

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1784t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Enhanced Mid-Range CPU	
3.0	Memory Organization	23
4.0	Device Configuration	53
5.0	Resets	59
6.0	Oscillator Module	67
7.0	Reference Clock Module	85
8.0	Interrupts	
9.0	Power-Down Mode (Sleep)	103
	Low Dropout (LDO) Voltage Regulator	
11.0	Watchdog Timer (WDT)	
12.0	Date EEPROM and Flash Program Memory Control	
13.0	I/O Ports	125
14.0	Interrupt-on-Change	
15.0	Fixed Voltage Reference (FVR)	
	Temperature Indicator	
17.0	Analog-to-Digital Converter (ADC) Module	
18.0	Operational Amplifier (OPA) Module	
	Digital-to-Analog Converter (DAC) Module	
	Comparator Module	
21.0	Timer0 Module	196
	Timer1 Module	
	Timer2 Module	
	Programmable Switch Mode Control (PSMC) Module	
	Capture/Compare/PWM Module	
	Master Synchronous Serial Port (MSSP) Module	
	· · · · · · · · · · · · · · · · · · ·	
	In-Circuit Serial Programming™ (ICSP™)	
	Instruction Set Summary	
	Electrical Specifications	
31.0	DC and AC Characteristics Graphs and Tables	
32.0	Development Support	
	Packaging Information	
	ndix A: Revision History	
	Aicrochip Web Site	
	omer Change Notification Service	
	omer Support	
Produ	uct Identification System	462

PIC16(L)F1784/6/7

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						Value on POR, BOR	Value on all other Resets		
Bank	c 11-15										
x0Ch											
or x8Ch											
to	_	Unimplemente	d							_	_
x6Fh											
or xEFh											

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

1: These registers can be addressed from any bank.

2: Unimplemented, read as '1'.

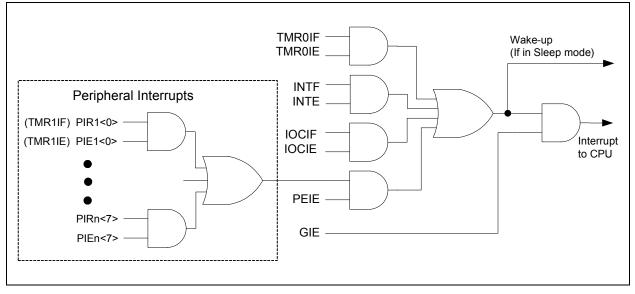
3: PIC16(L)F1784/7 only.

Note

4: PIC16F1784/6/7 only.

8.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.


This chapter contains the following information for Interrupts:

- · Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 8-1.

FIGURE 8-1: INTERRUPT LOGIC

8.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 or PIE2 registers)

The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 8.5 "Automatic Context Saving".")
- PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

Note 1:	Individual	inte	rrupt	flag	bits	s are	set,
	regardless	of	the	state	of	any	other
	enable bits						

2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

8.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 8-2 and Figure 8.3 for more details.

8.6 Register Definitions: Interrupt Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF ⁽¹⁾
bit 7		·					bit 0
Legend:						(0)	
R = Readable		W = Writable		•	nented bit, read		
u = Bit is unch	•	x = Bit is unkr		-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	GIE: Global I	nterrupt Enable	hit				
		all active interru					
bit 6	1 = Enables	eral Interrupt E all active periph all peripheral ir	eral interrupts	3			
bit 5	1 = Enables f	er0 Overflow Ir the Timer0 inter the Timer0 inte	rupt	e bit			
bit 4	1 = Enables f	tternal Interrupt the INT externa the INT externa	l interrupt				
bit 3	1 = Enables f	upt-on-Change the interrupt-on the interrupt-or	-change				
bit 2	1 = TMR0 reg	er0 Overflow Ir gister has overf gister did not ov	lowed	it			
bit 1	INTF: INT External Interrupt Flag bit 1 = The INT external interrupt occurred 0 = The INT external interrupt did not occur						
bit 0	(4)						
	e IOCIF Flag bi ve been cleared		nd cleared wh	en all the Inter	rupt-on-change	flags in the IO	CBF register

REGISTER 8-1: INTCON: INTERRUPT CONTROL REGISTER

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

10.0 LOW DROPOUT (LDO) **VOLTAGE REGULATOR**

The "F" devices have an internal Low Dropout Regulator (LDO) which provide operation above 3.6V. The LDO regulates a voltage for the internal device logic while permitting the VDD and I/O pins to operate at a higher voltage. There is no user enable/disable control available for the LDO, it is always active. The "LF" devices operate at a maximum VDD of 3.6V and does not incorporate an LDO.

