

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	24
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1786t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC16(L)F1784/6/7 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RB5/AN13/C4IN2-/T1G/CCP3 ⁽¹⁾	RB5	TTL/ST	CMOS	General purpose I/O.
SDO ⁽¹⁾	AN13	AN	_	ADC Channel 13 input.
	C4IN2-	AN	—	Comparator C4 negative input.
	T1G	ST	—	Timer1 gate input.
	CCP3	ST	CMOS	Capture/Compare/PWM3.
	SDO	_	CMOS	SPI data output.
RB6/C4IN1+/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ /	RB6	TTL/ST	CMOS	General purpose I/O.
SDA ⁽¹⁾ /ICSPCLK	C4IN1+	AN	—	Comparator C4 positive input.
	TX	_	CMOS	EUSART asynchronous transmit.
	СК	ST	CMOS	EUSART synchronous clock.
	SDI	ST	_	SPI data input.
	SDA	l ² C	OD	I ² C™ data input/output.
	ICSPCLK	ST	_	Serial Programming Clock.
RB7/DAC10UT2/RX ⁽¹⁾ /DT ⁽¹⁾ /	RB7	TTL/ST	CMOS	General purpose I/O.
SCK ⁽¹⁾ /SCL ⁽¹⁾ /ICSPDAT	DAC10UT2	_	AN	Voltage Reference output.
	RX	ST	—	EUSART asynchronous input.
	DT	ST	CMOS	EUSART synchronous data.
	SCK	ST	CMOS	SPI clock.
	SCL	l ² C	OD	I ² C [™] clock.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
RC0/T1OSO/T1CKI/PSMC1A	RC0	TTL/ST	CMOS	General purpose I/O.
	T10S0	XTAL	XTAL	Timer1 Oscillator Connection.
	T1CKI	ST	—	Timer1 clock input.
	PSMC1A	_	CMOS	PSMC1 output A.
RC1/T1OSI/PSMC1B/CCP2	RC1	TTL/ST	CMOS	General purpose I/O.
	T10SI	XTAL	XTAL	Timer1 Oscillator Connection.
	PSMC1B	_	CMOS	PSMC1 output B.
	CCP2	ST	CMOS	Capture/Compare/PWM2.
RC2/PSMC1C/CCP1	RC2	TTL/ST	CMOS	General purpose I/O.
	PSMC1C	_	CMOS	PSMC1 output C.
	CCP1	ST	CMOS	Capture/Compare/PWM1.
RC3/PSMC1D/SCK ⁽¹⁾ /SCL ⁽¹⁾	RC3	TTL/ST	CMOS	General purpose I/O.
	PSMC1D	_	CMOS	PSMC1 output D.
	SCK	ST	CMOS	SPI clock.
	SCL	l ² C	OD	I ² C [™] clock.
RC4/PSMC1E/SDI ⁽¹⁾ /SDA ⁽¹⁾	RC4	TTL/ST	CMOS	General purpose I/O.
	PSMC1E	_	CMOS	PSMC1 output E.
	SDI	ST	—	SPI data input.
	SDA	l ² C	OD	I ² C™ data input/output.

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD

OD = Open Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C HV = High Voltage XTAL = Crystal levels

Note 1: Pin functions can be assigned to one of two locations via software. See *Register 13-1*.

2: All pins have interrupt-on-change functionality.

3: PIC16(L)F1784/7 only.

4: PIC16(L)F1786 only.

PIC16(L)F1784/6/7

3.3.1 SPECIAL FUNCTION REGISTER

The Special Function Registers (SFR) are registers used by the application to control the desired operation of peripheral functions in the device. The SFR occupies the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of each peripheral are described in the corresponding peripheral chapters of this data sheet.

3.3.2 GENERAL PURPOSE RAM

There are up to 80 bytes of General Purpose Registers (GPR) in each data memory bank. The GPR occupies the space immediately after the SFR of selected data memory banks. The number of banks selected depends on the total amount of GPR space available in the device.

3.3.2.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.6.2** "Linear Data Memory" for more information.

