

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1784-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram – 40-Pin PDIP

Note:

	1	40	RB7ICSPDAT
RA0	2	39	RB6/ICSPCLK
RA1	3	38	RB5
RA2	4	37	RB4
RA3	5	36	RB3
RA4	6	35	RB2
RA5	7	34	RB1
RE0	8	33	RB0
RE1	9 184	62 32	VDD
RE2	10 Ľ	<u>د</u> 31	Vss
VDD	11) 9	J 30∏	RD7
Vss	12 <u>ပ</u>	<u>ວ</u> 29	RD6
RA7	13 L	L 28	RD5
RA6	14	27	RD4
RC0	15	26	RC7
RC1	16	25	RC6
RC2	17	24	RC5
RC3	18	23	RC4
RD0	19	22	RD3
RD1	20	21	RD2

See Table 2 for the location of all peripheral functions.

Pin Diagram – 44-Pin TQFP

TABLE 1-2: PIC16(L)F1784/6/7 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN0-/C2IN0-/	RA0	TTL/ST	CMOS	General purpose I/O.
C3IN0-/C4IN0-	AN0	AN		ADC Channel 0 input.
	C1IN0-	AN	_	Comparator C1 negative input.
	C2IN0-	AN	_	Comparator C2 negative input.
	C3IN0-	AN	_	Comparator C3 negative input.
	C4IN0-	AN	_	Comparator C4 negative input.
RA1/AN1/C1IN1-/C2IN1-/	RA1	TTL/ST	CMOS	General purpose I/O.
C3IN1-/C4IN1-/OPA1OUT	AN1	AN	—	ADC Channel 1 input.
	C1IN1-	AN	_	Comparator C1 negative input.
	C2IN1-	AN	_	Comparator C2 negative input.
	C3IN1-	AN		Comparator C3 negative input.
	C4IN1-	AN		Comparator C4 negative input.
	OPA1OUT		AN	Operational Amplifier 1 output.
RA2/AN2/C1IN0+/C2IN0+/	RA2	TTL/ST	CMOS	General purpose I/O.
C3IN0+/C4IN0+/DAC1OUT1/	AN2	AN		ADC Channel 2 input.
VREF-/DACTVREF-/OPATIN-	C1IN0+	AN	_	Comparator C1 positive input.
	C2IN0+	AN		Comparator C2 positive input.
	C3IN0+	AN		Comparator C3 positive input.
	C4IN0+	AN		Comparator C4 positive input.
	DAC1OUT1		AN	Digital-to-Analog Converter output.
	VREF-	AN	_	ADC Negative Voltage Reference input.
	DAC1VREF-	AN	_	Digital-to-Analog Converter negative reference.
RA3/AN3/VREF+/C1IN1+/	RA3	TTL/ST	CMOS	General purpose I/O.
DAC1VREF+	AN3	AN	_	ADC Channel 3 input.
	VREF+	AN	_	ADC Voltage Reference input.
	C1IN1+	AN	—	Comparator C1 positive input.
	DAC1VREF+	AN	—	Digital-to-Analog Converter positive reference.
RA4/C1OUT/OPA1IN+/T0CKI	RA4	TTL/ST	CMOS	General purpose I/O.
	C1OUT		CMOS	Comparator C1 output.
	OPA1IN+	AN	_	Operational Amplifier 1 non-inverting input.
	T0CKI	ST	_	Timer0 clock input.
RA5/AN4/C2OUT ⁽¹⁾ /OPA1IN-/	RA5	TTL/ST	CMOS	General purpose I/O.
SS	AN4	AN	_	ADC Channel 4 input.
	C2OUT	_	CMOS	Comparator C2 output.
	OPA1IN-	AN	_	Operational Amplifier 1 inverting input.
	SS	ST	—	Slave Select input.

Legend:AN= Analog input or outputCMOS = CMOS compatible input or outputOD= Open DrainTTL = TTL compatible inputST= Schmitt Trigger input with CMOS levels l^2C^{TM} = Schmitt Trigger input with l^2C HV= High VoltageXTAL= Crystallevels

Note 1: Pin functions can be assigned to one of two locations via software. See Register 13-1.

