

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1784t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

6.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 6-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources

The oscillator module can be configured in one of eight clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium-Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 32 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (up to 4 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (4 MHz to 20 MHz)
- 7. RC External Resistor-Capacitor (RC).
- 8. INTOSC Internal oscillator (31 kHz to 32 MHz).

Clock Source modes are selected by the FOSC<2:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The EC clock mode relies on an external logic level signal as the device clock source. The LP, XT, and HS clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The RC clock mode requires an external resistor and capacitor to set the oscillator frequency.

The INTOSC internal oscillator block produces low, medium, and high-frequency clock sources, designated LFINTOSC, MFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 6-1). A wide selection of device clock frequencies may be derived from these three clock sources.

6.2.2.7 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 6-7). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

See Figure 6-7 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 6-1.

Start-up delay specifications are located in the oscillator tables of **Section 30.0** "**Electrical Specifications**".

R-1/q	R-0/q	R-q/q	R-0/q	R-0/q	R-q/q	R-0/0	R-0/q					
T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS					
bit 7	·						bit 0					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'						
u = Bit is unc	hanged	x = Bit is unk	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets					
'1' = Bit is set	t	'0' = Bit is cle	ared	q = Condition	nal							
bit 7		imer1 Oscillator	Ready bit									
	If TIOSCEN											
		oscillator is rea oscillator is not										
	If T10SCEN		Teauy									
		1 = Timer1 clock source is always ready										
bit 6	PLLR 4x PL		, ,									
		1 = 4x PLL is ready										
	0 = 4x PLL	is not ready										
bit 5	OSTS: Osci	llator Start-up T	imer Status bit									
		1 = Running from the clock defined by the FOSC<2:0> bits of the Configuration Words										
		ig from an interr			00)							
bit 4		HFIOFR: High-Frequency Internal Oscillator Ready bit										
		1 = HFINTOSC is ready										
		DSC is not ready										
bit 3		gh-Frequency Ir		or Locked bit								
		1 = HFINTOSC is at least 2% accurate 0 = HFINTOSC is not 2% accurate										
hit 0				villator Doody b	:+							
bit 2		edium-Frequen	cy internal Osc	mator Ready D	iit.							
		1 = MFINTOSC is ready 0 = MFINTOSC is not ready										
bit 1		w-Frequency In	•	or Ready bit								
		SC is ready		in ready bit								
		SC is not ready	/									
bit 0		gh-Frequency Ir		or Stable bit								
		DSC is at least 0										

REGISTER 6-2: OSCSTAT: OSCILLATOR STATUS REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
	_			TUN	<5:0>						
bit 7							bit 0				
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'					
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets				
'1' = Bit is s	set	'0' = Bit is cle	ared								
bit 7-6	Unimpleme	ented: Read as '	0'								
bit 5-0	TUN<5:0>:	Frequency Tunii	ng bits								
	100000 =	Minimum freque	ncy								
	•										
	•										
	• 111111 =										
		000000 = Oscillator module is running at the factory-calibrated frequency.									
	000001 =		5	, ,		- 5					
	•										
	•										
	•										
	011110 =	Maximum freque	ncv								
	011111 -	maximum neque	incy								

REGISTER 6-3: OSCTUNE: OSCILLATOR TUNING REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF	IRCF<3:0>			SCS	82	
OSCSTAT	T1OSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	83
OSCTUNE	_	_			TUN	<5:0>			84
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	C4IE	C3IE	CCP2IE	95
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	C4IF	C3IF	CCP2IF	99
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T10SCEN	T1SYNC		TMR10N	207

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 6-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8	_	—	FCMEN	IESO	CLKOUTEN	BOREN<1:0>		CPD	54
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE	E<1:0>		FOSC<2:0>		54

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

Note 1: PIC16F1784/6/7 only.

