

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1784-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC16(L)F1784/6/7 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description		
RE2 ⁽³⁾ /AN7/PSMC3A	RE2	TTL/ST	CMOS	General purpose I/O.		
	AN7	AN		ADC Channel 7 input.		
	PSMC3A	—	CMOS	PSMC3 output A.		
RE3/MCLR/VPP	RE3	TTL/ST		General purpose input.		
	MCLR	ST		Master Clear with internal pull-up.		
	Vpp	HV	_	Programming voltage.		
Vdd	Vdd	Power		Positive supply.		
Vss	Vss	Power	_	Ground reference.		

Legend: AN = Analog input or output CMOS = CMOS compatible input or output

OD = Open Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I²C[™] = Schmitt Trigger input with I²C HV = High Voltage XTAL = Crystal levels

Note 1: Pin functions can be assigned to one of two locations via software. See Register 13-1.

2: All pins have interrupt-on-change functionality.

3: PIC16(L)F1784/7 only.

4: PIC16(L)F1786 only.

3.2.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- the arithmetic status of the ALU
- · the Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

3.3 Register Definitions: Status

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to **Section 29.0** "Instruction Set Summary").

Note:	The C and DC bits operate as Borrow and										
	Digit Borrow out bits, respectively, ir	۱									
	subtraction.										

REGISTER 3-1: STATUS: S	TATUS REGISTER
-------------------------	----------------

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u					
_	_	_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾					
bit 7							bit 0					
Logondu]					
R = Readable	Legend: R = Readable bit U = Unimplemented bit, read as '0'											
u = Bit is unch		x = Bit is unkn		•	at POR and BOI		thor Posots					
'1' = Bit is set	langeu	6'' = Bit is clear					ITEL RESELS					
I = BILIS SEL			areu	q = value dep	pends on conditi							
bit 7-5	Unimplemen	ted: Read as '0)'									
bit 4	TO: Time-Out											
		er-up, CLRWDT		SLEEP instruc	tion							
bit 3	PD: Power-D	own bit										
		er-up or by the tion of the SLEE										
bit 2	Z: Zero bit											
	 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero 											
bit 1	DC: Digit Car	DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾										
		ut from the 4th			curred							
		out from the 4th										
bit 0	C: Carry/Borr	ow bit ⁽¹⁾ (ADDW	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾									

- 1 = A carry-out from the Most Significant bit of the result occurred
 0 = No carry-out from the Most Significant bit of the result occurred
- **Note 1:** For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0					
_	PSMC3TIF	PSMC2TIF	PSMC1TIF	—	PSMC3SIF	PSMC2SIF	PSMC1SIF					
bit 7							bit					
												
Legend: R = Read	labla bit	W = Writable	hit	II – Unimple	emented bit, read							
	unchanged	x = Bit is unkr		•	at POR and BO		thar Pacata					
u = Bit is (1) = Bit is	•	6'' = Bit is clear			at FOR and BO	R/ value at all C						
	5 361		areu									
bit 7	Unimplemen	ted: Read as '	0'									
bit 6	PSMC3TIF: F	SMC3 Time B	ase Interrupt F	-lag bit								
	1 = Interrupt i 0 = Interrupt i											
bit 5	PSMC2TIF: F	SMC2 Time B	ase Interrupt F	-lag bit								
	1 = Interrupt i											
	0 = Interrupt i											
bit 4		SMC1 Time B	ase Interrupt F	-lag bit								
		1 = Interrupt is pending 0 = Interrupt is not pending										
bit 3	•	ted: Read as '	0'									
bit 2		SMC3 Auto-sł		bit								
		1 = Interrupt is pending										
	0 = Interrupt i	s not pending										
bit 1		PSMC2 Auto-sh	nutdown Flag	bit								
		1 = Interrupt is pending 0 = Interrupt is not pending										
bit 0		SMC1 Auto-sh	autdown Elog I	bit								
	1 = Interrupt i		lutuowiiiilagi	DIL								
	0 = Interrupt i											
Note:	Interrupt flag bits a											
		ndition occurs, regardless of the state of corresponding enable bit or the Global										
	Enable bit, GIE, c											
	User software	should ensu	ure the									
	appropriate interru		are clear									
	prior to enabling a	n interrupt.										