A device I/O pin may be configured as the LDO voltage output, identified as the VCAP pin. Although not required, an external low-ESR capacitor may be connected to the VCAP pin for additional regulator stability.

The VCAPEN bit of Configuration Words determines if which pin is assigned as the VCAP pin. Refer to Table 10-1.

VCAPEN SELECT BIT TABLE 10-1: VCAPEN Pin No VCAP 1 RA6 0

On power-up, the external capacitor will load the LDO voltage regulator. To prevent erroneous operation, the device is held in Reset while a constant current source charges the external capacitor. After the cap is fully charged, the device is released from Reset. For more information on the constant current rate, refer to the LDO Regulator Characteristics Table in Section 30.0 "Electrical Specifications".

TABLE 10-2: SUMMARY OF CONFIGURATION WORD WITH LDO

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_		LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN	50
CONFIG2	7:0	_		VCAPEN ⁽¹⁾	_	_		WRT	<1:0>	56

- = unimplemented locations read as '0'. Shaded cells are not used by LDO. Legend:

Note 1: "F" devices only.

11.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See **Section 30.0 "Electrical Specifications**" for the LFINTOSC tolerances.

11.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 11-1.

11.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always on.

WDT protection is active during Sleep.

11.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

11.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 11-1 for more details.

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	х	Х	Active
10		Awake	Active
10	Х	Sleep	Disabled
0.1	1	х	Active
01	0	~	Disabled
00	х	Х	Disabled

TABLE 11-2: WDT CLEARING CONDITIONS

11.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

11.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- Device enters Sleep
- · Device wakes up from Sleep
- · Oscillator fail
- · WDT is disabled
- Oscillator Start-up TImer (OST) is running

See Table 11-2 for more information.

11.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again. The WDT remains clear until the OST, if enabled, completes. See **Section 6.0** "Oscillator **Module (with Fail-Safe Clock Monitor)**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. See **Section 3.0** "**Memory Organization**" and Status Register (Register 3-1) for more information.

WDT						
Cleared						
Cleared						
Cleared until the end of OST						
Unaffected						

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
bit 7	1		I.			•	bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown -n/n = Valu		-n/n = Value a	n/n = Value at POR and BOR/Value at all other Resets				

REGISTER 13-22: WPUC: WEAK PULL-UP PORTC REGISTER

'0' = Bit is cleared

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits 1 = Pull-up enabled 0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 13-23: ODCONC: PORTC OPEN DRAIN CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODC7 | ODC6 | ODC5 | ODC4 | ODC3 | ODC2 | ODC1 | ODC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

'1' = Bit is set

ODC<7:0>: PORTC Open Drain Enable bits For RC<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 13-24: SLRCONC: PORTC SLEW RATE CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRC7 | SLRC6 | SLRC5 | SLRC4 | SLRC3 | SLRC2 | SLRC1 | SLRC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **SLRC<7:0>:** PORTC Slew Rate Enable bits

For RC<7:0> pins, respectively

1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	
IOCxF7	IOCxF6	IOCxF5	IOCxF4	IOCxF3	IOCxF2	IOCxF1	IOCxF0	
bit 7 bit								
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleared			HS - Bit is set in hardware					

REGISTER 14-3: IOCxF: INTERRUPT-ON-CHANGE FLAG REGISTER

bit 7-0 IOCxF<7:0>: Interrupt-on-Change Flag bits⁽¹⁾

- 1 = An enabled change was detected on the associated pin.
 Set when IOCxPx = 1 and a rising edge was detected RBx, or when IOCxNx = 1 and a falling edge was detected on RBx.
- 0 = No change was detected, or the user cleared the detected change.