2: All pins have interrupt-on-change functionality.

3: PIC16(L)F1784/7 only.

4: PIC16(L)F1786 only.

	BANK 16		BANK 16		BANK 16
811h	PSMC1CON	831h	PSMC2CON	851h	PSMC3CON
812h	PSMC1MDL	832h	PSMC2MDL	852h	PSMC3MDL
813h	PSMC1SYNC	833h	PSMC2SYNC	853h	PSMC3SYNC
814h	PSMC1CLK	834h	PSMC2CLK	854h	PSMC3CLK
815h	PSMC10EN	835h	PSMC2OEN	855h	PSMC30EN
816h	PSMC1POL	836h	PSMC2POL	856h	PSMC3POL
817h	PSMC1BLNK	837h	PSMC2BLNK	857h	PSMC3BLNK
818h	PSMC1REBS	838h	PSMC2REBS	858h	PSMC3REBS
819h	PSMC1FEBS	839h	PSMC2FEBS	859h	PSMC3FEBS
81Ah	PSMC1PHS	83Ah	PSMC2PHS	85Ah	PSMC3PHS
81Bh	PSMC1DCS	83Bh	PSMC2DCS	85Bh	PSMC3DCS
81Ch	PSMC1PRS	83Ch	PSMC2PRS	85Ch	PSMC3PRS
81Dh	PSMC1ASDC	83Dh	PSMC2ASDC	85Dh	PSMC3ASDC
81Eh	PSMC1ASDD	83Eh	PSMC2ASDD	85Eh	PSMC3ASDD
81Fh	PSMC1ASDS	83Fh	PSMC2ASDS	85Fh	PSMC3ASDS
820h	PSMC1INT	840h	PSMC2INT	860h	PSMC3INT
821h	PSMC1PHL	841h	PSMC2PHL	861h	PSMC3PHL
822h	PSMC1PHH	842h	PSMC2PHH	862h	PSMC3PHH
823h	PSMC1DCL	843h	PSMC2DCL	863h	PSMC3DCL
824h	PSMC1DCH	844h	PSMC2DCH	864h	PSMC3DCH
825h	PSMC1PRL	845h	PSMC2PRL	865h	PSMC3PRL
826h	PSMC1PRH	846h	PSMC2PRH	866h	PSMC3PRH
827h	PSMC1TMRL	847h	PSMC2TMRL	867h	PSMC3TMRL
828h	PSMC1TMRH	848h	PSMC2TMRH	868h	PSMC3TMRH
829h	PSMC1DBR	849h	PSMC2DBR	869h	PSMC3DBR
82Ah	PSMC1DBF	84Ah	PSMC2DBF	86Ah	PSMC3DBF
82Bh	PSMC1BLKR	84Bh	PSMC2BLKR	86Bh	PSMC3BLKR
82Ch	PSMC1BLKF	84Ch	PSMC2BLKF	86Ch	PSMC3BLKF
82Dh	PSMC1FFA	84Dh	PSMC2FFA	86Dh	PSMC3FFA
82Eh	PSMC1STR0	84Eh	PSMC2STR0	86Eh	PSMC3STR0
82Fh	PSMC1STR1	84Fh	PSMC2STR1	86Fh	PSMC3STR1
830h	_	850h	_	870h	_

TABLE 3-10: PIC16(L)F1784/6/7 MEMORY MAP (BANK 16 DETAILS)

