

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	24
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1786-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC16(L)F1784/6/7 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN0-/C2IN0-/	RA0	TTL/ST	CMOS	General purpose I/O.
C3IN0-/C4IN0-	AN0	AN		ADC Channel 0 input.
	C1IN0-	AN	_	Comparator C1 negative input.
	C2IN0-	AN	_	Comparator C2 negative input.
	C3IN0-	AN	_	Comparator C3 negative input.
	C4IN0-	AN	_	Comparator C4 negative input.
RA1/AN1/C1IN1-/C2IN1-/	RA1	TTL/ST	CMOS	General purpose I/O.
C3IN1-/C4IN1-/OPA1OUT	AN1	AN	—	ADC Channel 1 input.
	C1IN1-	AN	_	Comparator C1 negative input.
	C2IN1-	AN	_	Comparator C2 negative input.
	C3IN1-	AN		Comparator C3 negative input.
	C4IN1-	AN		Comparator C4 negative input.
	OPA1OUT		AN	Operational Amplifier 1 output.
RA2/AN2/C1IN0+/C2IN0+/	RA2	TTL/ST	CMOS	General purpose I/O.
C3IN0+/C4IN0+/DAC1OUT1/	AN2	AN		ADC Channel 2 input.
VREF-/DACTVREF-/OPATIN-	C1IN0+	AN	_	Comparator C1 positive input.
	C2IN0+	AN		Comparator C2 positive input.
	C3IN0+	AN		Comparator C3 positive input.
	C4IN0+	AN		Comparator C4 positive input.
	DAC1OUT1		AN	Digital-to-Analog Converter output.
	VREF-	AN	_	ADC Negative Voltage Reference input.
	DAC1VREF-	AN	_	Digital-to-Analog Converter negative reference.
RA3/AN3/VREF+/C1IN1+/	RA3	TTL/ST	CMOS	General purpose I/O.
DAC1VREF+	AN3	AN	_	ADC Channel 3 input.
	VREF+	AN	_	ADC Voltage Reference input.
	C1IN1+	AN	—	Comparator C1 positive input.
	DAC1VREF+	AN	—	Digital-to-Analog Converter positive reference.
RA4/C1OUT/OPA1IN+/T0CKI	RA4	TTL/ST	CMOS	General purpose I/O.
	C1OUT		CMOS	Comparator C1 output.
	OPA1IN+	AN	_	Operational Amplifier 1 non-inverting input.
	T0CKI	ST	_	Timer0 clock input.
RA5/AN4/C2OUT ⁽¹⁾ /OPA1IN-/	RA5	TTL/ST	CMOS	General purpose I/O.
SS	AN4	AN	_	ADC Channel 4 input.
	C2OUT	_	CMOS	Comparator C2 output.
	OPA1IN-	AN	_	Operational Amplifier 1 inverting input.
	SS	ST	—	Slave Select input.

Legend:AN= Analog input or outputCMOS = CMOS compatible input or outputOD= Open DrainTTL = TTL compatible inputST= Schmitt Trigger input with CMOS levels l^2C^{TM} = Schmitt Trigger input with l^2C HV= High VoltageXTAL= Crystallevels

Note 1: Pin functions can be assigned to one of two locations via software. See Register 13-1.

2: All pins have interrupt-on-change functionality.

3: PIC16(L)F1784/7 only.

4: PIC16(L)F1786 only.

3.3.5 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-11 can be addressed from any Bank.

TABLE 3-11:	CORE FUNCTION REGISTERS SUMMARY

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	0-31										
x00h or x80h	INDF0	Addressing (not a phys	this location ical register)	uses conte	nts of FSR0H	/FSR0L to a	ddress data r	memory		xxxx xxxx	uuuu uuuu
x01h or x81h	INDF1	Addressing (not a phys	this location ical register)	uses conte	nts of FSR1H	/FSR1L to a	ddress data r	memory		xxxx xxxx	uuuu uuuu
x02h or x82h	PCL	Program C	ounter (PC)	Least Signifi	cant Byte					0000 0000	0000 0000
x03h or x83h	STATUS	—	_		ТО	PD	Z	DC	С	1 1000	q quuu
x04h or x84h	h or h FSR0L Indirect Data Memory Address 0 Low Pointer									0000 0000	uuuu uuuu
x05h or x85h	FSR0H	Indirect Da	ta Memory A	ddress 0 Hig	gh Pointer					0000 0000	0000 0000
x06h or x86h	FSR1L	Indirect Da	ta Memory A	ddress 1 Lo	w Pointer					0000 0000	uuuu uuuu
x07h or x87h	FSR1H	Indirect Da	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000
x08h or x88h	BSR	—	_		BSR4	BSR3	BSR2	BSR1	BSR0	0 0000	0 0000
x09h or x89h	WREG	Working Register								0000 0000	uuuu uuuu
x0Ahor x8Ah	PCLATH	Write Buffer for the upper 7 bits of the Program Counter								-000 0000	-000 0000
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