Note 1: For IOCEF register, bit 3 (IOCEF3) is the only implemented bit in the register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	138
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	159
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	158
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	158
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	159
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	158
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	158
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	159
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	158
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	158
IOCEF	_	_	_	_	IOCEF3	—	_	_	159
IOCEN					IOCEN3				158
IOCEP	_	_	_	_	IOCEP3	_		_	158
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	137

 TABLE 14-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

16.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, *"Use and Calibration of the Internal Temperature Indicator"* (DS01333) for more details regarding the calibration process.

16.1 Circuit Operation

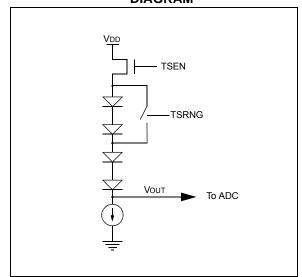
Figure 16-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 16-1 describes the output characteristics of the temperature indicator.

EQUATION 16-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT


The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 15.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for lowvoltage operation.

FIGURE 16-1: TEMPERATURE CIRCUIT DIAGRAM

16.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 16-1 shows the recommended minimum $\mathsf{V}\mathsf{D}\mathsf{D}$ vs. range setting.

TABLE 16-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0				
3.6V	1.8V				

16.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to **Section 17.0 "Analog-to-Digital Converter (ADC) Module"** for detailed information.

16.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

REGISTER 17-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
AD	SIGN			AD<	11:8>			
			·			bit 0		
bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets					
	'0' = Bit is clea	ared						
	AD	ADSIGN bit W = Writable anged x = Bit is unkr	ADSIGN bit W = Writable bit	ADSIGN bit W = Writable bit U = Unimpler anged x = Bit is unknown -n/n = Value a	ADSIGN AD bit W = Writable bit U = Unimplemented bit, read anged x = Bit is unknown -n/n = Value at POR and BC	ADSIGN AD<11:8> bit W = Writable bit U = Unimplemented bit, read as '0' anged x = Bit is unknown -n/n = Value at POR and BOR/Value at all of		

bit 3-0 AD<11:8>: ADC Result Register bits Most Significant 4 bits of 12-bit conversion result

REGISTER 17-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

R/W-x/u								
AD<7:0>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 AD<7:0>: ADC Result Register bits Least Significant 8 bits of 12-bit conversion result

20.11 Register Definitions: Comparator Control

REGISTER 20-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-0/0				
CxON	CxOUT	CxOE	CxPOL	CxZLF	CxSP	CxHYS	CxSYNC				
bit 7							bit 0				
Legend:											
R = Readable		W = Writable			mented bit, rea						
u = Bit is und	-	x = Bit is unki		-n/n = Value a	at POR and BC	R/Value at all	other Resets				
'1' = Bit is se	t	'0' = Bit is cle	ared								
bit 7	CxON: Com	parator Enable	bit								
	-	ator is enabled									
	0 = Compara	0 = Comparator is disabled and consumes no active power									
bit 6	CxOUT: Con	nparator Output	t bit								
		If CxPOL = 1 (inverted polarity):									
	1 = CxVP < CxVN $0 = CxVP > CxVN$										
	If CxPOL = 0 (non-inverted polarity):										
	1 = CxVP > CxVN										
	0 = CxVP <	CxVN									
bit 5	CxOE: Comparator Output Enable bit										
	 CXOUT is present on the CXOUT pin. Requires that the associated TRIS bit be cleared to actually drive the pin. Not affected by CXON. 										
		is internal only									
bit 4		CxPOL: Comparator Output Polarity Select bit									
	1 = Comparator output is inverted										
	0 = Comparator output is not inverted										
bit 3	CxZLF: Com	parator Zero La	atency Filter E	nable bit							
	1 = Comparator output is filtered										
	0 = Comparator output is unfiltered										
bit 2	CxSP: Comparator Speed/Power Select bit										
	 Comparator operates in normal power, higher speed mode Comparator operates in low-power, low-speed mode 										
bit 1	-	CxHYS: Comparator Hysteresis Enable bit									
		1 = Comparator hysteresis enabled									
	0 = Compara	ator hysteresis	disabled								
bit 0	CxSYNC: Co	omparator Outp	ut Synchronou	is Mode bit							
		ator output to T				ges on Timer1	clock source.				
		Output updated on the falling edge of Timer1 clock source. 0 = Comparator output to Timer1 and I/O pin is asynchronous.									
				pin is asyncillu	nous.						

