

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	24
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1786-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1784/6/7

FIGURE 3-6: ACCESSING THE STACK EXAMPLE 2

13.5 PORTB Registers

13.5.1 DATA REGISTER

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 13-12). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 13-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 13-11) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

13.5.2 DIRECTION CONTROL

The TRISB register (Register 13-12) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

13.5.3 OPEN DRAIN CONTROL

The ODCONB register (Register 13-16) controls the open-drain feature of the port. Open drain operation is independently selected for each pin. When an ODCONB bit is set, the corresponding port output becomes an open drain driver capable of sinking current only. When an ODCONB bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

13.5.4 SLEW RATE CONTROL

The SLRCONB register (Register 13-17) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONB bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONB bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

13.5.5 INPUT THRESHOLD CONTROL

The INLVLB register (Register 13-18) controls the input voltage threshold for each of the available PORTB input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTB register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See **Section TABLE 30-1: "Supply Voltage"** for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

13.5.6 ANALOG CONTROL

The ANSELB register (Register 13-14) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELB bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

REGISTER I	5-16. ODCO	ND. FURID	UPEN DRAI	. REGISTER	

DECISTED 42.46. ODCOND. DODTD ODEN DDAIN CONTROL DECISTED

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0

ODB<7:0>: PORTB Open Drain Enable bits

For RB<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 13-17: SLRCONB: PORTB SLEW RATE CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRB7 | SLRB6 | SLRB5 | SLRB4 | SLRB3 | SLRB2 | SLRB1 | SLRB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRB<7:0>: PORTB Slew Rate Enable bits

For RB<7:0> pins, respectively

1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

REGISTER 13-18: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLB7 | INLVLB6 | INLVLB5 | INLVLB4 | INLVLB3 | INLVLB2 | INLVLB1 | INLVLB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLB<7:0>: PORTB Input Level Select bits

For RB<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

18.4 Register Definitions: Op Amp Control

REGISTER 18-1: OPAxCON: OPERATIONAL AMPLIFIERS (OPAx) CONTROL REGISTERS

R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	
OPAxEN	OPAxSP		_	_	—	OPAxC	;H<1:0>	
bit 7							bit C	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unch	nanged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared	q = Value depends on condition				
bit 7 OPAxEN: Op Amp Enable bit								
 1 = Op amp is enabled 0 = Op amp is disabled and consumes no active power 								
bit 6	OPAxSP: Op Amp Speed/Power Select bit							

	1 = Comparator operates in high GBWP mode
	0 = Reserved. Do not use.
bit 5-2	Unimplemented: Read as '0'
bit 1-0	OPAxCH<1:0>: Non-inverting Channel Selection bits
	11 = Non-inverting input connects to FVR Buffer 2 output

- 10 = Non-inverting input connects to DAC_output
- 0x = Non-inverting input connects to OPAxIN+ pin

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH OP AMPS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	ANSA7	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	132
ANSELB	—	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	138
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	—	DAC1NSS	186
DAC1CON1				DAC	IR<7:0>				186
OPA1CON	OPA1EN	OPA1SP	—	—	—	—	OPA1P0	CH<1:0>	182
OPA2CON	OPA2EN	OPA2SP	—	—	—	—	OPA2P0	CH<1:0>	182
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	131
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	137
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by op amps.

Note 1: PIC16(L)F1784/7 only

21.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (independent of Watchdog Timer)
- Programmable internal or external clock source
- Programmable external clock edge selection
- · Interrupt on overflow
- TMR0 can be used to gate Timer1

Figure 21-1 is a block diagram of the Timer0 module.

21.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

21.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION_REG register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

FIGURE 21-1: BLOCK DIAGRAM OF THE TIMER0

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin.