3.3.3 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-3: BANKED MEMORY PARTITIONING

PIC16(L)F1784/6/7

4.2 Register Definitions: Configuration Words

REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
		FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD
		bit 13					bit 8
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
CP	MCLRE	PWRTE	WDT	E<1:0>		FOSC<2:0>	
bit 7							bit 0
Lonordi]
Legena:	hit	D - Drogramm	abla bit		onted hit rea	d as '1'	
(0) = Rit is cleared	; uil arad	r' = Rit is set		-n = Value whe	n blank or af	tor Bulk Eraso	
	arcu						
bit 13	FCMEN: Fail- 1 = Fail-Safe 0 = Fail-Safe	Safe Clock Mon Clock Monitor a Clock Monitor is	nitor Enable I Ind internal/e s disabled	oit xternal switchove	er are both en	abled.	
bit 12	IESO: Interna 1 = Internal/E 0 = Internal/E	I External Switc xternal Switcho xternal Switcho	chover bit ver mode is e ver mode is e	enabled disabled			
bit 11	CLKOUTEN: If FOSC confi This bit is All other FOS 1 = CLKC 0 = CLKC	Clock Out Enal guration bits are ignored, CLKO <u>C modes</u> : OUT function is OUT function is	ole bit <u>e set to LP, X</u> UT function i disabled. I/O enabled on ti	<u>T. HS modes</u> : s disabled. Oscill function on the C he CI KOUT pin	ator function CLKOUT pin.	on the CLKOUT	Γpin.
bit 10-9	BOREN<1:0 > 11 = BOR en 10 = BOR en 01 = BOR con 00 = BOR dis	•: Brown-out Re abled abled during op ntrolled by SBO abled	eset Enable b eration and c REN bit of th	its lisabled in Sleep e BORCON regis	ster		
bit 8	CPD : Data Control 1 = Data mention 0 = Data mentionen control 1 = Data me	ode Protection I nory code prote nory code prote	bit ⁽¹⁾ ction is disab ction is enabl	led led			
bit 7	CP : Code Pro 1 = Program 0 = Program	otection bit memory code p memory code p	rotection is d rotection is e	isabled nabled			
bit 6		R/VPP Pin Fun ignored. VPP pin function VPP pin function 3 bit.	ction Select t n is MCLR; W n is digital inp	bit /eak_ <u>pull-</u> up enable ut; MCLR internall	ed. y disabled; W	eak pull-up unde	er control of
bit 5	PWRTE: Pow 1 = PWRT di 0 = PWRT er	ver-up Timer En sabled nabled	able bit				
bit 4-3	WDTE<1:0>: 11 = WDT en 10 = WDT en 01 = WDT con 00 = WDT dis	Watchdog Time abled abled while run ntrolled by the S abled	er Enable bit ning and disa SWDTEN bit	bled in Sleep in the WDTCON ı	register		

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	TMR1GIE: Ti	mer1 Gate Inte	errupt Enable I	bit			
	1 = Enables t	he Timer1 gate	e acquisition ir	nterrupt			
h # 0		the Timer'i gate	e acquisition i	nterrupt	- 6:4		
DIT 6		g-to-Digital Con	verter (ADC)	Interrupt Enabl	e dit		
	1 = Enables 1 0 = Disables	the ADC interru	ipi Jot				
bit 5	RCIE: EUSA	RT Receive Int	errupt Enable	bit			
	1 = Enables t	he EUSART re	ceive interrup	ot			
	0 = Disables	the EUSART re	eceive interrup	ot			
bit 4	TXIE: EUSAF	RT Transmit Int	errupt Enable	bit			
	1 = Enables t	he EUSART tra	ansmit interru	pt			
1.11 O			ansmit interru		. 1 . 1. 1		
DIT 3	SSPILE: Syn	chronous Seria	II PORT (MISSP) Interrupt Enai	Die Dit		
	1 = Enables 1 0 = Disables	the MSSP inter	rrupt				
bit 2	CCP1IE: CCI	P1 Interrupt En	able bit				
	1 = Enables t	he CCP1 inter	rupt				
	0 = Disables	the CCP1 inter	rupt				
bit 1	TMR2IE: TM	R2 to PR2 Mat	ch Interrupt E	nable bit			
	1 = Enables t	he Timer2 to P	R2 match inte	errupt			
	0 = Disables	the Timer2 to F	R2 match inte	errupt			
bit 0	TMR1IE: Im	er1 Overflow Ir	iterrupt Enabl	e bit			
	⊥ = Enables t 0 = Disables	the Timer1 over	riflow interrupt	t			
	Biodolog		men monup	•			

REGISTER 8-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

U-0	U-0	U-0	R/W-0/0	U-0	U-0	U-0	U-0
_	—	—	CCP3IF	—			_
bit 7							bit 0
Legend:							
R = Readable I	R = Readable bit W = Writable bit			U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Rese			ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-5	Unimplement	ted: Read as 'o)'				
bit 4	CCP3IF: CCF	3 Interrupt Flag	g bit				
	1 = Interrupt is pending						
	0 = Interrupt is	s not pending					
bit 3-0	Unimplement	ted: Read as '()'				

REGISTER 8-8: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

13.11 PORTE Registers

RE3 is input only, and also functions as MCLR. The MCLR feature can be disabled via a configuration fuse. RE3 also supplies the programming voltage. The TRIS bit for RE3 (TRISE3) always reads '1'.