24.3.6 PUSH-PULL PWM WITH FOUR FULL-BRIDGE AND COMPLEMENTARY OUTPUTS

The push-pull PWM is used to drive transistor bridge circuits as well as synchronous switches on the secondary side of the bridge. It uses six outputs and generates PWM signals with dead band that alternate between the six outputs in even and odd cycles.

24.3.6.1 Mode Features and Controls

- Dead-band control is available
- · No steering control available
- Primary PWM is output on the following four pins:
 - PSMCxA
 - PSMCxB
 - PSMCxC
 - PSMCxD
- Complementary PWM is output on the following two pins:
 - PSMCxE
 - PSMCxF

Note: PSMCxA and PSMCxC are identical waveforms, and PSMCxB and PSMCxD are identical waveforms.

24.3.6.2 Waveform Generation

Push-pull waveforms generate alternating outputs on two sets of pin. Therefore, there are two sets of rising edge events and two sets of falling edge events

Odd numbered period rising edge event:

- · PSMCxE is set inactive
- Dead-band rising is activated (if enabled)
- PSMCxA and PSMCxC are set active

Odd numbered period falling edge event:

- PSMCxA and PSMCxC are set inactive
- Dead-band falling is activated (if enabled)
- PSMCxE is set active

Even numbered period rising edge event:

- PSMCxF is set inactive
- · Dead-band rising is activated (if enabled)
- PSMCxB and PSMCxD are set active

Even numbered period falling edge event:

- PSMCxB and PSMCxOUT3 are set inactive
- Dead-band falling is activated (if enabled)
- · PSMCxF is set active

FIGURE 24-9: PUSH-PULL 4 FULL-BRIDGE AND COMPLEMENTARY PWM

PWM Period Number	1
Period Event	
Rising Edge Event	
Falling Edge Event	
→ PSMCxA	
PSMCxC	
PSMCxE	← Falling Edge Dead Band Falling Edge Dead Band ←
PSMCxB	
PSMCxD	
PSMCxF	→ ← Falling Edge Dead Band → ← Rising Edge Dead Band

24.3.8 PULSE-SKIPPING PWM WITH COMPLEMENTARY OUTPUTS

The pulse-skipping PWM is used to generate a series of fixed-length pulses that may or not be triggered at each period event. If any of the sources enabled to generate a rising edge event are high when a period event occurs, a pulse will be generated. If the rising edge sources are low at the period event, no pulse will be generated.

The rising edge occurs based upon the value in the PSMCxPH register pair.

The falling edge event always occurs according to the enabled event inputs without qualification between any two inputs.

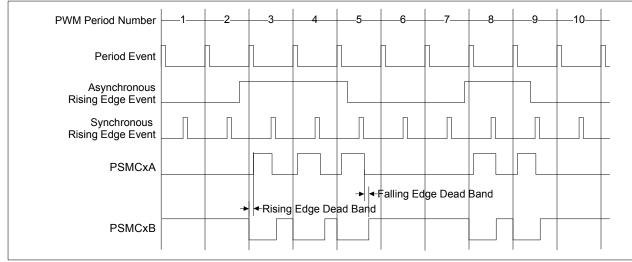
24.3.8.1 Mode Features

- · Dead-band control is available
- · No steering control available
- · Primary PWM is output on only PSMCxA.
- · Complementary PWM is output on only PSMCxB.

24.3.8.2 Waveform Generation

Rising Edge Event

If any enabled asynchronous rising edge event = 1 when there is a period event, then upon the next synchronous rising edge event:


- · Complementary output is set inactive
- Dead-band rising is activated (if enabled)
- · Primary output is set active

Falling Edge Event

- · Primary output is set inactive
- Dead-band falling is activated (if enabled)
- · Complementary output is set active

Note: To use this mode, an external source must be used for the determination of whether or not to generate the set pulse. If the phase time base is used, it will either always generate a pulse or never generate a pulse based on the PSMCxPH value.