8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS	S<1:0>
bit 7			I.			•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	/are	
bit 7	7 TMR1GE: Timer1 Gate Enable bit <u>If TMR1ON = 0</u> : This bit is ignored <u>If TMR1ON = 1</u> : 1 = Timer1 counting is controlled by the Timer1 gate function						
bit 6	T1GPOL: Tim 1 = Timer1 g 0 = Timer1 g	ner1 Gate Pola ate is active-hig ate is active-lov	rity bit gh (Timer1 cou w (Timer1 cou	unts when gate nts when gate i	is high) s low)		
bit 5	T1GTM: Time 1 = Timer1 G 0 = Timer1 G Timer1 gate fi	er1 Gate Toggle Gate Toggle mo Gate Toggle mo lip-flop toggles	e Mode bit de is enabled de is disabled on every rising	and toggle flip-	flop is cleared		
bit 4	T1GSPM: Tin	ner1 Gate Sing	le-Pulse Mode	e bit			
	1 = Timer1 G 0 = Timer1 G	Gate Single-Pul	se mode is en se mode is dis	abled and is co abled	ntrolling Timer	1 gate	
bit 3	T1GGO/DON	E: Timer1 Gate	e Single-Pulse	Acquisition Sta	atus bit		
	1 = Timer1 g 0 = Timer1 g	ate single-pulse ate single-pulse	e acquisition is e acquisition h	s ready, waiting as completed o	for an edge or has not been	started	
bit 2	T1GVAL: Tim	ner1 Gate Curre	ent State bit				
	Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L. Unaffected by Timer1 Gate Enable (TMR1GE).						
bit 1-0	T1GSS<1:0>	: Timer1 Gate	Source Select	bits			
	 11 = Comparator 2 optionally synchronized output (sync_C2OUT) 10 = Comparator 1 optionally synchronized output (sync_C1OUT) 01 = Timer0 overflow output 00 = Timer1 gate pin 						

REGISTER 22-2: T1GCON: TIMER1 GATE CONTROL REGISTER

24.2.6 CLOCK PRESCALER

There are four prescaler choices available to be applied to the selected clock:

- Divide by 1
- Divide by 2
- Divide by 4
- Divide by 8

FIGURE 24-3: TIME BASE WAVEFORM GENERATION

The clock source is selected with the PxCPRE<1:0> bits of the PSMCx Clock Control (PSMCxCLK) register

The prescaler output is psmc_clk, which is the clock

used by all of the other portions of the PSMC module.

(Register 24-6).

24.5.3 COMPLEMENTARY PWM STEERING

In Complementary PWM Steering mode, the primary PWM signal (non-complementary) and complementary signal can be steered according to their respective type.

Primary PWM signal can be steered to any of the following outputs:

- PSMCxA
- PSMCxC
- PSMCxE

The complementary PWM signal can be steered to any of the following outputs:

- PSMCxB
- PSMCxD
- PSMCxE

Examples of unsynchronized complementary steering are shown in Figure 24-17.

FIGURE 24-17: COMPLEMENTARY PWM STEERING WAVEFORM (NO SYNCHRONIZATION, ZERO DEAD-BAND TIME)

Base_PWM_signal	
PxSTRA	
PSMCxA	
PSMCxB	
PxSTRB	Arrows indicate where a change in the steering bit automatically forces a change in the corresponding PSMC output.
PxSTRC	
PSMCxC	
PSMCxD	
PxSTRD	
PxSTRE	
PSMCxE	
PSMCxF	
PxSTRF	