ПЛВ								1			
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 4	•									
20Ch	WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	1111 1111	1111 1111
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
20Eh	WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	1111 1111	1111 1111
20Fh	WPUD ⁽³⁾	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	1111 1111	1111 1111
210h	WPUE	—	_	_	_	WPUE3	WPUE2 ⁽³⁾	WPUE1 ⁽³⁾	WPUE0 ⁽³⁾	1111	1111
211h	SSP1BUF	Synchronous S	Serial Port Re	ceive Buffer/Tra	ansmit Register					XXXX XXXX	uuuu uuuu
212h	SSP1ADD				ADD<	7:0>				0000 0000	0000 0000
213h	SSP1MSK				MSK<	7:0>				1111 1111	1111 1111
214h	SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
215h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	1<3:0>		0000 0000	0000 0000
216h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
217h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
218h		l la incal e se e sta	-1								
21Fh	_	Unimplemente	a							_	_
Ban	k 5										
28Ch	ODCONA	Open Drain Co	ontrol for POR	TA						0000 0000	0000 0000
28Dh	ODCONB	Open Drain Co	ontrol for POR	TB						0000 0000	0000 0000
28Eh	ODCONC	Open Drain Co	ontrol for POR	TC						0000 0000	0000 0000
28Fh	ODCOND ⁽³⁾	Open Drain Co	ontrol for POR	TD						0000 0000	0000 0000
290h	ODCONE ⁽³⁾	—	_	—	_	_	ODE2	ODE1	ODE0	000	uuu
291h	CCPR1L	Capture/Comp	are/PWM Reg	gister 1 (LSB)						xxxx xxxx	uuuu uuuu
292h	CCPR1H	Capture/Comp	are/PWM Reg	gister 1 (MSB)						xxxx xxxx	uuuu uuuu
293h	CCP1CON	—	—	DC1B	3<1:0>		CCP1N	∕l<3:0>		00 0000	00 0000
294h	_	Unimplemente	d							_	_
297h		onimplemente	ŭ								
298h	CCPR2L	Capture/Comp	are/PWM Reg	gister 2 (LSB)						XXXX XXXX	uuuu uuuu
299h	CCPR2H	Capture/Comp	are/PWM Reg	gister 2 (MSB)						XXXX XXXX	uuuu uuuu
29Ah	CCP2CON	—	—	DC2B	i<1:0>		CCP2N	M<3:0>		00 0000	00 0000
29Bh	_	Unimplemente	d							_	_
29Fh			-								
Ban	k 6									1	
30Ch	SLRCONA	Slew Rate Con	trol for PORT	A						0000 0000	0000 0000
30Dh	SLRCONB	Slew Rate Con	trol for PORT	В						0000 0000	0000 0000
30Eh	SLRCONC	Slew Rate Con	trol for PORT	C						0000 0000	0000 0000
30Fh	SLRCOND ⁽³⁾	Slew Rate Cor	trol for PORT	D						0000 0000	0000 0000
310h	SLRCONE ⁽³⁾	—	—	—	—	—	SLRE2	SLRE1	SLRE0	111	111
311h	CCPR3L	Capture/Comp	are/PWM Reg	gister 3 (LSB)						XXXX XXXX	uuuu uuuu
312h	CCPR3H	Capture/Comp	are/PWM Reg	gister 3 (MSB)						XXXX XXXX	uuuu uuuu
313h	CCP3CON	—	—	DC3B	8<1:0>		CCP3N	M<3:0>		00 0000	00 0000
314h 31Fh	—	Unimplemente	d							-	—
l egen	d v = unkr	$n_{0} = n_{0} = n_{0} = n_{0}$	anged a = va	lue depends on	condition = 1	inimnlementer	read as '0' v	- = reserved			

TABLE 3-12 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

x = unknown, u = unchanged, q = value depends of Shaded locations are unimplemented, read as '0'. These registers can be addressed from any bank. Unimplemented, read as '1'. PIC16(L)F1784/7 only.