FIGURE 24-11: PULSE-SKIPPING WITH COMPLEMENTARY OUTPUT PWM WAVEFORM

24.7 Auto-Shutdown

Auto-shutdown is a method to immediately override the PSMC output levels with specific overrides that allow for safe shutdown of the application.

Auto-shutdown includes a mechanism to allow the application to restart under different conditions.

Auto-shutdown is enabled with the PxASDEN bit of the PSMC Auto-shutdown Control (PSMCxASDC) register (Register 24-15). All auto-shutdown features are enabled when PxASDEN is set and disabled when cleared.

24.7.1 SHUTDOWN

There are two ways to generate a shutdown event:

- Manual
- External Input

24.7.1.1 Manual Override

The auto-shutdown control register can be used to manually override the pin functions. Setting the PxASE bit of the PSMC Auto-shutdown Control (PSMCxASDC) register (Register 24-15) generates a software shut-down event.

The auto-shutdown override will persist as long as PxASE remains set.

24.7.1.2 External Input Source

Any of the given sources that are available for event generation are also available for system shut-down. This is so that external circuitry can monitor and force a shutdown without any software overhead. Auto-shutdown sources are selected with the PSMC Auto-shutdown Source (PSMCxASDS) register (Register 24-17).

When any of the selected external auto-shutdown sources go high, the PxASE bit is set and an auto-shutdown interrupt is generated.

Note: The external shutdown sources are level sensitive, not edge sensitive. The shutdown condition will persist as long as the circuit is driving the appropriate logic level.

24.7.2 PIN OVERRIDE LEVELS

The logic levels driven to the output pins during an auto-shutdown event are determined by the PSMC Auto-shutdown Output Level (PSMCxASDL) register (Register 24-16).

24.7.2.1 PIN Override Enable

Setting the PxASDOV bit of the PSMC Auto-shutdown Control (PSMCxASDC) register (Register 24-15) will also force the override levels onto the pins, exactly like what happens when the auto-shutdown is used. However, whereas setting PxASE causes an auto-shutdown interrupt, setting PxASDOV does not generate an interrupt.

24.7.3 RESTART FROM AUTO-SHUTDOWN

After an auto-shutdown event has occurred, there are two ways for the module to resume operation:

- Manual restart
- Automatic restart

The restart method is selected with the PxARSEN bit of the PSMC Auto-shutdown Control (PSMCxASDC) register (Register 24-15).

24.7.3.1 Manual Restart

When PxARSEN is cleared, and once the PxASDE bit is set, it will remain set until cleared by software.

The PSMC will restart on the period event after PxASDE bit is cleared in software.

24.7.3.2 Auto-Restart

When PxARSEN is set, the PxASDE bit will clear automatically when the source causing the Reset and no longer asserts the shut-down condition.

The PSMC will restart on the next period event after the auto-shutdown condition is removed.

Examples of manual and automatic restart are shown in Figure 24-20.

Note: Whether manual or auto-restart is selected, the PxASDE bit cannot be cleared in software when the auto-shutdown condition is still present.

REGISTER 24-3: PSMC1SYNC: PSMC1 SYNCHRONIZATION CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0				
P1POFST	P1PRPOL	P1DCPOL	0-0	0-0	0-0		IC<1:0>				
	PIPRPUL	PIDCPOL	—	_	—	PISTN					
bit 7							bit 0				
I a man di											
Legend:											
R = Readable bi	t	W = Writable bit		U = Unimpleme	ented bit, read as '0)'					
u = Bit is unchar	iged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/Val	ue at all other Re	esets				
'1' = Bit is set		'0' = Bit is cleare	ed								
bit 7		IC1 Phase Offset		set source is svn	chronous period ev	/ent					
	 1 = sync_out source is phase event and latch set source is synchronous period event 0 = sync_out source is period event and latch set source is phase event 										
bit 6	P1PRPOL: PSI	MC1 Period Polar	itv Event Contro	ol bit							
	1 = Selected asynchronous period event inputs are inverted										
	0 = Selected	asynchronous pe	riod event input	s are not inverted	t						
bit 5	P1DCPOL: PS	P1DCPOL: PSMC1 Duty-cycle Event Polarity Control bit									
	1 = Selected asynchronous duty-cycle event inputs are inverted										
	0 = Selected	asynchronous du	ty-cycle event ir	nputs are not inve	erted						
bit 4-2	Unimplemente	d: Read as '0'									
bit 1-0		P1SYNC<1:0>: PSMC1 Period Synchronization Mode bits									
		,		() _	n comes from PSM	· _ /					
		ed - Do not use	with the PSMC2	module (sync_ir	n comes from PSM	C2 sync_out)					
		is synchronized	with period ever	at							
		is synchronized									

