode	e is disabled				
	Synchronous	mode:					
	Don't care						

REGISTER 27-3: BAUDCON: BAUD RATE CONTROL REGISTER

PIC16(L)F1784/6/7

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BSF	Bit Set f
Syntax:	[<i>label</i>]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

BRA	Relative Branch
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k
Operands:	-256 \leq label - PC + 1 \leq 255 -256 \leq k \leq 255
Operation:	$(PC) + 1 + k \rightarrow PC$
Status Affected:	None
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.

Relative Branch with W

Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction

[label] BRW

 $(PC) + (W) \rightarrow PC$

is a 2-cycle instruction.

None

None

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

BRW

Syntax:

Operands:

Operation:

Description:

Status Affected:

30.2 Standard Operating Conditions

he standard operating conditions for any device are defined as:	
Derating Voltage: VDDMIN \leq VDD \leq VDDMAX	
Operating Temperature: $TA_MIN \le TA \le TA_MAX$	
DD — Operating Supply Voltage ⁽¹⁾	
PIC16LF1784/6/7	
VDDMIN (Fosc \leq 16 MHz)	V
VDDMIN (16 MHz < Fosc \leq 32 MHz)	V
VDDMAX	V
PIC16F1784/6/7	
VDDMIN (Fosc \leq 16 MHz)	V
VDDMIN (16 MHz < Fosc \leq 32 MHz)	V
VDDMAX	V
A — Operating Ambient Temperature Range	
Industrial Temperature	
TA_MIN40°0	С
Ta_max	С
Extended Temperature	
TA_MIN40°0	С
TA_MAX	С

Note 1: See Parameter D001, DC Characteristics: Supply Voltage.

PIC16(L)F1784/6/7

TABLE 30-4: I/O PORTS (CONTINUED)

Standard Operating Conditions (unless otherwise stated)

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Capacitive Loading Specs on	Output Pins				
D101*	COSC2	OSC2 pin	_	—	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101A*	Сю	All I/O pins	_	—	50	pF	
		VCAP Capacitor Charging					
D102		Charging current	_	200	—	μΑ	
D102A		Source/sink capability when charging complete		0.0		mA	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

TABLE 30-21: I²C[™] BUS START/STOP BITS REQUIREMENTS

otanuaru operating conditions (uniess otherwise stated)								
Param No.	Symbol	Characteristic		Min.	Тур	Max.	Units	Conditions
SP90*	TSU:STA	Start condition	100 kHz mode	4700	_	_	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600	_			Start condition
SP91*	THD:STA	Start condition	100 kHz mode	4000		_	ns	After this period, the first
		Hold time	400 kHz mode	600		—		clock pulse is generated
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700	—	_	ns	
		Setup time	400 kHz mode	600		_		
SP93	THD:STO	Stop condition	100 kHz mode	4000		—	ns	
		Hold time	400 kHz mode	600	—	_		

Standard Operating Conditions (unless otherwise stated)

* These parameters are characterized but not tested.

FIGURE 30-21: I²C[™] BUS DATA TIMING

PIC16(L)F1784/6/7

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-69: PWRT Period, PIC16F1784/6/7 Only.

FIGURE 31-72: POR Rearm Voltage, NP Mode (VREGPM = 0), PIC16F1784/6/7 Only.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensio	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A