Note 1:

2:

3:

PIC16F1784/6/7 only. 4:

3.5.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.6 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- · Traditional Data Memory
- Linear Data Memory
- Program Flash Memory

3.6.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

R-1/q	R-0/q	R-q/q	R-0/q	R-0/q	R-q/q	R-0/0	R-0/q
T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Condition	nal		
bit 7	T1OSCR: Tin <u>If T1OSCEN</u> 1 = Timer1 c 0 = Timer1 c <u>If T1OSCEN</u> 1 = Timer1 c	ner1 Oscillator = 1: oscillator is read oscillator is not = 0: clock source is	Ready bit dy ready always ready				
bit 6	bit 6 PLLR 4x PLL Ready bit 1 = 4x PLL is ready 0 = 4x PLL is not ready						
bit 5	OSTS: Oscilla 1 = Running 0 = Running	ator Start-up Ti from the clock from an intern	mer Status bit defined by the al oscillator (F	e FOSC<2:0> OSC<2:0> = 1	bits of the Config 00)	guration Word	S
bit 4	HFIOFR: High 1 = HFINTOS 0 = HFINTOS	h-Frequency In SC is ready SC is not ready	ternal Oscillato	or Ready bit			
bit 3	HFIOFL: High 1 = HFINTOS 0 = HFINTOS	n-Frequency In SC is at least 2 SC is not 2% a	ternal Oscillato % accurate ccurate	or Locked bit			
bit 2	bit 2 MFIOFR: Medium-Frequency Internal Oscillator Ready bit 1 = MFINTOSC is ready 0 = MFINTOSC is not ready						
bit 1	bit 1 LFIOFR: Low-Frequency Internal Oscillator Ready bit 1 = LFINTOSC is ready 0 = LFINTOSC is not ready						
bit 0	HFIOFS: High 1 = HFINTOS 0 = HFINTOS	h-Frequency In SC is at least 0 SC is not 0.5%	ternal Oscillato .5% accurate accurate	or Stable bit			

REGISTER 6-2: OSCSTAT: OSCILLATOR STATUS REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	—			TUN	<5:0>		
bit 7	·						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemer	nted: Read as '	0'				
bit 5-0	TUN<5:0>: F	Frequency Tunir	ng bits				
	100000 = M	linimum frequer	псу				
	•						
	•						
	111111 =						
	000000 = O	scillator module	e is running at	the factory-cali	brated frequen	cy.	
	000001 =						
	•						
	•						
	011110 =						
	011111 = M	laximum freque	ncy				

REGISTER 6-3: OSCTUNE: OSCILLATOR TUNING REGISTER

TABLE 6-2:	SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES
------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF	<3:0>		—	SCS	82	
OSCSTAT	T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	83
OSCTUNE	_	-			TUN	<5:0>			84
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	C4IE	C3IE	CCP2IE	95
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	C4IF	C3IF	CCP2IF	99
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T10SCEN	T1SYNC	_	TMR10N	207

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 6-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	FCMEN	IESO	CLKOUTEN	BOREN<1:0>		CPD	54
CONFIGI	7:0	CP	MCLRE	PWRTE	WDTE<1:0>			FOSC<2:0>		54

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

Note 1: PIC16F1784/6/7 only.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0		
_	PSMC3TIF	PSMC2TIF	PSMC1TIF		PSMC3SIF	PSMC2SIF	PSMC1SIF		
bit 7							bit 0		
Legend:									
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
u = Bit is u	unchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is	set	'0' = Bit is clea	ared						
bit 7	Unimplemen	ted: Read as '	0'						
bit 6	PSMC3TIF: F	SMC3 Time B	ase Interrupt F	-lag bit					
	1 = Interrupt i 0 = Interrupt i	s pending s not pending							
bit 5	PSMC2TIF: F	SMC2 Time B	ase Interrupt F	-lag bit					
	1 = Interrupt i	1 = Interrupt is pending							
		0 = Interrupt is not pending							
bit 4		SMC1 Time B	ase Interrupt I	lag bit					
	\perp = Interrupt i	s penaing s not pendina							
bit 3	Unimplemen	ted: Read as '	0'						
bit 2	PSMC3SIF: F	PSMC3 Auto-st	° hutdown Flag	bit					
	1 = Interrupt i	s pending	in a second s	~					
	0 = Interrupt i	s not pending							
bit 1	PSMC2SIF: F	PSMC2 Auto-sh	nutdown Flag	bit					
	1 = Interrupt i	s pending							
		s not pending							
bit 0	PSMC1SIF: ⊦	'SMC1 Auto-st	hutdown Flag	bit					
	1 = Interrupt i	s pending							
	0 – menuper	s not pending							
Note:	Interrupt flag bits a	re set when an	interrupt						
	condition occurs, re	egardless of the	e state of						
	Enable bit GIE o	f the INTCON	register						
	User software	should ensu	ure the						
	appropriate interrupt flag bits are clear								
	prior to enabling a	n interrupt.							