REGISTER 24-4: PSMC2SYNC: PSMC2 SYNCHRONIZATION CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
P2POFST	P2PRPOL	P2DCPOL	—	—	—	P2SYN	C<1:0>
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	 P2POFST: PSMC2 Phase Offset Control bit 1 = sync_out source is phase event and latch set source is synchronous period event 0 = sync_out source is period event and latch set source is phase event
bit 6	 P2PRPOL: PSMC2 Period Polarity Event Control bit 1 = Selected asynchronous period event inputs are inverted 0 = Selected asynchronous period event inputs are not inverted
bit 5	 P2DCPOL: PSMC2 Duty-cycle Event Polarity Control bit 1 = Selected asynchronous duty-cycle event inputs are inverted 0 = Selected asynchronous duty-cycle event inputs are not inverted
bit 4-2	Unimplemented: Read as '0'
bit 1-0	 P2SYNC<1:0>: PSMC2 Period Synchronization Mode bits 11 = PSMC2 is synchronized with the PSMC3 module (sync_in comes from PSMC3 sync_out) 10 = Reserved - Do not use 01 = PSMC2 is synchronized with the PSMC1 module (sync_in comes from PSMC1 sync_out) 00 = PSMC2 is synchronized with period event

27.6 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

27.6.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Reception (see Section 27.5.2.4 "Synchronous Slave Reception Set-up:").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RCREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

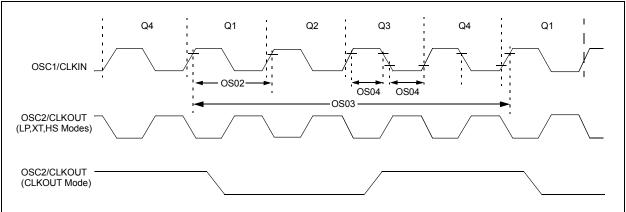
Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

27.6.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for synchronous slave transmission (see Section 27.5.2.2 "Synchronous Slave Transmission Set-up:").
- The TXIF interrupt flag must be cleared by writing the output data to the TXREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXIE of the PIE1 register and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXREG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXREG is available to accept another character for transmission, which will clear the TXIF flag.


Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit is also set then the Interrupt Service Routine at address 0004h will be called.

27.6.3 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 13.1 "Alternate Pin Function**" for more information.

PIC16(L)F1784/6/7

TABLE 30-6:	CLOCK OSCILLATOR TIMING REQUIREMENTS

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	0.5	MHz	EC Oscillator mode (low)
			DC	—	4	MHz	EC Oscillator mode (medium)
			DC	_	20	MHz	EC Oscillator mode (high)
		Oscillator Frequency ⁽¹⁾	_	32.768	_	kHz	LP Oscillator mode
			0.1	_	4	MHz	XT Oscillator mode
			1	_	4	MHz	HS Oscillator mode
			1	_	20	MHz	HS Oscillator mode, VDD > 2.7V
			DC	_	4	MHz	RC Oscillator mode, VDD > 2.0V
OS02	Tosc	External CLKIN Period ⁽¹⁾	27		×	μS	LP Oscillator mode
			250	_	×	ns	XT Oscillator mode
			50	_	×	ns	HS Oscillator mode
			50	_	×	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	—	30.5	_	μS	LP Oscillator mode
			250	_	10,000	ns	XT Oscillator mode
			50	_	1,000	ns	HS Oscillator mode
			250	—	—	ns	RC Oscillator mode
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc
OS04*	TosH,	External CLKIN High,	2	—	—	μS	LP oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator
			20	—	—	ns	HS oscillator
OS05*	TosR,	External CLKIN Rise,	0	—	×	ns	LP oscillator
	TosF	External CLKIN Fall	0	—	×	ns	XT oscillator
			0	—	x	ns	HS oscillator