11.6 Register Definitions: Watchdog Control

REGISTER 11-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0						
_	—			WDTPS<4:02	>		SWDTEN						
bit 7							bit C						
Legend:													
R = Readable		W = Writable	bit	•	mented bit, read								
u = Bit is unc	hanged	x = Bit is unkı	nown	-m/n = Value	at POR and BC	OR/Value at all	other Resets						
'1' = Bit is set	t	'0' = Bit is cle	ared										
bit 7-6	Unimpleme	nted: Read as '	0'										
bit 5-1	-			elect bits(1)									
		WDTPS<4:0>: Watchdog Timer Period Select bits ⁽¹⁾ Bit Value = Prescale Rate											
		eserved. Result	s in minimum	interval (1:32)									
	•			(1.02)									
	•												
	• _	•											
	10011 = R	10011 = Reserved. Results in minimum interval (1:32)											
	10010 = 1 :	.8388608 (2 ²³) (Interval 256s	nominal)									
		$10001 = 1.4194304 (2^{22})$ (Interval 128s nominal)											
	10000 = 1:	$10000 = 1:2097152 (2^{21}) (Interval 64s nominal)$											
	01111 = 1:	01111 = 1:1048576 (2 ²⁰) (Interval 32s nominal) 01110 = 1:524288 (2 ¹⁹) (Interval 16s nominal)											
	01110 = 1:	1110 = 1:524288 (2 ¹⁹) (Interval 16s nominal) 1101 = 1:262144 (2 ¹⁸) (Interval 8s nominal)											
		= 1:131072 (2 ¹⁷) (Interval 4s nominal) = 1:65536 (Interval 2s nominal) (Reset value)											
		32768 (Interval											
		16384 (Interval		nal)									
		01000 = 1.8192 (Interval 256 ms nominal)											
		00111 = 1:4096 (Interval 128 ms nominal)											
		00110 = 1:2048 (Interval 64 ms nominal) 00101 = 1:1024 (Interval 32 ms nominal)											
		512 (Interval 16)									
		:256 (Interval 8 r	,										
		128 (Interval 4 r	,										
	00001 = 1 :	64 (Interval 2 m	s nominal)										
	00000 = 1:	00000 = 1:32 (Interval 1 ms nominal)											
bit 0	SWDTEN: S	Software Enable	/Disable for W	/atchdog Timer	bit								
	<u>If WDTE<1:</u>	0> = 1x:											
	This bit is ig												
	If WDTE<1:												
	1 = WDT is												
	0 = WDT is												
	If WDTE<1:0	0 > = 0 0											

Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.

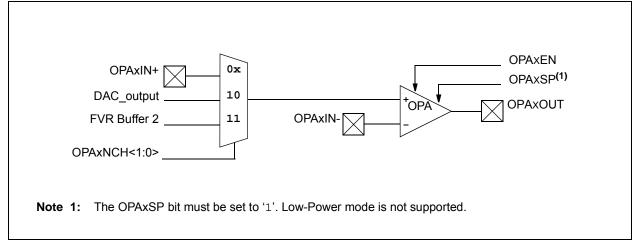
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	ANSA7	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	132
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	133
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	131
ODCONA	ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0	133
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		198
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	131
SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	133
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	131
WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	132

TABLE 13-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

TABLE 13-4: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8		—	FCMEN	IESO	CLKOUTEN	BOREN<1:0>		CPD	54
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE	E<1:0>		FOSC<2:0>		54


Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

18.0 OPERATIONAL AMPLIFIER (OPA) MODULES

The Operational Amplifier (OPA) is a standard three-terminal device requiring external feedback to operate. The OPA module has the following features:

- External connections to I/O ports
- · Low leakage inputs
- Factory Calibrated Input Offset Voltage

FIGURE 18-1: OPAx MODULE BLOCK DIAGRAM

22.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

22.4 Timer1 Oscillator

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). This internal circuit is to be used in conjunction with an external 32.768 kHz crystal.

The oscillator circuit is enabled by setting the T1OS-CEN bit of the T1CON register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to using Timer1. A suitable delay similar to the OST delay can be implemented in software by clearing the TMR1IF bit then presetting the TMR1H:TMR1L register pair to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and reasonably stable.

22.5 Timer1 Operation in Asynchronous Counter Mode

If the control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 22.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note:	When switching from synchronous to
	asynchronous operation, it is possible to
	skip an increment. When switching from
	asynchronous to synchronous operation,
	it is possible to produce an additional
	increment.

22.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

22.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

Timer1 gate can also be driven by multiple selectable sources.

22.6.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 22-3 for timing details.