Legend: Unimplemented data memory locations, read as '0'.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 0										
00Ch	PORTA	PORTA Data L	atch when wr	itten: PORTA p	ins when read					xxxx xxxx	uuuu uuuu
00Dh	PORTB	PORTB Data L	atch when w	ritten: PORTB p	oins when read					xxxx xxxx	uuuu uuuu
00Eh	PORTC	PORTC Data I	_atch when w	ritten: PORTC	oins when read					xxxx xxxx	uuuu uuuu
00Fh	PORTD ⁽³⁾	PORTD Data I	_atch when w	ritten: PORTD	oins when read					xxxx xxxx	uuuu uuuu
010h	PORTE	—	_	—	_	RE3	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	xxxx	uuuu
011h	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
012h	PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	C4IF	C3IF	CCP2IF	0000 0-00	0000 0-00
13h	PIR3	—	—	_	CCP3IF	—	—	_	—	0	0000 0000
014h	PIR4	—	PSMC3TIF	PSMC2TIF	PSMC1TIF	—	PSMC3SIF	PSMC2SIF	PSMC1SIF	-000 -000	-000 -000
015h	TMR0	Timer0 Module	e Register							xxxx xxxx	uuuu uuuu
016h	TMR1L	Holding Regist	ter for the Lea	ist Significant B	yte of the 16-bit	TMR1 Regist	er			xxxx xxxx	uuuu uuuu
017h	TMR1H	Holding Regist	ter for the Mo	st Significant B	yte of the 16-bit	TMR1 Registe	er			xxxx xxxx	uuuu uuuu
018h	T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0	uuuu uu-u
019h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GS	S<1:0>	0000 0x00	uuuu uxuu
016h	TMR2	Holding Regist	ter for the Lea	ist Significant B	yte of the 16-bit	t TMR2 Regist	er			xxxx xxxx	uuuu uuuu
017h	PR2	Holding Regist	ter for the Mo	st Significant By	te of the 16-bit	TMR2 Registe	er			xxxx xxxx	uuuu uuuu
018h	T2CON	—		T2OUT	PS<3:0>		TMR2ON	T2CKP	S<1:0>	-000 0000	-000 0000
01Dh to 01Fh	_	Unimplemente	Jnimplemented							_	_
Ban	k 1	-									
08Ch	TRISA	PORTA Data D	Direction Regi	action Register						1111 1111	1111 1111
08Dh	TRISB	PORTB Data	Direction Regi	Register						1111 1111	1111 1111
08Eh	TRISC	PORTC Data I	Direction Regi	ister						1111 1111	1111 1111
08Fh	TRISD ⁽³⁾	PORTD Data I	Direction Regi	ister						1111 1111	1111 1111
090h	TRISE	—	—	_	—	_(2)	TRISE2 ⁽³⁾	TRISE1 ⁽³⁾	TRISE0 ⁽³⁾	1111	1111
091h	PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
092h	PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	C4IE	C3IE	CCP2IE	0000 0-00	0000 0-00
093h	PIE3	—	—	_	CCP3IE	_	—	_	_	0	0000 0000
094h	PIE4	—	PSMC3TIE	PSMC2TIE	PSMC1TIE	_	PSMC3SIE	PSMC2SIE	PSMC1SIE	-000 -000	-000 -000
095h	OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR	00-1 11qq	qq-q qquu
097h	WDTCON	—	—		١	WDTPS<4:0>			SWDTEN	01 0110	01 0110
098h	OSCTUNE	—	—			TUN<	5:0>			00 0000	00 0000
099h	OSCCON	SPLLEN		IRCF<3:0> — SCS<1:0>				0011 1-00	0011 1-00		
09Ah	OSCSTAT	T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	00q000	dddd0d
09Bh	ADRESL	A/D Result Re	gister Low							xxxx xxxx	uuuu uuuu
09Ch	ADRESH	A/D Result Re	gister High							xxxx xxxx	uuuu uuuu
09Dh	ADCON0	ADRMD			CHS<4:0>			GO/DONE	ADON	0000 0000	0000 0000
09Eh	ADCON1	ADFM		ADCS<2:0>		_	ADNREF	ADPRE	F<1:0>	0000 -000	0000 -000
09Fh	ADCON2		TRIGS	EL<3:0>			CHSN	<3:0>		000000	000000

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

These registers can be addressed from any bank. Unimplemented, read as '1'. PIC16(L)F1784/7 only. Note 1:

2:

3:

PIC16F1784/6/7 only. 4:

Value on Value on Addr Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Name all other POR, BOR Resets Bank 16 (Continued) PSMC3LD **P3DBRE** 851h PSMC3CON PSMC3EN **P3DBFE** P3MODE<3:0> 0000 0000 0000 0000 PSMC3MDL P3MDLEN 852h P3MDLPOL P3MDLBIT P3MSRC<3:0> _ 000- 0000 000 -0000 --00 853h PSMC3SYNC **P3POFST P3PRPOL P3DCPOL** _ P3SYNC<1:0> 000---00 000-P3CPRE<1:0> P3CSRC<1:0> 854h PSMC3CLK -00 --00 -00 --00 855h PSMC3OEN P3OEB P3OEA --00 --00 _ _ _ _ _ _ 856h PSMC3POL **P3INPOL P3POLB** P3POLA _ -0----00 -0----00 857h **PSMC3BLNK** P3FEBM<1:0> P3REBM<1:0> --00 --00 --00 --00 858h PSMC3REBS **P3REBSIN** P3REBSC4 P3REBSC3 P3REBSC2 P3REBSC1 0--0 000-0--0 000 P3FEBSC2 859h PSMC3FEBS **P3FEBSIN** P3FEBSC4 P3FEBSC3 P3FEBSC1 0--0 000-0--0 000-85Ah PSMC3PHS **P3PHSIN** P3PHSC4 P3PHSC3 P3PHSC2 P3PHSC1 **P3PHST** 0--0 0000 0--0 0000 PSMC3DCS P3DCSC1 85Bh **P3DCSIN** P3DCSC4 P3DCSC3 P3DCSC2 0--0 0000 P3DCST 0--0 0000 P3PRSC4 P3PRSC3 P3PRSC2 P3PRSC1 85Ch PSMC3PRS **P3PRSIN P3PRST** 0--0 0000 0--0 0000 PSMC3ASDC **P3ARSEN** 85Dh P3ASE **P3ASDEN P3ASDOV** 000- ---0 000----0 _ 85Eh PSMC3ASDL _ **P3ASDLB P3ASDLA** ------00 ____ --00 85Fh PSMC3ASDS **P3ASDSIN** P3ASDSC4 P3ASDSC3 P3ASDSC2 P3ASDSC1 0--0 000-0--0 000 860h PSMC3INT **P3TOVIE P3TPHIE P3TDCIE P3TPRIE P3TOVIF** P3TPHIF P3TDCIF P3TPRIF 0000 0000 0000 0000 861h PSMC3PHL Phase Low Count 0000 0000 0000 0000 PSMC3PHH Phase High Count 862h 0000 0000 0000 0000 863h PSMC3DCL Duty Cycle Low Count 0000 0000 0000 0000 864h PSMC3DCH Duty Cycle High Count 0000 0000 0000 0000 865h PSMC3PRL Period Low Count 0000 0000 0000 0000 866h PSMC3PRH Period High Count 0000 0000 0000 0000 867h PSMC3TMRL Time base Low Counter 0000 0001 0000 0001 PSMC3TMRH 868h Time base High Counter 0000 0000 0000 0000 869h PSMC3DBR Rising Edge Dead-band Counter 0000 0000 0000 0000 PSMC3DBF 86Ah Falling Edge Dead-band Counter 0000 0000 0000 0000 86Bh PSMC3BLKR Rising Edge Blanking Counter 0000 0000 0000 0000 86Ch PSMC3BLKF Falling Edge Blanking Counter 0000 0000 0000 0000 86Dh PSMC3FFA 0000 Fractional Frequency Adjust Register ----0000 86Eh PSMC3STR0 P3STRA **P3STRB** -01 --01 **P3HSMEN** 86Fh PSMC3STR1 **P3LSMEN** P3SSYNC 0 - - ---00 0-----00

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Bank 17-30

Note

x0Ch or x8Ch to x1Fh or x9Fh	_
--	---

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

1: These registers can be addressed from any bank.

2: Unimplemented, read as '1'.

3: PIC16(L)F1784/7 only.

4: PIC16F1784/6/7 only.