Standard Operating Conditions (unless otherwise stated)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (Tcr) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

TABLE 30-15: OPERATIONAL AMPLIFIER (OPA)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated): VDD = 3.0 Temperature 25°C, High-Power Mode						
Param No.	Symbol	Symbol Parameters		Min. Typ. Max.		Units	Conditions		
OPA01*	GBWP	Gain Bandwidth Product	_	3.5	—	MHz	High-Power mode		
OPA02*	TON	Turn on Time	_	10		μS			
OPA03*	Рм	Phase Margin	_	60		degrees			
OPA04*	SR	Slew Rate	_	3		V/µs			
OPA05	Off	Offset	_	±3	±9	mV			
OPA06	CMRR	Common Mode Rejection Ratio	55	70		dB			
OPA07*	Aol	Open Loop Gain	—	90	—	dB			
OPA08	VICM	Input Common Mode Voltage	0	—	Vdd	V	VDD > 2.5		
OPA09*	PSRR	Power Supply Rejection Ratio	—	80	—	dB			

These parameters are characterized but not tested.

TABLE 30-16: COMPARATOR SPECIFICATIONS

Operating Conditions: VDD = 3.0V, Temperature = 25°C (unless otherwise stated).							
Param No.	Sym.	Characteristics		Тур.	Max.	Units	Comments
CM01	VIOFF	Input Offset Voltage	—	±2.5	±9	mV	Normal-Power mode Viсм = VDD/2
CM02	VICM	M Input Common Mode Voltage			Vdd	V	
CM03	CMRR	Common Mode Rejection Ratio	40	50		dB	
CM04A		Response Time Rising Edge	-	60	125	ns	Normal-Power mode measured at VDD/2 (Note 1)
CM04B		Response Time Falling Edge	—	60	110	ns	Normal-Power mode measured at VDD/2 (Note 1)
CM04C	TRESP	Response Time Rising Edge	—	85	—	ns	Low-Power mode measured at VDD/2 (Note 1)
CM04D		Response Time Falling Edge	—	85	—	ns	Low-Power mode measured at VDD/2 (Note 1)
CM05	Tmc2ov	Comparator Mode Change to Output Valid*	—	—	10	μS	
CM06	CHYSTER	Comparator Hysteresis	20	45	75	mV	Hystersis ON, High Power measured at VDD/2 (Note 2)

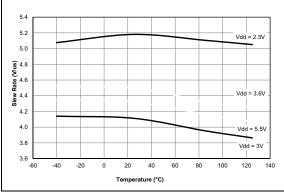
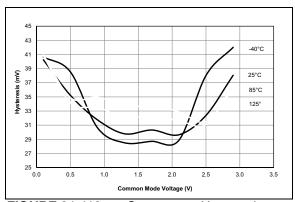
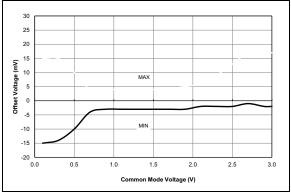
* These parameters are characterized but not tested.

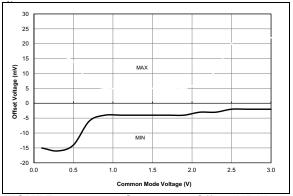
Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

2: Comparator Hysteresis is available when the CxHYS bit of the CMxCON0 register is enabled.

PIC16(L)F1784/6/7

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.


FIGURE 31-115: Op Amp, Output Slew Rate, Falling Edge, PIC16F1784/6/7 Only.

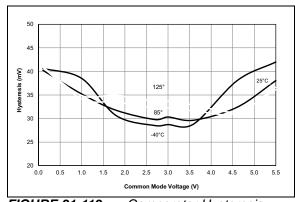

FIGURE 31-116: Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values.

FIGURE 31-117: Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values at 25°C.

FIGURE 31-118: Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values From -40°C to 125°C.

FIGURE 31-119: Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 5.5V, Typical Measured Values, PIC16F1784/6/7 Only.