TABLE 22-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation		
\uparrow	0	0	Counts		
\uparrow	0	1	Holds Count		
1	1	0	Holds Count		
1	1	1	Counts		

22.11 Register Definitions: Timer1 Control

Т

bit 1

bit 0

REGISTER 22-1: T1CON: TIMER1 CONTROL REGISTER

Unimplemented: Read as '0'

0 = Stops Timer1 and clears Timer1 gate flip-flop

TMR1ON: Timer1 On bit 1 = Enables Timer1

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u	
TMR1	CS<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable	oit	U = Unimplen	nented bit, read	l as '0'		
u = Bit is unc	hanged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all	l other Resets	
'1' = Bit is se	t	'0' = Bit is clea	ared					
bit 7-6		0>: Timer1 Cloc ed, do not use.	k Source Sele	ect bits				
	<u>If T10S0</u> External <u>If T10S0</u> Crystal c 01 = Timer1	clock source is <u>CEN = 0</u> : clock from T10 <u>CEN = 1</u> : poscillator on T10 clock source is clock source is	CKI pin (on the OSI/T1OSO p system clock	e rising edge) ins (Fosc)				
bit 5-4	11 = 1:8 Pres 10 = 1:4 Pres 01 = 1:2 Pres	<pre>00 = Timer1 clock source is instruction clock (Fosc/4) T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value</pre>						
bit 3	T1OSCEN: LP Oscillator Enable Control bit 1 = Dedicated Timer1 oscillator circuit enabled 0 = Dedicated Timer1 oscillator circuit disabled							
bit 2	1 = Do not s	ner1 Synchroniz ynchronize asyn nize asynchron	nchronous clo	ck input	lock (Fosc)			

24.3.6 PUSH-PULL PWM WITH FOUR FULL-BRIDGE AND COMPLEMENTARY OUTPUTS

The push-pull PWM is used to drive transistor bridge circuits as well as synchronous switches on the secondary side of the bridge. It uses six outputs and generates PWM signals with dead band that alternate between the six outputs in even and odd cycles.

24.3.6.1 Mode Features and Controls

- Dead-band control is available
- · No steering control available
- Primary PWM is output on the following four pins:
 - PSMCxA
 - PSMCxB
 - PSMCxC
 - PSMCxD
- Complementary PWM is output on the following two pins:
 - PSMCxE
 - PSMCxF

Note: PSMCxA and PSMCxC are identical waveforms, and PSMCxB and PSMCxD are identical waveforms.

24.3.6.2 Waveform Generation

Push-pull waveforms generate alternating outputs on two sets of pin. Therefore, there are two sets of rising edge events and two sets of falling edge events

Odd numbered period rising edge event:

- · PSMCxE is set inactive
- Dead-band rising is activated (if enabled)
- PSMCxA and PSMCxC are set active

Odd numbered period falling edge event:

- PSMCxA and PSMCxC are set inactive
- Dead-band falling is activated (if enabled)
- PSMCxE is set active

Even numbered period rising edge event:

- PSMCxF is set inactive
- · Dead-band rising is activated (if enabled)
- PSMCxB and PSMCxD are set active

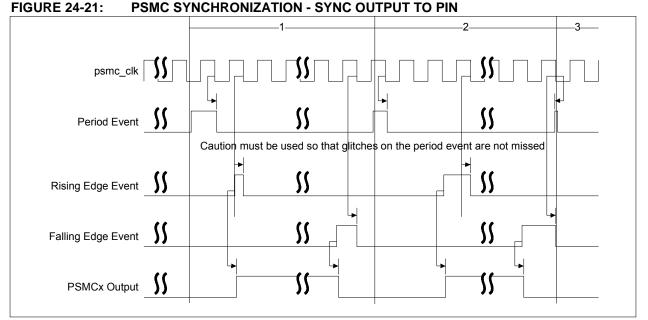
Even numbered period falling edge event:

- PSMCxB and PSMCxOUT3 are set inactive
- Dead-band falling is activated (if enabled)
- · PSMCxF is set active

FIGURE 24-9: PUSH-PULL 4 FULL-BRIDGE AND COMPLEMENTARY PWM

PWM Period Number	1	2	3
Period Event			
Rising Edge Event			
Falling Edge Event			
→ PSMCxA			
PSMCxC			
PSMCxE	→ < Falling Ed	ge Dead Band Falling Ed	ge Dead Band∔ ←
PSMCxB			
PSMCxD			
PSMCxF	-	-► - Falling Edg - Rising Edge Dead Band	e Dead Band

24.8 **PSMC** Synchronization


It is possible to synchronize the periods of two or more PSMC modules together, provided that all modules are on the same device.