REGISTER 8-9: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

	•••								
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF	<3:0>		—	SCS	<1:0>	82
STATUS	—	—	—	TO	PD	Z	DC	С	27
WDTCON	—	_		WDTPS<4:0>				SWDTEN	110

TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 11-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	FCMEN	IESO	CLKOUTEN	UTEN BOREN<1:0>		CPD	54
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE<1:0>)> FOSC<2:0>			54

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

12.4 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.
- 8. Repeat steps 6 and 7 as many times as required to reprogram the erased row.

12.5 User ID, Device ID and Configuration Word Access

Instead of accessing program memory or EEPROM data memory, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the EECON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 12-2.

When read access is initiated on an address outside the parameters listed in Table 12-2, the EEDATH:EEDATL register pair is cleared.

Address	Function	Read Access	Write Access
8000h-8003h	User IDs	Yes	Yes
8006h	Device ID/Revision ID	Yes	No
8007h-8008h	Configuration Words 1 and 2	Yes	No

TABLE 12-2: USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)

EXAMPLE 12-6: CONFIGURATION WORD AND DEVICE ID ACCESS

* This code block will read 1 word of program memory at the memory address:

```
* PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables;
```

* PROG_DATA_HI, PROG_DATA_LO

BANKSEL	EEADRL	;	Select correct Bank
MOVLW	PROG_ADDR_LO	;	
MOVWF	EEADRL	;	Store LSB of address
CLRF	EEADRH	;	Clear MSB of address
BSF	EECON1,CFGS	;	Select Configuration Space
BCF	INTCON,GIE	;	Disable interrupts
BSF	EECON1,RD	;	Initiate read
NOP		;	Executed (See Figure 12-1)
NOP		;	Ignored (See Figure 12-1)
BSF	INTCON,GIE	;	Restore interrupts
MOVF	EEDATL,W	;	Get LSB of word
MOVWF	PROG_DATA_LO	;	Store in user location
MOVF	EEDATH,W	;	Get MSB of word
MOVWF	PROG_DATA_HI	;	Store in user location

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	
bit 7 bit 0								
Legend:								
R = Readable I	oit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			-n/n = Value a	at POR and BO	R/Value at all c	ther Resets		

REGISTER 13-22: WPUC: WEAK PULL-UP PORTC REGISTER

'0' = Bit is cleared

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits 1 = Pull-up enabled 0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 13-23: ODCONC: PORTC OPEN DRAIN CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODC7 | ODC6 | ODC5 | ODC4 | ODC3 | ODC2 | ODC1 | ODC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

'1' = Bit is set

ODC<7:0>: PORTC Open Drain Enable bits For RC<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 13-24: SLRCONC: PORTC SLEW RATE CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRC7 | SLRC6 | SLRC5 | SLRC4 | SLRC3 | SLRC2 | SLRC1 | SLRC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **SLRC<7:0>:** PORTC Slew Rate Enable bits

For RC<7:0> pins, respectively

1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

17.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether
	or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

17.1.6 RESULT FORMATTING

The 10-bit and 12-bit ADC conversion results can be supplied in two formats: 2's complement or sign-magnitude. The ADFM bit of the ADCON1 register controls the output format. Sign magnitude is left justified with the sign bit in the LSb position. Negative numbers are indicated when the sign bit is '1'.

Two's complement is right justified with the sign extended into the Most Significant bits.

Figure 17-3 shows the two output formats. Table 17-2 shows conversion examples.