4.2 Register Definitions: Configuration Words

REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
		FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD
		bit 13					bit 8
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
CP	MCLRE	PWRTE	WDT	E<1:0>		FOSC<2:0>	
bit 7							bit 0
Lonordi]
Legena:	hit	D - Drogramm	abla bit		onted hit rea	d as '1'	
(0) = Rit is cleared	; uil arad	r = riogrammin		-n = Value whe	n blank or af	tor Bulk Eraso	
	arcu						
bit 13	FCMEN: Fail- 1 = Fail-Safe 0 = Fail-Safe	Safe Clock Mon Clock Monitor a Clock Monitor is	nitor Enable I Ind internal/e s disabled	oit xternal switchove	er are both en	abled.	
bit 12	IESO: Interna 1 = Internal/E 0 = Internal/E	I External Switc xternal Switcho xternal Switcho	chover bit ver mode is e ver mode is e	enabled disabled			
bit 11	CLKOUTEN: Clock Out Enable bit If FOSC configuration bits are set to LP, XT, HS modes: This bit is ignored, CLKOUT function is disabled. Oscillator function on the CLKOUT pin. All other FOSC modes: 1 = CLKOUT function is disabled. I/O function on the CLKOUT pin.						
bit 10-9	BOREN<1:0 > 11 = BOR en 10 = BOR en 01 = BOR con 00 = BOR dis	•: Brown-out Re abled abled during op ntrolled by SBO abled	eset Enable b eration and c REN bit of th	its lisabled in Sleep e BORCON regis	ster		
bit 8	CPD : Data Control 1 = Data mention 0 = Data mentionen control 1 = Data me	ode Protection I nory code prote nory code prote	bit ⁽¹⁾ ction is disab ction is enabl	led led			
bit 7	CP : Code Pro 1 = Program 0 = Program	otection bit memory code p memory code p	rotection is d rotection is e	isabled nabled			
bit 6	<pre>MCLRE: MCLR/VPP Pin Function Select bit If LVP bit = 1: This bit is ignored. If LVP bit = 0: 1 = MCLR/VPP pin function is MCLR; Weak pull-up enabled. 0 = MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of WPUE3 bit.</pre>						er control of
bit 5	PWRTE: Pow 1 = PWRT di 0 = PWRT er	ver-up Timer En sabled nabled	able bit				
bit 4-3	WDTE<1:0>: 11 = WDT en 10 = WDT en 01 = WDT con 00 = WDT dis	Watchdog Time abled abled while run ntrolled by the S abled	er Enable bit ning and disa SWDTEN bit	bled in Sleep in the WDTCON ı	register		

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
—	PSMC3TIE	PSMC2TIE	PSMC1TIE	—	PSMC3SIE	PSMC2SIE	PSMC1SIE	
bit 7					·		bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	Unimplemen	ted: Read as '	0'					
bit 6	PSMC3TIE: F	SMC3 Time B	ase Interrupt I	Enable bit				
	1 = Enables	PSMC3 time ba	ase generated	l interrupts				
	0 = Disables	PSMC3 time b	ase generated	d interrupts				
bit 5	PSMC2TIE: F	SMC2 Time B	ase Interrupt I	Enable bit				
	1 = Enables	PSMC2 time ba	ase generated	l interrupts				
hit 4			ase Interrunt F	Enable bit				
	1 = Enables	PSMC1 time b	ase generated	interrupts				
	$1 - \Box$ ables PSMC1 time base generated interrupts 0 = Disables PSMC1 time base generated interrupts							
bit 3	Unimplemen	ted: Read as '	0'					
bit 2	PSMC3SIE: F	PSMC3 Auto-S	hutdown Inter	rupt Enable bit	:			
	1 = Enables	PSMC3 auto-s	hutdown interr	rupts				
	0 = Disables	PSMC3 auto-s	hutdown inter	rupts				
bit 1	PSMC2SIE: F	PSMC2 Auto-S	hutdown Inter	rupt Enable bit	:			
	1 = Enables	1 = Enables PSMC2 auto-shutdown interrupts						
h # 0	0 = Disables PSMC2 auto-shutdown interrupts							
DIT U		SINCT Auto-S	nutdown inter	rupt Enable bit				
	1 = Enables 0 = Disables	PSMC1 auto-si PSMC1 auto-si	hutdown inter	rupis				
	2.000/00							
Note: Bit	PEIE of the IN	TCON register	must be					
set	to enable any p	peripheral inter	rupt.					

REGISTER 8-5: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

9.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP.
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared.