13.11.1 DATA REGISTER

PORTE is an 8-bit wide bidirectional port. The corresponding data direction register is TRISE (Register 13-35). Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 13-1 shows how to initialize an I/O port.

Reading the PORTE register (Register 13-34) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATE).

13.11.2 DIRECTION CONTROL

The TRISE register (Register 13-35) controls the PORTE pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISE register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

13.11.3 OPEN DRAIN CONTROL

The ODCONE register (Register 13-31) controls the open-drain feature of the port. Open drain operation is independently selected for each pin. When an ODCONE bit is set, the corresponding port output becomes an open drain driver capable of sinking current only. When an ODCONE bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

13.11.4 SLEW RATE CONTROL

The SLRCOND register (Register 13-32) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCOND bit is set, the corresponding port pin drive is slew rate limited. When an SLRCOND bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

13.11.5 INPUT THRESHOLD CONTROL

The INLVLD register (Register 13-33) controls the input voltage threshold for each of the available PORTD input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTD register and also the

level at which an interrupt-on-change occurs, if that feature is enabled. See Section 30.1 "DC Characteristics: PIC16(L)F1784/6/7-I/E (Industrial, Extended)" for more information on threshold levels.

Note:	Changing the input threshold selection
	should be performed while all peripheral
	modules are disabled. Changing the
	threshold level during the time a module is
	active may inadvertently generate a tran-
	sition associated with an input pin, regard-
	less of the actual voltage level on that pin.

13.11.6 INPUT THRESHOLD CONTROL

The INLVLE register (Register 13-41) controls the input voltage threshold for each of the available PORTE input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTE register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See **Section TABLE 30-1: "Supply Voltage"** for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

TABLE 17-1:	ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES	
-------------	---	--

ADC Clock P	eriod (TAD)	Device Frequency (Fosc)					
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs (3)
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾
FRC	x11	1.0-6.0 μs ^(1,4)					

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of 1.6 μ s for VDD.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	ADRMD			CHS<4:0>			GO/DONE	ADON	172
ADCON1	ADFM		ADCS<2:0>		—	ADNREF	ADPRE	F<1:0>	173
ADCON2		TRIGSE	EL<3:0>			CHSN	<3:0>		174
ADRESH	A/D Result I	Register High	ı						175, 176
ADRESL	A/D Result I	A/D Result Register Low						175, 176	
ANSELA	ANSA7	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	132
ANSELB	—	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	138
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	131
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	137
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/R<1:0>	ADFV	R<1:0>	162

TABLE 17-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for the ADC module.

22.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

22.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- · PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- T1OSCEN bit of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the T1SYNC bit setting.

22.9 CCP Capture/Compare Time Base

The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Auto-conversion Trigger.

For more information, see Section 25.0 "Capture/Compare/PWM Modules".

22.10 CCP Auto-Conversion Trigger

When any of the CCP's are configured to trigger a auto-conversion, the trigger will clear the TMR1H:TMR1L register pair. This auto-conversion does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized and Fosc/4 should be selected as the clock source in order to utilize the Auto-conversion Trigger. Asynchronous operation of Timer1 can cause a Auto-conversion Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Auto-conversion Trigger from the CCP, the write will take precedence.

For more information, see **Section 25.2.4** "Auto-Conversion Trigger".

FIGURE 22-2: TIMER1 INCREMENTING EDGE

PIC16(L)F1784/6/7

FIGURE 24-20: AUTO-SHUTDOWN AND RESTART WAVEFORM

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0
PxASE	PxASDEN	PxARSEN	—	—	—	—	PxASDOV
bit 7	- -	•					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	PxASE: PWN	I Auto-Shutdov	vn Event Statu	us bit ⁽¹⁾			
	1 = A shutdo	own event has	occurred, PW	M outputs are	inactive and in f	heir shutdown	states
	0 = PWM or	utputs are oper	ating normally	/			
bit 6	PxASDEN: P	WM Auto-Shut	down Enable	bit			
	1 = Auto-sh	utdown is enab	led. If any of t	he sources in I	PSMCxASDS a	ssert a logic '1	', then the out-
	puts will	go into their au	uto-shutdown	state and PSN	ICxSIF flag will	be set.	
bit 5	Dy ADSENI		neu art Enabla bit				
DIL 5		otorto automati		a abutdown oo	adition is romay	od	
	1 = FWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	SE bit must be	cleared in fir	mware to resta	art PWM after th	eu. e auto-shutdov	wn condition is
	cleared.						
bit 4-1	Unimplemen	ted: Read as '	כי				
bit 0	PxASDOV: P	WM Auto-Shut	down Overrid	e bit			
	PxASDEN =	<u>L:</u>					
	1 = Force P	xASDL[n] level	s on the PSM	Cx[n] pins with	out causing a P	SMCxSIF inte	rrupt
	0 = Normal	PWM and auto	-shutdown ex	ecution			
	PxASDEN = (<u>):</u>					
	NO effect						
Note 1: PAS	SE bit may be s	et in software.	When this oc	curs the function	onality is the sar	ne as that cau	sed by
har	dware.						