FIGURE 17-3: ADC CONVERSION RESULT FORMAT

	1	
12-bit sign and	magnitude	
	Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4	Bit 3 Bit 2 Bit 1 Bit 0 '0' '0' '0' Sign
ADFM = 0 ADRMD = 0	bit 7 bit 0	bit 7 bit 0
		Ŷ
	12-bit ADC Result	Loaded with '0'
12-bit 2's comp	bliment	
	Bit 12 Bit 12 Bit 12 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ADFM = 1 ADRMD = 0	bit 7 bit 0	bit 7 bit 0
	Y	
	Loaded with Sign bits'	12-bit ADC Result
10-bit sign and	magnitude	
	Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2	Bit 1 Bit 0 '0' '0' '0' '0' '0' Sign
ADFM = 0	bit 7 bit 0	bit 7 bit 0
ADRMD = 1		
	10-bit ADC Result	Loaded with '0'
10-bit 2's com	bliment	
	Bit 10 Bit 10 Bit 10 Bit 10 Bit 10 Bit 10 Bit 9 Bit 8	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ADFM = 1	bit 7 bit 0	bit 7 bit 0
ADRMD = 1		
	Loaded with Sign bits'	10-bit ADC Result

17.2 ADC Operation

17.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/DONE bit of the ADCON0 register to a '1' will clear the ADRESH and ADRESL registers and start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 17.2.6 "A/D Conversion
	Procedure".

17.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- · Set the ADIF Interrupt Flag bit

17.2.3 TERMINATING A CONVERSION

When a conversion is terminated before completion by clearing the GO/DONE bit then the partial results are discarded and the results in the ADRESH and ADRESL registers from the previous conversion remain unchanged.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.

17.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC oscillator source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

17.2.5 AUTO-CONVERSION TRIGGER

The Auto-conversion Trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO/DONE bit is set by hardware.

The Auto-conversion Trigger source is selected with the TRIGSEL<3:0> bits of the ADCON2 register.

Using the Auto-conversion Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Auto-conversion sources are:

- CCP1
- CCP2
- CCP3
- PSMC1⁽¹⁾
- PSMC2⁽¹⁾

Note: The PSMC clock frequency, after the prescaler, must be less than Fosc/4 to ensure that the ADC detects the auto-conversion trigger. This limitation can be overcome by synchronizing a slave PSMC, running at the required slower clock frequency, to the first PSMC and triggering the conversion from the slave PSMC.

PSMC3

17.3 Register Definitions: ADC Control

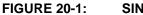
REGISTER 17-1: ADCON0: ADC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ADRMD			CHS<4:0>			GO/DONE	ADON
bit 7	1						bit (
l agandı							
Legend: D - Doodabla k)// -)//ritabla bit		LI – Unimploma	ntad hit raad a	a (O)	
R = Readable b		W = Writable bit		U = Unimpleme			-
u = Bit is uncha	inged	x = Bit is unkno		-n/n = Value at	POR and BOR/	Value at all other	Resets
'1' = Bit is set		'0' = Bit is cleare	ed				
bit 7	1 = ADRESL	Result Mode bit and ADRESH pro and ADRESH pro					
	See Figure 17	-3 for details					
bit 6-2	11111 = FVF 11110 = DAG 11101 = Ten	ositive Differential R (Fixed Voltage R C_output ⁽²⁾ nperature Indicato served. No channe	eference) Buffe r ⁽⁴⁾				
	•						
	10101 = AN2	served. No channe 21 ⁽¹⁾ served. No channe					
	•						
	•						
	01110 = Res	erved. No channe	l connected.				
	01101 = AN						
	01100 = AN						
	$01011 = AN^{2}$						
	$01010 = AN^{2}$						
	01001 = ANS 01000 = ANS						
	00111 = AN7						
	00110 = AN6	₃ (1)					
	00101 = AN						
	00100 = AN4						
	00011 = AN3	3					
	00010 = AN2	2					
	00001 = AN ²	1					
	00000 = AN0)					
bit 1	1 = ADC conv This bit is	DC Conversion Sta ersion cycle in pro automatically clea ersion completed/	ogress. Setting red by hardwar	e when the ADC			
bit 0	ADON: ADC	•	1 3 2 5 6				
	1 = ADC is en		nes no operatir	ig current			
2: See 3: See	e Section 15.0 "	^{nly.} 'Digital-to-Analog 'Fixed Voltage Re 'Temperature Ind	eference (FVR)	" for more inform	ation.	n.	