REGISTER 24-10: PSMCxREBS: PSMC RISING EDGE BLANKED SOURCE REGISTER

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0
PxREBSIN	_	_	PxREBSC4	PxREBSC3	PxREBSC2	PxREBSC1	_
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read as '0)'	
u = Bit is unchang	ged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/Val	lue at all other Re	esets
'1' = Bit is set		'0' = Bit is cleare	ed				
bit 7	PxREBSIN: PSI 1 = PSMCxIN 0 = PSMCxIN	MCx Rising Edge I pin cannot caus I pin is not blanke	Event Blanked e a rising or falli d	from PSMCxIN p ng event for the	pin duration indicated I	by the PSMCxBL	NK register
bit 6-5	Unimplemente	d: Read as '0'					
bit 4	PxREBSC4: PSMCx Rising Edge Event Blanked from sync_C4OUT 1 = sync_C4OUT cannot cause a rising or falling event for the duration indicated by the PSMCxBLNK register 0 = sync_C4OUT is not blanked						
bit 3	PxREBSC3: PS 1 = sync_C30 0 = sync_C30	 xREBSC3: PSMCx Rising Edge Event Blanked from sync_C3OUT sync_C3OUT cannot cause a rising or falling event for the duration indicated by the PSMCxBLNK register sync_C3OUT is not blanked 					
bit 2	PxREBSC2: PS 1 = sync_C2C 0 = sync_C2C	SMCx Rising Edge DUT cannot cause DUT is not blanke	e Event Blanked e a rising or falli d	I from sync_C2O ng event for the o	UT duration indicated I	by the PSMCxBL	NK register
bit 1	PxREBSC1: PS 1 = sync_C10 0 = sync_C10	MCx Rising Edge DUT cannot cause DUT is not blanke	e Event Blanked e a rising or falli d	I from sync_C1O ng event for the o	UT duration indicated b	by the PSMCxBL	NK register
bit 0	Unimplemente	d: Read as '0'					

REGISTER 24-11: PSMCxFEBS: PSMC FALLING EDGE BLANKED SOURCE REGISTER

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0
PxFEBSIN	—	—	PxFEBSC4	PxFEBSC3	PxFEBSC2	PxFEBSC1	_
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	 PxFEBSIN: PSMCx Falling Edge Event Blanked from PSMCxIN pin 1 = PSMCxIN pin cannot cause a rising or falling event for the duration indicated by the PSMCxBLNK register 0 = PSMCxIN pin is not blanked 		
bit 6-5	Unimplemented: Read as '0'		
bit 4	PxFEBSC4: PSMCx Falling Edge Event Blanked from sync_C4OUT 1 = sync_C4OUT cannot cause a rising or falling event for the duration indicated by the PSMCxBLNK register 0 = sync_C4OUT is not blanked		
bit 3	PxFEBSC3: PSMCx Falling Edge Event Blanked from sync_C3OUT 1 = sync_C3OUT cannot cause a rising or falling event for the duration indicated by the PSMCxBLNK register 0 = sync_C3OUT is not blanked		
bit 2	 PxFEBSC2: PSMCx Falling Edge Event Blanked from sync_C2OUT 1 = sync_C2OUT cannot cause a rising or falling event for the duration indicated by the PSMCxBLNK register 0 = sync_C2OUT is not blanked 		
bit 1	PxFEBSC1: PSMCx Falling Edge Event Blanked from sync_C1OUT 1 = sync_C1OUT cannot cause a rising or falling event for the duration indicated by the PSMCxBLNK register 0 = sync_C1OUT is not blanked		
bit 0	Unimplemented: Read as '0'		

26.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

26.6.11 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

26.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit of the SSPSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCL1IF bit.

The states where arbitration can be lost are:

- Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

26.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCL1IF and reset the I²C port to its Idle state (Figure 26-31).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSP1IF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared.

PIC16(L)F1784/6/7

26.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- SDA or SCL are sampled low at the beginning of the Start condition (Figure 26-32).
- b) SCL is sampled low before SDA is asserted low (Figure 26-33).

During a Start condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted,
- · the BCL1IF flag is set and
- · the MSSP module is reset to its Idle state (Figure 26-32).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 26-34). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 26-33: **BUS COLLISION DURING START CONDITION (SDA ONLY)**

PIC16(L)F1784/6/7

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT,} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - (W) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.