Synchronization is achieved by sending a sync signal from the master PSMC module to the desired slave modules. This sync signal generates a period event in each slave module, thereby aligning all slaves with the master. This is useful when an application requires different PWM signal generation from each module but the waveforms must be consistent within a PWM period.

24.8.1 SYNCHRONIZATION SOURCES

The synchronization source can be any PSMC module on the same device. For example, in a device with two PSMC modules, the possible sources for each device is as shown below:

- Sources for PSMC1
 - PSMC2
- Sources for PSMC2
 PSMC1

24.8.1.1 PSMC Internal Connections

The sync signal from the master PSMC module is essentially that modules period event trigger. The slave PSMC modules reset their PSMCxTMR with the sync signal instead of their own period event.

Enabling a module as a slave recipient is done with the PxSYNC bits of the PSMC Synchronization Control (PSMCxSYNC) registers; registers 24-3 and 24-4.

24.8.1.2 Phase Offset Synchronization

The synchronization output signal from the PSMC module is selectable. The sync_out source may be either:

- Period Event
- Rising Event

Source selection is made with the PxPOFST bit of the PSMCxSYNC registers, registers 24-3, 24-4 and 24-6.

When the PxPOFST bit is set, the sync_out signal comes from the rising event and the period event replaces the rising event as the start of the active drive period. When PxPOFST is set, duty cycles of up to 100% are achievable in both the slave and master.

When PXPOFST is clear, the sync_out signal comes from the period event. When PxPOFST is clear, rising events that start after the period event remove the equivalent start delay percentage from the maximum 100% duty cycle.

24.8.1.3 Synchronization Skid

When the sync_out source is the Period Event, the slave synchronous rising and falling events will lag by one psmc_clk period. When the sync_out source is the Rising Event, the synchronous events will lag by two clock periods. To compensate for this, the values in PHH:PHL and DCH:DCL registers can be reduced by the number of lag cycles.

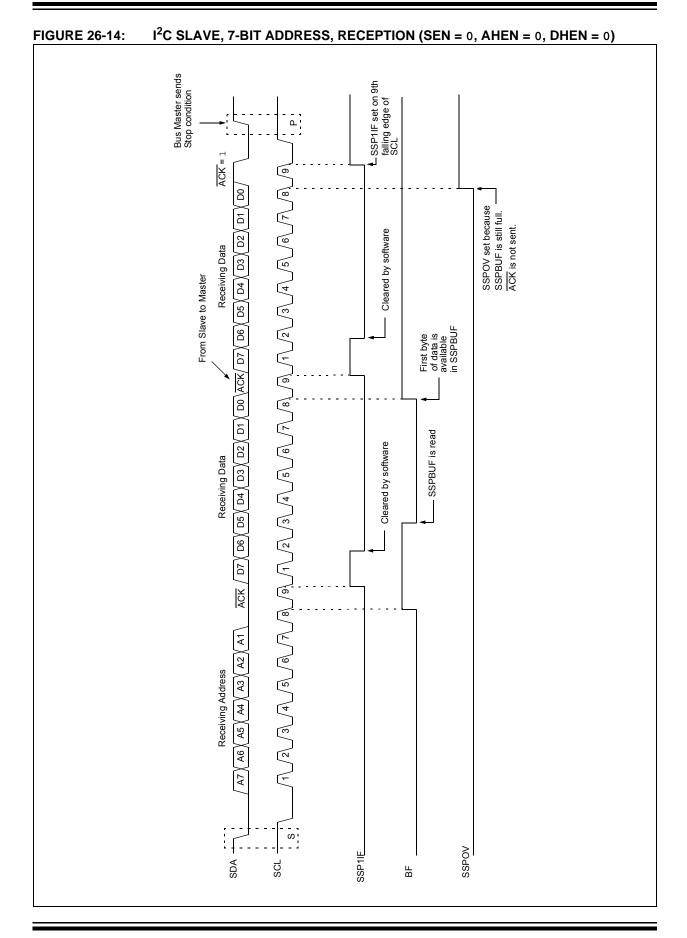
REGISTER 24-18: PSMCxTMRL: PSMC TIME BASE COUNTER LOW REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PSMCxT	MRL<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