20.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Independent comparator control
- Programmable input selection
- · Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- · Programmable Speed/Power optimization
- · PWM shutdown
- Programmable and fixed voltage reference


20.1 Comparator Overview

A single comparator is shown in Figure 20-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

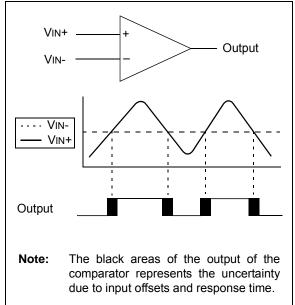

The comparators available for this device are located in Table 20-1.

TABLE 20-1: COMPARATOR AVAILABILITY PER DEVICE

Device	C1	C2	C3	C4
PIC16(L)F1784/6/7	٠	٠	٠	•

SINGLE COMPARATOR

22.6.2 TIMER1 GATE SOURCE SELECTION

Timer1 gate source selections are shown in Table 22-4. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

TABLE 22-4:	TIMER1 GATE SOURCES
-------------	---------------------

T1GSS	Timer1 Gate Source
00	Timer1 Gate Pin
01	Overflow of Timer0 (TMR0 increments from FFh to 00h)
10	Comparator 1 Output sync_C1OUT (optionally Timer1 synchronized output)
11	Comparator 2 Output sync_C2OUT (optionally Timer1 synchronized output)

22.6.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry.

22.6.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 gate circuitry.

22.6.2.3 Comparator C1 Gate Operation

The output resulting from a Comparator 1 operation can be selected as a source for Timer1 gate control. The Comparator 1 output (sync_C1OUT) can be synchronized to the Timer1 clock or left asynchronous. For more information see **Section 20.4.1 "Comparator Output Synchronization"**.

22.6.2.4 Comparator C2 Gate Operation

The output resulting from a Comparator 2 operation can be selected as a source for Timer1 gate control. The Comparator 2 output (sync_C2OUT) can be synchronized to the Timer1 clock or left asynchronous. For more information see **Section 20.4.1 "Comparator Output Synchronization**".

22.6.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 22-4 for timing details.

Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

Note:	Enabling Toggle mode at the same time
	as changing the gate polarity may result in
	indeterminate operation.

22.6.4 TIMER1 GATE SINGLE-PULSE MODE

When Timer1 Gate Single-Pulse mode is enabled, it is possible to capture a single-pulse gate event. Timer1 Gate Single-Pulse mode is enabled by first setting the T1GSPM bit in the T1GCON register. Next, the T1GGO/DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T1GGO/DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/DONE bit is once again set in software. See Figure 22-5 for timing details.

If the Single-Pulse Gate mode is disabled by clearing the T1GSPM bit in the T1GCON register, the T1GGO/DONE bit should also be cleared.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the Timer1 gate source to be measured. See Figure 22-6 for timing details.

22.6.5 TIMER1 GATE VALUE

When Timer1 Gate Value Status is utilized, it is possible to read the most current level of the gate control value. The value is accessible by reading the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

22.6.6 TIMER1 GATE EVENT INTERRUPT

When Timer1 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of T1GVAL occurs, the TMR1GIF flag bit in the PIR1 register will be set. If the TMR1GIE bit in the PIE1 register is set, then an interrupt will be recognized.

The TMR1GIF flag bit operates even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

22.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

22.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- · PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- T1OSCEN bit of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the $\overline{\text{T1SYNC}}$ bit setting.

22.9 CCP Capture/Compare Time Base

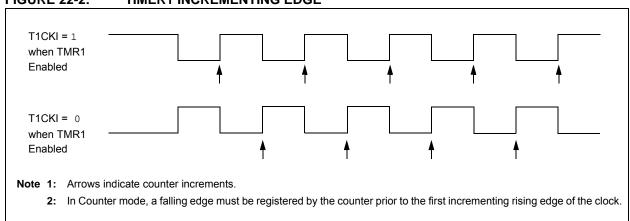
The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Auto-conversion Trigger.

For more information, see Section 25.0 "Capture/Compare/PWM Modules".

22.10 CCP Auto-Conversion Trigger


When any of the CCP's are configured to trigger a auto-conversion, the trigger will clear the TMR1H:TMR1L register pair. This auto-conversion does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized and Fosc/4 should be selected as the clock source in order to utilize the Auto-conversion Trigger. Asynchronous operation of Timer1 can cause a Auto-conversion Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Auto-conversion Trigger from the CCP, the write will take precedence.