C = 0	W > f
C = 1	$W \leq f$
DC = 0	W<3:0> > f<3:0>
DC = 1	W<3:0> ≤ f<3:0>

SUBWFB	Subtract W from f with Borrow
Syntax:	SUBWFB f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

SUBLW	Subtract W from literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k - (W) \rightarrow (W)$
Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.

C = 0	W > k
C = 1	$W \leq k$
DC = 0	W<3:0> > k<3:0>
DC = 1	$W<3:0> \le k<3:0>$

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

TABLE 30-4: I/O PORTS

Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
	VIL	Input Low Voltage							
		I/O PORT:							
D034		with TTL buffer	—	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D034A			—	—	0.15 Vdd	V	$1.8V \leq V\text{DD} \leq 4.5V$		
D035		with Schmitt Trigger buffer	—	—	0.2 Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$		
		with I ² C™ levels	—	—	0.3 Vdd	V			
		with SMBus levels	—	_	0.8	V	$2.7V \leq V\text{DD} \leq 5.5V$		
D036		MCLR, OSC1 (RC mode) ⁽¹⁾	_	_	0.2 VDD	V			
D036A		OSC1 (HS mode)	_		0.3 Vdd	V			
	VIH	Input High Voltage							
		I/O ports:							
D040		with TTL buffer	2.0	_	—	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D040A			0.25 VDD +	_	—	V	$1.8V \leq V\text{DD} \leq 4.5V$		
			0.8						
D041		with Schmitt Trigger buffer	0.8 Vdd	—	—	V	$2.0V \le VDD \le 5.5V$		
		with I ² C™ levels	0.7 Vdd	—	—	V			
		with SMBus levels	2.1	—	—	V	$2.7V \le VDD \le 5.5V$		
D042		MCLR	0.8 VDD	_		V			
D043A		OSC1 (HS mode)	0.7 Vdd	_	—	V			
D043B		OSC1 (RC mode)	0.9 Vdd	_	—	V	(Note 1)		
	lı∟	Input Leakage Current ⁽²⁾							
D060		I/O ports	—	± 5	± 125	nA	Vss ≤ VPIN ≤ VDD, Pin at high-impedance @ 85°C		
				± 5	± 1000	nA	125°C		
D061		MCLR ⁽³⁾	—	± 50	± 200	nA	$Vss \leq V \text{PIN} \leq V \text{DD} \ \textcircled{0} \ 85^\circ C$		
	IPUR	Weak Pull-up Current							
D070*			25	100	200		VDD = 3.3V, VPIN = VSS		
			25	140	300	μA	VDD = 5.0V, VPIN = VSS		
	Vol	Output Low Voltage ⁽⁴⁾							
D080		I/O ports		_	0.6	v	IOL = 8mA, $VDD = 5V$		
		-	_				IOL = 6MA, VDD = 3.3V		
	VOH Output High Voltage ⁽⁴⁾								
D090		I/O ports					Юн = 3.5mA, VDD = 5V		
			Vdd - 0.7	—	_	V	юн = 3mA, Vdd = 3.3V		
							юн = 1mA, Vdd = 1.8V		

These parameters are characterized but not tested.

t Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

TABLE 30-20: SPI MODE REQUIREMENTS

Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions		
SP70*	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	2.25*Tcy		—	ns			
SP71*	TscH	SCK input high time (Slave mode	e)	TCY + 20		_	ns		
SP72*	TscL	SCK input low time (Slave mode	TCY + 20	_	-	ns			
SP73*	TDIV2SCH, TDIV2SCL	Setup time of SDI data input to S	100	_	_	ns			
SP74*	TscH2diL, TscL2diL	Hold time of SDI data input to SO	100		_	ns			
SP75*	TDOR	SDO data output rise time	3.0-5.5V	_	10	25	ns		
			1.8-5.5V	—	25	50	ns		
SP76*	TDOF	SDO data output fall time		—	10	25	ns		
SP77*	TssH2doZ	SS↑ to SDO output high-impedance		10	_	50	ns		
SP78*	TscR	SCK output rise time (Master mode)	3.0-5.5V	—	10	25	ns		
			1.8-5.5V	—	25	50	ns		
SP79*	TscF	SCK output fall time (Master mod	de)	—	10	25	ns		
SP80*	TscH2doV, TscL2doV	SCH2DOV, SDO data output valid after SCL2DOV SCK edge	3.0-5.5V	—	_	50	ns		
			1.8-5.5V	_	_	145	ns		
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge		Тсу	_	_	ns		
SP82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge		_	_	50	ns		
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	—	—	ns		