REGISTER 8-9: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

13.5 PORTB Registers

13.5.1 DATA REGISTER

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 13-12). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 13-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 13-11) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

13.5.2 DIRECTION CONTROL

The TRISB register (Register 13-12) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

13.5.3 OPEN DRAIN CONTROL

The ODCONB register (Register 13-16) controls the open-drain feature of the port. Open drain operation is independently selected for each pin. When an ODCONB bit is set, the corresponding port output becomes an open drain driver capable of sinking current only. When an ODCONB bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

13.5.4 SLEW RATE CONTROL

The SLRCONB register (Register 13-17) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONB bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONB bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

13.5.5 INPUT THRESHOLD CONTROL

The INLVLB register (Register 13-18) controls the input voltage threshold for each of the available PORTB input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTB register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See **Section TABLE 30-1: "Supply Voltage"** for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

13.5.6 ANALOG CONTROL

The ANSELB register (Register 13-14) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELB bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

13.11.7 PORTE FUNCTIONS AND OUTPUT PRIORITIES⁽¹⁾

Each PORTE pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 13-11.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority. Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in the priority list.

Note 1: Applies to 40/44-pin devices only.

TABLE 13-11: PORTE OUTPUT PRIORITY

Pin Name	Function Priority ⁽¹⁾
RE0	CCP3 RE0
RE1	PSMC3B RE1
RE2	PSMC3A RE2

Note 1: Priority listed from highest to lowest.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
ADCON0	ADRMD			CHS<4:0>			GO/DONE	ADON	172		
ADCON1	ADFM		ADCS<2:0>		—	ADNREF	ADPRE	173			
ADCON2		TRIGSE	EL<3:0>			CHSN	<3:0>		174		
ADRESH	A/D Result Register High										
ADRESL	A/D Result Register Low								175, 176		
ANSELA	ANSA7	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	132		
ANSELB	—	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	138		
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93		
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94		
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98		
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	131		
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	137		
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/R<1:0>	ADFV	R<1:0>	162		

TABLE 17-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for the ADC module.

FIGURE 24-20: AUTO-SHUTDOWN AND RESTART WAVEFORM

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or 2 bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (see Figure 25-4).

25.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 25-4.

EQUATION 25-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 25-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS ((Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 25-2:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 M	Hz)
-------------	---	-----

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

26.2.4 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as external clock pulses appear on SCK. When the last bit is latched, the SSP1IF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit of the SSPCON1 register.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. The shift register is clocked from the SCK pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake-up from Sleep.

26.2.4.1 Daisy-Chain Configuration

The SPI bus can sometimes be connected in a daisy-chain configuration. The first slave output is connected to the second slave input, the second slave output is connected to the third slave input, and so on. The final slave output is connected to the master input. Each slave sends out, during a second group of clock pulses, an exact copy of what was received during the first group of clock pulses. The whole chain acts as one large communication shift register. The daisy-chain feature only requires a single Slave Select line from the master device.

Figure 26-7 shows the block diagram of a typical daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent byte on the bus is required by the slave. Setting the BOEN bit of the SSPCON3 register will enable writes to the SSPBUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it.

26.2.5 SLAVE SELECT SYNCHRONIZATION

The Slave Select can also be used to synchronize communication. The Slave Select line is held high until the master device is ready to communicate. When the Slave Select line is pulled low, the slave knows that a new transmission is starting.

If the slave fails to receive the communication properly, it will be reset at the end of the transmission, when the Slave Select line returns to a high state. The slave is then ready to receive a new transmission when the Slave Select line is pulled low again. If the Slave Select line is not used, there is a risk that the slave will eventually become out of sync with the master. If the slave misses a bit, it will always be one bit off in future transmissions. Use of the Slave Select line allows the slave and master to align themselves at the beginning of each transmission.

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 0100).

When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven.

When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

Note 1:	When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
2:	When the SPI is used in Slave mode with CKE set; the user must enable \overline{SS} pin control.
3:	While operated in SPI Slave mode the SMP bit of the SSPSTAT register must remain clear.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

26.6.7 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN bit of the SSPCON2 register.