For more information, see **Section 25.2.4** "Auto-Conversion Trigger".

FIGURE 22-2: TIMER1 INCREMENTING EDGE

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1		
_	_	PxSTRF ⁽²⁾	PxSTRE ⁽²⁾	PxSTRD ⁽²⁾	PxSTRC ⁽²⁾	PxSTRB	PxSTRA		
bit 7		<u> </u>					bit C		
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'			
u = Bit is und	changed	x = Bit is unki	x = Bit is unknown		at POR and BOI	R/Value at all o	other Resets		
'1' = Bit is se	et	'0' = Bit is cle	ared						
bit 7-6	Unimpleme	nted: Read as '	0'						
bit 5	PxSTRF: PV	VM Steering PS	MCxF Output	Enable bit ⁽²⁾					
		< <u>3:0> = 0000 (S</u>							
		PWM output is							
		PWM output is				nactive state			
		$\frac{3:0}{0} = 0.001$ (C							
		 1 = Complementary PWM output is active on pin PSMCxF 0 = Complementary PWM output is not active on pin PSMCxOUT5. PWM drive is in inactive state 							
		$\frac{1}{16} = 100 (3-phase Steering):^{(1)}$							
		1 = PSMCxD and PSMCxE are high. PSMCxA, PMSCxB, PSMCxC and PMSCxF are low.							
bit 4	PxSTRE: P\	PxSTRE: PWM Steering PSMCxE Output Enable bit ⁽²⁾							
		If PxMODE<3:0> = 000x (single-phase PWM or Complementary PWM):							
		1 = Single PWM output is active on pin PSMCxE							
	-	0 = Single PWM output is not active on pin PSMCxE. PWM drive is in inactive state							
	IF PxMODE<3:0> = 1100 (3-phase Steering): ⁽¹⁾								
	 1 = PSMCxB and PSMCxE are high. PSMCxA, PMSCxC, PSMCxD and PMSCxF are low. 0 = 3-phase output combination is not active 								
bit 3	PxSTRD : PWM Steering PSMCxD Output Enable bit ⁽²⁾								
	If $PxMODE < 3:0> = 0.000$ (Single-phase PWM):								
	1 = Single PWM output is active on pin PSMCxD								
	0 = Single PWM output is not active on pin PSMCxD. PWM drive is in inactive state								
	If PxMODE<3:0> = 0001 (Complementary single-phase PWM):								
	1 = Complementary PWM output is active on pin PSMCxD								
		 0 = Complementary PWM output is not active on pin PSMCxD. PWM drive is in inactive state <u>IF PxMODE<3:0> = 1100 (3-phase Steering)</u>:⁽¹⁾ 							
	$1 = PSMC^{2}$	<pre><3:0> = 1100 (3 xB and PSMCx()</pre>	<u>-pnase Steeri</u> 2 are bigh PS	<u>ng):</u> ('' MCva PMSC)		d PMSCvE an	a low		
		e output combir					C 10W.		
bit 2	-	-		(-)					
	PxSTRC : PWM Steering PSMCxC Output Enable bit ⁽²⁾ <u>If PxMODE<3:0> = 000x (Single-phase PWM or Complementary PWM):</u>								
	1 = Single	PWM output is	active on pin F	SMCxC	• •				
		PWM output is			WM drive is in i	nactive state			
	IF PxMODE	<3:0> = 1100 (3	3-phase Steeri	<u>ng):</u> (1)					
		xC and PSMCxI			kB, PSMCxD an	d PMSCxE are	e low.		
	0 = 3-phas	e output combir	nation is not ac	tive					

REGISTER 24-31: PSMCxSTR0: PSMC STEERING CONTROL REGISTER 0

					SYNC	C = 0, BRGH	l = 0, BRC	G16 = 0				
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz		Fosc = 18.432 MHz			Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_	_		_	_	_	_	_		_	_
1200	—	_	_	1221	1.73	255	1200	0.00	239	1200	0.00	143
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8
57.6k	55.55k	-3.55	3	—	_	_	57.60k	0.00	7	57.60k	0.00	2
115.2k	_		_	_	_	_	_	_	_	_	_	—