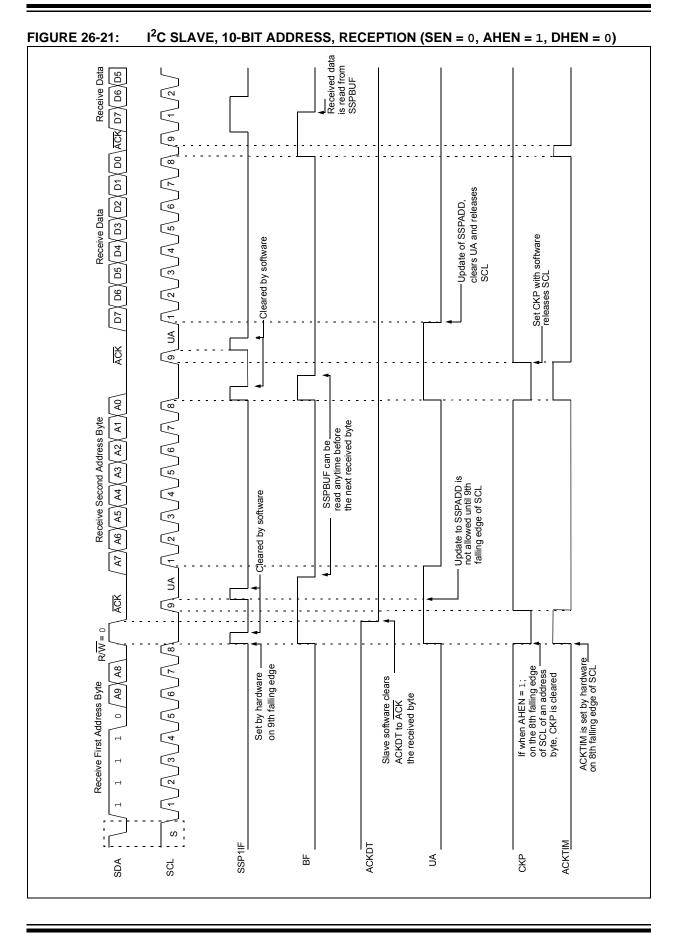
bit 7-0 **PSMCxTMRL<7:0>:** 16-bit PSMCx Time Base Counter Least Significant bits = PSMCxTMR<7:0>

REGISTER 24-19: PSMCxTMRH: PSMC TIME BASE COUNTER HIGH REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1	
			PSMCxT	MRH<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other I				


bit 7-0 PSMCxTMRH<7:0>: 16-bit PSMCx Time Base Counter Most Significant bits

'0' = Bit is cleared


= PSMCxTMR<15:8>

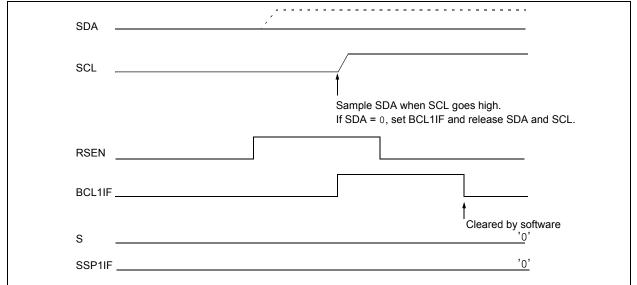
'1' = Bit is set

PIC16(L)F1784/6/7

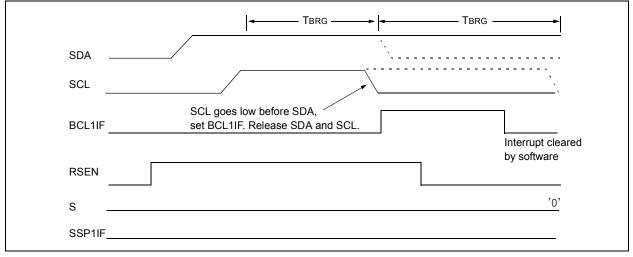
PIC16(L)F1784/6/7

26.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:


- a) A low level is sampled on SDA when SCL goes from low level to high level.
- SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 26-35). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 26-36.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 26-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

27.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXSTA register. The Break character transmission is then initiated by a write to the TXREG. The value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXSTA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 27-9 for the timing of the Break character sequence.