Note:	The MSSP module must be in an Idle
	state before the RCEN bit is set or the
	RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSP1IF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPCON2 register.

26.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

26.6.7.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

26.6.7.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). 26.6.7.4 Typical Receive Sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPCON2 register.
- 2. SSP1IF is set by hardware on completion of the Start.
- 3. SSP1IF is cleared by software.
- 4. User writes SSPBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDA pin until all 8 bits are transmitted. Transmission begins as soon as SSPBUF is written to.
- 6. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register.
- 7. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSP1IF bit.
- 8. User sets the RCEN bit of the SSPCON2 register and the master clocks in a byte from the slave.
- 9. After the 8th falling edge of SCL, SSP1IF and BF are set.
- 10. User clears the SSP1IF bit and reads the received byte from SSPUF, which clears the BF flag.
- 11. The user either clears the SSPCON2 register's ACKDT bit to receive another byte or sets the ADKDT bit to suppress further data and then initiates the acknowledge sequence by setting the ACKEN bit.
- 12. Master's ACK or ACK is clocked out to the slave and SSP1IF is set.
- 13. User clears SSP1IF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. If the ACKST bit was set in step 11 then the user can send a STOP to release the bus.

	SYNC = 0, BRGH = 0, BRG16 = 0													
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300			_	_	_				_			_		
1200		—	_	1221	1.73	255	1200	0.00	239	1200	0.00	143		
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71		
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17		
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16		
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8		
57.6k	55.55k	-3.55	3	—	_		57.60k	0.00	7	57.60k	0.00	2		
115.2k	—	—		—	—		—	—	—	—	—			

TABLE 27-5:BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0														
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Foso	; = 3.686	4 MHz	Fosc = 1.000 MHz						
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual % Rate Erro		SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)				
300				300	0.16	207	300	0.00	191	300	0.16	51				
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12				
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	_	_				
9600	9615	0.16	12	—	_	_	9600	0.00	5	—	_	—				
10417	10417	0.00	11	10417	0.00	5	—	_	_	—	_	_				
19.2k	—	_	_	—	_	_	19.20k	0.00	2	—	_	_				
57.6k	—	_	—	—	_	_	57.60k	0.00	0	—	_	—				
115.2k	—	—	_	—	—		—	—	_	—	—	_				

		SYNC = 0, BRGH = 1, BRG16 = 0													
BAUD	Fosc	= 32.00	0 MHz	Fosc	= 20.00	0 MHz	Foso	c = 18.43	2 MHz	Fosc = 11.0592 MHz					
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)			
300	—	_	—	—	_				_		_	—			
1200	—	—	—	—	—		—	—	—	—	—	—			
2400	_	_	_	—	_	_	—	_	_	—	_	_			
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71			
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65			
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35			
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11			
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5			

FIGURE 29-1: GENERAL FORMAT FOR INSTRUCTIONS

13	nted file I	r egist	erop 76	berat	ions	0
OPC	ODE		d		f (FILE #)	
d = 0 d = 1 f = 7) for desti for desti -bit file re	nation nation gister	W f addr	ess		
Bit-orient	ed file re	gister	оре	ratio	ns	0
OF	CODE	b	(BIT	#)	f (FILE #)
b = 3 f = 7	-bit bit ac -bit file re	ldress gister	addr	ess		
Literal and	d control	oper	atior	าร		
General						
13			8	7		0
OF	CODE				k (literal)	
k = 8	-bit imme	ediate	value	Э		
CALL and	GOTO insi	tructio	ns oi	nly		
13	11	10		,		0
OPC	ODE			k (lit	eral)	
k = 1	1-bit imm	ediate	valu	ie		
MOVLP in	struction	only	7	6		٥
13 OF	PCODE		1		k (literal)	0
		diata .			(
к = 7	-bit imme	ulate	value	;		
MOVLB in	struction	only				
13				5	4	0
OF	CODE				k (litera	l)
k = 5	-bit imme	diate	value	;		
BRA instru	uction only	v				
13		, 9	8			0
OF	CODE				k (literal)	
k = 9)-bit imme	ediate	valu	е		
FSR Offse	et instructi	ons				
13			7 (65		0
OF	CODE		r	۱	k (litera	I)
1 .						
n = a k = 6	appropria 3-bit imme	te FSF ediate	२ valu	e		
n = a k = 6 FSR Incre 13	appropria 5-bit imme ment inst	te FSF ediate ructior	ર valu າs	e	321	0
n = a k = 6 FSR Incre 13 OP	appropria 6-bit imme ment inst CODE	te FSF ediate ructior	R valu ns	e	3 2 1 n m (r	0 node)
n = a k = 6 FSR Incre 13 OP n = a m =	appropria 6-bit imme ment inst CODE appropria 2-bit mod	te FSF ediate ructior te FSF le valu	R valu ns R Ie	e	3 2 1 n m (r	0 node)
n = a k = (FSR Incre 13 0P n = a m = OPCODE 13	appropria 5-bit imme ment inst CODE appropria 2-bit moo only	te FSF ediate ructior te FSF le valu	R valu ns R Ie	e	<u>3 2 1</u> n m (r	0 node)