TABLE 27-5:BAUD RATES FOR ASYNCHRONOUS MODES

					SYNC	C = 0, BRG	l = 0, BRG	616 = 0				
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz		Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_		_	300	0.16	207	300	0.00	191	300	0.16	51
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	_	_	_
9600	9615	0.16	12	—	_	_	9600	0.00	5	_	_	_
10417	10417	0.00	11	10417	0.00	5	_	_	_	_	_	_
19.2k	_	_	_	_	_	_	19.20k	0.00	2	_	_	_
57.6k	—	_	_	—	_	_	57.60k	0.00	0	—	_	_
115.2k	—	_	—	—	_	—	_	_	—	—	_	—

					SYNC	C = 0, BRGH	l = 1, BRC	G16 = 0				
BAUD	Fosc	= 32.00	0 MHz	Fosc	= 20.00	0 MHz	Fosc	: = 18.43	2 MHz	Fosc	= 11.059	92 MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_	—		_	_		_	_		_	_
1200	—	—	—	—		—	—	—	—	—	—	—
2400		_	_	—	_	_	_	_	_	_	_	_
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

FIGURE 29-1: GENERAL FORMAT FOR INSTRUCTIONS

13	ted file re	egister 8 7	оре 6	erat	ions	0
OPCO	DDE	d			f (FILE #)
d = 1	for destin for destin pit file reg	ation f		SS		
Bit-oriente	-	ister c 10 9	pera 7		ns	0
	CODE	-	, BIT #	-	f (FILE	-
	bit bit ado bit file reg		ddre	ss		
Literal and	control	operat	ions	5		
General						
13		8	7			0
OP	CODE				k (literal)	
k = 8-	bit immec	liate va	alue			
CALL and G	юто instr	uctions	s onl	v		
13		10		,		0
OPCO	DDE		k	: (lite	eral)	
k = 11	-bit imme	diate v	alue	;		
MOVLP ins 13	truction o	nly	7	6		0
	CODE		1	0	k (literal)	-
		linte un	du a		n (inter air)	
к = 7-	bit immed	liate va	liue			
MOVLB ins	truction o	nly				
13				5	4	0
OPO	CODE				k (liter	al)
k = 5-	bit immed	liate va	lue			
BRA instruc	ction only					
13	,,	9	8			0
OP	CODE				k (literal))
k = 9-	bit immed	diate va	alue			
FSR Offset	instructio	ns				
13		7	6	5		0
OPO	CODE		n		k (liter	al)
			-			
	ppropriate		alue			
	-bit immed	diate v			321	0
k = 6- FSR Increm	-bit immed	diate v			- I - I	0 (mode)
k = 6 FSR Increm 13 OPC n = a	-bit immed	diate vi uctions			- I - I	0 (mode)
k = 6 FSR Increm 13 OPC n = a	bit immed nent instru CODE ppropriate	diate vi uctions			- I - I	0 (mode) 0

PIC16(L)F1784/6/7

BCF	Bit Clear f		
Syntax:	[label] BCF f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		
Operation:	$0 \rightarrow (f \le b >)$		
Status Affected:	None		
Description:	Bit 'b' in register 'f' is cleared.		

BSF	Bit Set f
Syntax:	[<i>label</i>]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

BRA	Relative Branch			
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k			
Operands:	-256 \leq label - PC + 1 \leq 255 -256 \leq k \leq 255			
Operation:	$(PC) + 1 + k \rightarrow PC$			
Status Affected:	None			
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.			

Relative Branch with W

Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction

[label] BRW

 $(PC) + (W) \rightarrow PC$

is a 2-cycle instruction.