Standard Operating Conditions (unless otherwise stated)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-20: I²C[™] BUS START/STOP BITS TIMING

*

PIC16(L)F1784/6/7

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-1: IDD, LP Oscillator Mode, Fosc = 32 kHz, PIC16LF1784/6/7 Only.

FIGURE 31-2: IDD, LP Oscillator Mode, Fosc = 32 kHz, PIC16F1784/6/7 Only.

FIGURE 31-3: IDD Typical, XT and EXTRC Oscillator, PIC16LF1784/6/7 Only.

FIGURE 31-4: IDD Maximum, XT and EXTRC Oscillator, PIC16LF1784/6/7 Only.

FIGURE 31-5: IDD Typical, XT and EXTRC Oscillator, PIC16F1784/6/7 Only.

FIGURE 31-6: IDD Maximum, XT and EXTRC Oscillator, PIC16F1784/6/7 Only.

32.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

32.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES				
Dimensior	n Limits	MIN	NOM	MAX	
Number of Pins	N		40		
Pitch	е	.100 BSC			
Top to Seating Plane	А	-	-	.250	
Molded Package Thickness	A2	.125	-	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.590	_	.625	
Molded Package Width	E1	.485	-	.580	
Overall Length	D	1.980	-	2.095	
Tip to Seating Plane	L	.115	-	.200	
Lead Thickness	С	.008	-	.015	
Upper Lead Width	b1	.030	-	.070	
Lower Lead Width	b	.014	-	.023	
Overall Row Spacing §	eB	-	_	.700	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	S				
Dimensio	n Limits	MIN	NOM	MAX			
Number of Pins	N		40				
Pitch	е		0.40 BSC				
Overall Height	A	0.45	0.50	0.55			
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3		0.127 REF				
Overall Width	E		5.00 BSC				
Exposed Pad Width	E2	3.60	3.70	3.80			
Overall Length	D		5.00 BSC				
Exposed Pad Length	D2	3.60	3.70	3.80			
Contact Width	b	0.15	0.20	0.25			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-156A Sheet 2 of 2

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (06/2012)

Initial release.

Revision B (11/2012)

Minor updates.

Revision C (08/2014)

Change from Preliminary to Final data sheet.

Corrected the following Tables: Family Types Table on page 3, Table 3-3, Table 3-8, Table 20-3, Table 22-2, Table 22-3, Table 23-1, Table 25-3, Table 30-1, Table 30-2, Table 30-3, Table 30-6, Table 30-7, Table 30-13, Table 30-14, Table 30-15, Table 30-16, Table 30-20.

Corrected the following Sections: Section 3.2, Section 9.2, Section 13.3, Section 17.1.6, Section 15.1, Section 15.3, Section 17.2.5, Section 18.2, Section 18.3, Section 19.0, Section 22.6.5, Section 22.9, Section 23.0, Section 23.1, Section 24.2.4, Section 24.2.5, Section 24.2.7, Section 24.8, Section 25.0, Section 26.6.7.4, Section 30.3.

Corrected the following Registers: Register 4-2, Register 8-2, Register 8-5, Register 17-3, Register 18-1, Register 24-3, Register 24-4.

Corrected Equation 17-1.

Corrected Figure 30-9. Removed Figure 24-21.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431 China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 **China - Qingdao** Tel: 86-532-8502-7355

Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

03/25/14