- If the interrupt occurs **during or after** the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

I IOOKE 0 I								
CLKIN ⁽¹⁾ CLKOUT ⁽²⁾	Q1 Q2 Q3 Q4 /~_/~_/ //	Q1 Q2 Q3 Q4	Q1	T1osc ⁽³	Q1 Q2 Q3 Q4 ////////////////////////////////////	Q1 Q2 Q3 Q4 /~_/~_/~_/ //	Q1 Q2 Q3 Q4 /~~/~/~/ //	Q1 Q2 Q3 Q4
Interrupt flag	, , , ,	, , ,	/	۱ ۱ ۴	Interrupt Laten	су ⁽⁴⁾		
GIE bit (INTCON reg.)	<u>.</u> 	<u>.</u> 	Processor in Sleep	I I I I		<u>.</u>	<u>. </u>	
Instruction Flow PC	(PC	X PC + 1	Х РС	+ 2	PC + 2	PC + 2	<u>χ 0004</u> h	X 0005h
Instruction {	Inst(PC) = Sleep	Inst(PC + 1)			Inst(PC + 2)	1	Inst(0004h)	Inst(0005h)
Instruction { Executed {	Inst(PC - 1)	Sleep	1 1 1		Inst(PC + 1)	Forced NOP	Forced NOP	Inst(0004h)
Note 1: E 2: (3: 1 4: (External clock. Hig CLKOUT is shown [1osc; See Sectio GIE = 1 assumed.	h, Medium, Low n here for timing re- on 30.0 "Electrica In this case after v	node assumed ference. I Specificatio wake-up, the	d. ons". processo	r calls the ISR at 0	0004h. If GIE = 0,	execution will cont	tinue in-line.

FIGURE 9-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT

12.7 Register Definitions: EEPROM and Flash Control

REGISTER 12-1: EEDATL: EEPROM DATA LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			EEDA	T<7:0>			
bit 7							bit 0
Logond							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	3	
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ue at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0

EEDAT<7:0>: Read/write value for EEPROM data byte or Least Significant bits of program memory

REGISTER 12-2: EEDATH: EEPROM DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			EEDA	\T<13:8>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-0	EEDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 12-3: EEADRL: EEPROM ADDRESS REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | EEADI | R<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 EEADR<7:0>: Specifies the Least Significant bits for program memory address or EEPROM address

REGISTER 12-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
(1)				EEADR<14:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 EEADR<14:8>: Specifies the Most Significant bits for program memory address or EEPROM address

Note 1: Unimplemented, read as '1'.

17.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether
	or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

17.1.6 RESULT FORMATTING

The 10-bit and 12-bit ADC conversion results can be supplied in two formats: 2's complement or sign-magnitude. The ADFM bit of the ADCON1 register controls the output format. Sign magnitude is left justified with the sign bit in the LSb position. Negative numbers are indicated when the sign bit is '1'.

Two's complement is right justified with the sign extended into the Most Significant bits.

Figure 17-3 shows the two output formats. Table 17-2 shows conversion examples.