None

None

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

BRW

Syntax:

Operands:

Operation:

Description:

Status Affected:

PIC16(L)F1784/6/7

TRIS	Load TRIS Register with W
Syntax:	[label] TRIS f
Operands:	$5 \leq f \leq 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

XORLW	Exclusive OR literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

TABLE 30-4: I/O PORTS

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
	VIL	Input Low Voltage							
		I/O PORT:							
D034		with TTL buffer		_	0.8	V	$4.5V \le V\text{DD} \le 5.5V$		
D034A				_	0.15 VDD	V	$1.8V \leq V\text{DD} \leq 4.5V$		
D035		with Schmitt Trigger buffer			0.2 VDD	V	$2.0V \le V\text{DD} \le 5.5V$		
		with I ² C [™] levels		_	0.3 VDD	V			
		with SMBus levels		_	0.8	V	$2.7V \le VDD \le 5.5V$		
D036		MCLR, OSC1 (RC mode) ⁽¹⁾		_	0.2 VDD	V			
D036A		OSC1 (HS mode)		_	0.3 VDD	V			
	Vih	Input High Voltage							
		I/O ports:							
D040		with TTL buffer	2.0		_	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D040A			0.25 VDD +		_	V	$1.8V \leq V\text{DD} \leq 4.5V$		
			0.8						
D041		with Schmitt Trigger buffer	0.8 VDD	_	—	V	$2.0V \leq V\text{DD} \leq 5.5V$		
		with I ² C™ levels	0.7 VDD	_	—	V			
		with SMBus levels	2.1	_	—	V	$2.7V \leq V\text{DD} \leq 5.5V$		
D042		MCLR	0.8 VDD	—	—	V			
D043A		OSC1 (HS mode)	0.7 VDD	_	—	V			
D043B		OSC1 (RC mode)	0.9 Vdd		—	V	(Note 1)		
	lı∟	Input Leakage Current ⁽²⁾							
D060		I/O ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance @ 85°C		
				± 5	± 1000	nA	125°C		
D061		MCLR ⁽³⁾		± 50	± 200	nA	$Vss \le V \text{PIN} \le V \text{DD} \ \textcircled{0} \ 85^\circ \text{C}$		
	IPUR	Weak Pull-up Current							
D070*			25	100	200		VDD = 3.3V, VPIN = VSS		
			25	140	300	μA	VDD = 5.0V, VPIN = VSS		
D080	Vol	Output Low Voltage ⁽⁴⁾							
		I/O ports	_	_	0.6	v	IOL = 8mA, VDD = 5V IOL = 6mA, VDD = 3.3V		
							IOL = 1.8mA, VDD = 1.8V		
	Voн	Output High Voltage ⁽⁴⁾							
D090		I/O ports	Vdd - 0.7	_	_	v	ІОН = 3.5mA, VDD = 5V ІОН = 3mA, VDD = 3.3V		
							ІОН = 1mA, VDD = 1.8V		

These parameters are characterized but not tested.

t Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

30.5 AC Characteristics

Timing Parameter Symbology has been created with one of the following formats:

1. TppS2ppS

2. TppS

2. TPp0					
т					
F	Frequency	Т	Time		
Lowercase letters (pp) and their meanings:					
рр					
сс	CCP1	OSC	OSC1		
ck	CLKOUT	rd	RD		
CS	CS	rw	RD or WR		
di	SDI	sc	SCK		
do	SDO	SS	SS		
dt	Data in	tO	TOCKI		
io	I/O PORT	t1	T1CKI		
mc	MCLR	wr	WR		
Upperc	case letters and their meanings:				
S					
F	Fall	Р	Period		
н	High	R	Rise		
I	Invalid (High-impedance)	V	Valid		
L	Low	Z	High-impedance		

FIGURE 30-4: LOAD CONDITIONS

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Symbol Thigh	Characteristic		Min.	Max.	Units	Conditions
SP100*		Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5TCY	_		
SP101* ⁻	TLOW	Clock low time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5TCY	_		
SP102*	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
SP103*	TF	SDA and SCL fall time	100 kHz mode	—	250	ns	
			400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μs	
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250	_	ns	(Note 2)
			400 kHz mode	100	_	ns	
SP109*	ΤΑΑ	Output valid from clock	100 kHz mode	_	3500	ns	(Note 1)
			400 kHz mode		_	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	_	μs	Time the bus must be free
			400 kHz mode	1.3	_	μS	before a new transmission can start
SP111	Св	Bus capacitive loadir	ng		400	pF	

TABLE 30-22: I²C[™] BUS DATA REQUIREMENTS

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C[™] bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.