27.4.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

FIGURE 27-9: SEND BREAK CHARACTER SEQUENCE Write to TXREG Dummy Write **BRG** Output (Shift Clock) TX (pin) Start bit bit 0 bit 1 Stop bit Break TXIF bit (Transmit Interrupt Flag) TRMT bit (Transmit Shift Empty Flag) SENDB Sampled Here Auto Cleared SENDB (send Break control bit)

27.4.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCSTA register and the received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- RCIF bit is set
- · FERR bit is set
- RCREG = 00h

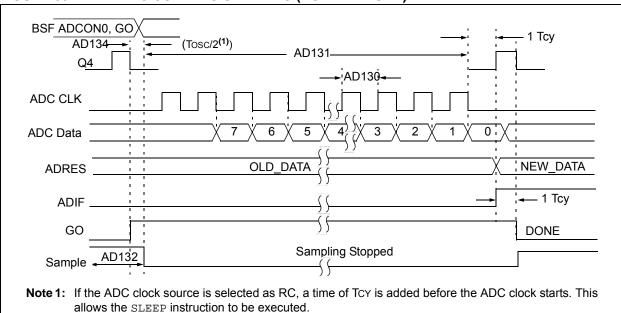
The second method uses the Auto-Wake-up feature described in **Section 27.4.3** "**Auto-Wake-up on Break**". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

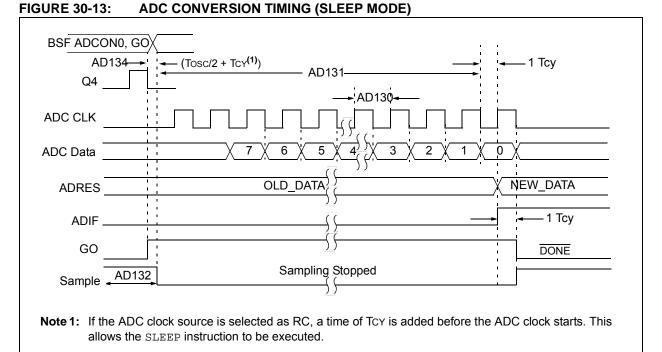
Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCON register before placing the EUSART in Sleep mode.

DS40001637C-page 356

Mnemonic, Operands			Cycle	14-Bit Opcode				Status	
		Description		MS b			LSb	Affecte d	Notes
CONTROL OPERATIONS									
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	-	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETUR	-	Return from Subroutine	2	00	0000	0000	1000		
Ν									
		INHERENT OPER	ATIONS						
CLR-	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
WDT	-	No Operation	1	00	0000	0000	0000		
NOP	_	Load OPTION_REG register with W	1	00	0000	0110	0010		
OPTION	-	Software device Reset	1	00	0000	0000	0001		
RESET	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
SLEEP	f	Load TRIS register with W	1	00	0000	0110	Offf		
TRIS									
		C-COMPILER OPT	TIMIZED						
ADDFS	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
R	n mm	Move Indirect FSRn to W with pre/post	1	00	0000	0001	0nm	Z	2, 3
MOVIW		inc/dec modifier, mm					m		
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	kkkk	Z	2
	n mm	Move W to Indirect FSRn with pre/post	1	00	0000	0001	lnmm		2, 3
MOVWI		inc/dec modifier, mm		11	1111		kkkk		
	k[n]	Move W to INDFn, Indexed Indirect.	1	ΤT	1111	1nkk			2

TABLE 29-4: ENHANCED MID-RANGE INSTRUCTION SET (CONTINUED)


Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.


2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

29.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn
Syntax:	[label] ADDFSR FSRn, k
Operands:	-32 ≤ k ≤ 31 n Î [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h - FFFFh. Moving beyond these bounds will cause the FSR to wrap-around.

FIGURE 30-12: ADC CONVERSION TIMING (NORMAL MODE)

32.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
 Compilers/Assemblers/Linkers
- MPLAB XC Compiler
- MPASM[™] Assembler
- MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
- MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

32.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- · Built-in support for Bugzilla issue tracker