FIGURE 17-3: ADC CONVERSION RESULT FORMAT

12-bit sign and	magnitude								
	Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit	t 6 Bit 5 Bit 4	Bit 3 Bit	2 Bit 1	Bit 0	'0'	'0'	'0'	Sign
ADFM = 0 ADRMD = 0	bit 7	bit 0	bit 7		•		•	•	bit 0
						د	~~~		ر ر
	12-bit AD	C Result			L	oaded	with '	0'	
12-bit 2's comp	oliment								
	Bit 12 Bit 12 Bit 12 Bit 12 Bit 11 Bit	10 Bit 9 Bit 8	Bit 7 Bit	6 Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADFM = 1 ADRMD = 0	bit 7	bit 0	bit 7						bit C
	Loaded with Sign bits'		12-	oit ADC	Result				
10-bit sign and	Loaded with Sign bits'		12-	bit ADC	Result	,		102	Circ
10-bit sign and	Loaded with Sign bits' magnitude Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit	t 4 Bit 3 Bit 2	12-	oit ADC	Result	ʻ0'	'0'	,0,	Sigr
10-bit sign and ADFM = 0 ADRMD = 1	Loaded with Sign bits' magnitude Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit bit 7	t 4 Bit 3 Bit 2 bit 0	12- Bit 1 Bit bit 7	0 '0'	°0'	'0'	'0'	'0'	Sigr bit (
10-bit sign and ADFM = 0 ADRMD = 1	Loaded with Sign bits' magnitude Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit bit 7	t 4 Bit 3 Bit 2 bit 0	12- Bit 1 Bit bit 7	0 '0'	Kesult	,0,	,0,	'0'	Sigr bit (
10-bit sign and ADFM = 0 ADRMD = 1	Loaded with Sign bits' magnitude Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit bit 7 10-bit AD	t 4 Bit 3 Bit 2 bit 0 OC Result	12- Bit 1 Bit bit 7	0 '0'	Result '0' L	'0' oaded	°0' with '	°0'	Sigr bit C
10-bit sign and ADFM = 0 ADRMD = 1 10-bit 2's comp	Loaded with Sign bits' magnitude Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit bit 7 10-bit AD	t 4 Bit 3 Bit 2 bit 0 OC Result	12- Bit 1 Bit bit 7	0 '0'	Result	'0' oaded	ʻ0' with ʻ	0,	Sigr bit C
10-bit sign and ADFM = 0 ADRMD = 1 10-bit 2's comp	Loaded with Sign bits' magnitude Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit bit 7 10-bit AD Diment Bit 10 Bit 10 Bit 10 Bit 10 Bit 10 Bit	t 4 Bit 3 Bit 2 bit 0 OC Result	12- Bit 1 Bit bit 7	0 '0' 6 Bit 5	Result '0' L	'0' oaded Bit 3	'0' with ' Bit 2	'0' 0' Bit 1	Sigr bit 0
10-bit sign and ADFM = 0 ADRMD = 1 10-bit 2's comp ADFM = 1 ADRMD = 1	Loaded with Sign bits' magnitude Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit bit 7 10-bit AD Diment Bit 10 Bit 10 Bit 10 Bit 10 Bit 10 Bit bit 7	t 4 Bit 3 Bit 2 bit 0 DC Result 10 Bit 9 Bit 8 bit 0	12- Bit 1 Bit bit 7 Bit 7 Bit bit 7	oit ADC 0 '0' 6 Bit 5	Result '0' Li Bit 4	'0' oaded Bit 3	^{°0'} with [°] Bit 2	'0' 0' Bit 1	Bit C

20.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 20-4. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

20.10.1 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 13.1 "Alternate Pin Function**" for more information.

FIGURE 20-4: ANALOG INPUT MODEL

FIGURE 22-5:	TIMER1 GATE SINGLE-PULSE MODE	
TMR1GE		
T1GPOL		
T1GSPM		
T1GG <u>O/</u> DONE	Cleared by hardware on falling edge of T1GVAL	
t1g_in	rising edge of T1G	
Т1СКІ		
T1GVAL		
Timer1	N N + 1 N + 2	
TMR1GIF	Cleared I Cleared by software Cleared I Set by hardware on falling edge of T1GVAL	by e

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP2CON	—	—	DC2B	<1:0>		CCP2	/ <3:0>		280
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98
PR2	Timer2 Mod	dule Period	Register						210*
T2CON	—	T2OUTPS<3:0> TMR2ON T2CKPS<1					S<1:0>	212	
TMR2	Holding Re	gister for the	e 8-bit TMR2	2 Register					210*

TABLE 23-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

24.3.5 PUSH-PULL PWM WITH FOUR FULL-BRIDGE OUTPUTS

The full-bridge push-pull PWM is used to drive transistor bridge circuits as well as synchronous switches on the secondary side of the bridge.

- 24.3.5.1 Mode Features
- No Dead-band control
- No Steering control available
- PWM is output on the following four pins only:
 - PSMCxA
 - PSMCxB
 - PSMCxC
 - PSMCxD

Note: PSMCxA and PSMCxC are identical waveforms, and PSMCxB and PSMCxD are identical waveforms. Note: This is a subset of the 6-pin output of the push-pull PWM output, which is why pin functions are fixed in these positions, so they are compatible with that mode. See Section 24.3.6 "Push-Pull PWM with Four Full-Bridge and Complementary Outputs".