PIC16LF	1784/6/7		Standard	d Operati	ng Condit	ions (un	less otherwise stated)		
PIC16F1	784/6/7								
Param	Device	Min	Turch		Lin ite	Conditions			
No.	Characteristics	win.	турт	wax.	Units	Vdd	Note		
D009	LDO Regulator	_	75	—	μA		High Power mode, normal operation		
		—	15	—	μA	_	Sleep VREGCON<1> = 0		
		—	0.3	—	μA	_	Sleep VREGCON<1> = 1		
D010		_	8	20	μA	1.8	Fosc = 32 kHz		
		_	12	24	μA	3.0	LP Oscillator mode (Note 4), -40°C \leq TA \leq +85°C		
D010		_	18	63	μA	2.3	Fosc = 32 kHz		
		—	20	74	μA	3.0	LP Oscillator mode (Note 4, 5), 40° C \leq Ta $\leq 185^{\circ}$ C		
		—	22	79	μA	5.0	$-40 C \le 1A \le +85 C$		
D012			160	650	μA	1.8	Fosc = 4 MHz		
		—	320	1000	μA	3.0	XT Oscillator mode		
D012		—	260	700	μA	2.3	Fosc = 4 MHz		
		—	330	1100	μA	3.0	XT Oscillator mode (Note 5)		
			380	1300	μA	5.0			

TABLE 30-2: SUPPLY VOLTAGE (IDD)^(1,2)

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 0.1 μ F capacitor on VCAP.

6: 8 MHz crystal oscillator with 4x PLL enabled.

FIGURE 30-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

	TABLE 30-11:	TIMER0 AND TIMER1	EXTERNAL CLOO	CK REQUIREMENTS
--	--------------	--------------------------	---------------	-----------------

Standard Operating Conditions (unless otherwise stated)												
Param No.	Sym.		Characteristic	Min.	Тур†	Max.	Units	Conditions				
40*	Тт0Н	T0CKI High Pulse Width No Presca With Presc		No Prescaler	0.5 Tcy + 20	—	_	ns				
				With Prescaler	10	_		ns				
41*	T⊤0L	T0CKI Low Pulse Width No Prescale With Presca		No Prescaler	0.5 Tcy + 20	—		ns				
				With Prescaler	10	—		ns				
42*	TT0P	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	_		ns	N = prescale value (2, 4,, 256)			
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	-	_	ns				
			Synchronous, with Prescaler		15	—		ns				
			Asynchronous		30	_	_	ns				
46*	T⊤1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20	_	_	ns				
			Synchronous, with Prescaler		15	—	_	ns				
			Asynchronous		30	_		ns				
47*	* TT1P T1CKI Input Synchronous Period		Greater of: 30 or <u>Tcy + 40</u> N	_		ns	N = prescale value (1, 2, 4, 8)					
			Asynchronous		60	—	_	ns				
48	F⊤1	Timer1 Oscill (oscillator en	lator Input Frequ abled by setting	32.4	32.768	33.1	kHz					
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ec	2 Tosc	_	7 Tosc	—	Timers in Sync mode				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-61: Brown-Out Reset Voltage, Low Trip Point (BORV = 1), PIC16LF1784/6/7 Only.

FIGURE 31-63: Brown-Out Reset Voltage, Low Trip Point (BORV = 1), PIC16F1784/6/7 Only.

FIGURE 31-65: Brown-Out Reset Voltage, High Trip Point (BORV = 0).

FIGURE 31-62: Brown-Out Reset Hysteresis, Low Trip Point (BORV = 1), PIC16LF1784/6/7 Only.

FIGURE 31-66: Brown-Out Reset Hysteresis, High Trip Point (BORV = 0).