24.3.5.2 Waveform generation

Push-pull waveforms generate alternating outputs on the output pairs. Therefore, there are two sets of rising edge events and two sets of falling edge events.

Odd numbered period rising edge event:

PSMCxOUT0 and PSMCxOUT2 is set active

Odd numbered period falling edge event:

- PSMCxOUT0 and PSMCxOUT2 is set inactive
- Even numbered period rising edge event:
- PSMCxOUT1 and PSMCxOUT3 is set active
- Even numbered period falling edge event:
- PSMCxOUT1 and PSMCxOUT3 is set inactive

FIGURE 24-8: PUSH-PULL PWM WITH 4 FULL-BRIDGE OUTPUTS

PWM Period Number	11	2	3
Period Event			
Rising Edge Event			
Falling Edge Event			
PSMCxA			
PSMCxC			
PSMCxB			
PSMCxD			

PIC16LF	1784/6/7	Standard	Standard Operating Conditions (unless otherwise stated)					
PIC16F1	784/6/7							
Param	Device	Min	Turch	Max	Unite		Conditions	
No.	Characteristics	win.	турт	wax.	Units	Vdd	Note	
D009	LDO Regulator	_	75	—	μA		High Power mode, normal operation	
		—	15	—	μA	_	Sleep VREGCON<1> = 0	
		—	0.3	—	μA	_	Sleep VREGCON<1> = 1	
D010		_	8	20	μA	1.8	Fosc = 32 kHz	
		_	12	24	μA	3.0	LP Oscillator mode (Note 4), -40°C \leq TA \leq +85°C	
D010		_	18	63	μA	2.3	Fosc = 32 kHz	
		—	20	74	μA	3.0	LP Oscillator mode (Note 4, 5), 40° C \leq Ta $\leq 185^{\circ}$ C	
		—	22	79	μA	5.0	$-40 C \le 1A \le +85 C$	
D012			160	650	μA	1.8	Fosc = 4 MHz	
		—	320	1000	μA	3.0	XT Oscillator mode	
D012		—	260	700	μA	2.3	Fosc = 4 MHz	
		—	330	1100	μA	3.0	XT Oscillator mode (Note 5)	
			380	1300	μA	5.0		

TABLE 30-2: SUPPLY VOLTAGE (IDD)^(1,2)

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 0.1 μ F capacitor on VCAP.

6: 8 MHz crystal oscillator with 4x PLL enabled.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-1: IDD, LP Oscillator Mode, Fosc = 32 kHz, PIC16LF1784/6/7 Only.

FIGURE 31-2: IDD, LP Oscillator Mode, Fosc = 32 kHz, PIC16F1784/6/7 Only.

FIGURE 31-3: IDD Typical, XT and EXTRC Oscillator, PIC16LF1784/6/7 Only.

FIGURE 31-4: IDD Maximum, XT and EXTRC Oscillator, PIC16LF1784/6/7 Only.

FIGURE 31-5: IDD Typical, XT and EXTRC Oscillator, PIC16F1784/6/7 Only.

FIGURE 31-6: IDD Maximum, XT and EXTRC Oscillator, PIC16F1784/6/7 Only.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-115: Op Amp, Output Slew Rate, Falling Edge, PIC16F1784/6/7 Only.

FIGURE 31-116: Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values.

FIGURE 31-117: Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values at 25°C.

FIGURE 31-118: Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values From -40°C to 125°C.

FIGURE 31-119: Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 5.5V, Typical Measured Values, PIC16F1784/6/7 Only.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		44		
Pitch	е		0.65 BSC		
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E		8.00 BSC		
Exposed Pad Width	E2	6.25	6.45	6.60	
Overall Length	D		8.00 BSC		
Exposed Pad Length	D2	6.25	6.45	6.60	
Terminal Width	b	0.20	0.30	0.35	
Terminal Length	L	0.30 0.40 0.50			
Terminal-to-Exposed-Pad	K	0.20	_	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2