REGISTER 24-15: PSMCxASDC: PSMC AUTO-SHUTDOWN CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	PxASDLF ⁽¹⁾	PxASDLE ⁽¹⁾	PxASDLD ⁽¹⁾	PxASDLC ⁽¹⁾	PxASDLB	PxASDLA
bit 7		~					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	PxASDLF: P	SMCx Output F	Auto-Shutdo	wn Pin Level bi	(1)		
	1 = When a	uto-shutdown is	s asserted, pir	n PSMCxF will (drive logic '1'		
	0 = When a	uto-shutdown is	s asserted, pir	n PSMCxF will o	drive logic '0'		
bit 4	PxASDLE: P	SMCx Output E	E Auto-Shutdo	wn Pin Level b	it ⁽¹⁾		
	1 = When a	uto-shutdown is	s asserted, pir	n PSMCxE will	drive logic '1'		
h # 0	0 = when a	uto-snutdown is	s asserted, pir				
DIT 3	PXASDLD: P		J Auto-Snutac	Wh Pin Level b			
	1 = When a	uto-shutdown is	s asserted, pir s asserted pir		drive logic 1		
bit 2	PxASDLC: P	SMCx Output 0	C Auto-Shutdo	wn Pin I evel b	_{iit} (1)		
	1 = When a	uto-shutdown is	s asserted, pir	n PSMCxC will	drive loaic '1'		
	0 = When a	uto-shutdown is	s asserted, pir	n PSMCxC will	drive logic '0'		
bit 1	PxASDLB: P	SMCx Output E	3 Auto-Shutdo	wn Pin Level b	it		
	1 = When a	uto-shutdown is	s asserted, pir	n PSMCxB will	drive logic '1'		
	0 = When a	uto-shutdown is	s asserted, pir	n PSMCxB will	drive logic '0'		
bit 0	PxASDLA: P	SMCx Output A	A Auto-Shutdo	wn Pin Level b	it		
	1 = When a	uto-shutdown is	s asserted, pir	n PSMCxA will	drive logic '1'		
	0 = When a	uto-shutdown is	s asserted, pir		arive logic '0'		

REGISTER 24-16: PSMCxASDL: PSMC AUTO-SHUTDOWN OUTPUT LEVEL REGISTER

Note 1: These bits are not implemented on PSMC2.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1			
_	—	PxSTRF ⁽²⁾	PxSTRE ⁽²⁾	PxSTRD ⁽²⁾	PxSTRC ⁽²⁾	PxSTRB	PxSTRA			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
u = Bit is uncha	anged	x = Bit is unkr	x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7-6	Unimplemen	tad: Pead as '	،							
bit 5		M Steering PSI		Enable hit(2)						
bit 5		:0> = 0000 (Si	nale-nhase Pl							
	1 = Single P	WM output is a	active on pin P	/ <u>/////.</u> /SMCxF						
	0 = Single P	WM output is r	not active on p	in PSMCxF. P	WM drive is in in	active state				
	If PxMODE<3	:0> = 0001 (C	omplementary	Single-phase	<u>PWM):</u>					
	1 = Complete0 = Complete	mentary PWM	output is active	e on pin PSMC ctive on nin PS	CXF SMCxOUT5 PW	/M drive is in i	nactive state			
	IF PxMODE<	3.0 > = 1100 (3)	-nhase Steerij	ייייע און						
	1 = PSMCx[D and PSMCxE	are high. PS	MCxA, PMSC	xB, PSMCxC and	d PMSCxF are	e low.			
	0 = 3-phase	output combin	ation is not ac	tive						
bit 4	PxSTRE: PW	M Steering PS	MCxE Output	Enable bit ⁽²⁾						
	If PxMODE<3	: <u>0> = 000x (si</u>	<u>ngle-phase PV</u>	VM or Comple	mentary PWM):					
	1 = Single P 0 = Single P	WM output is a	not active on pin P	INCXE	WM drive is in ir	nactive state				
	IF PxMODE<	3:0> = 1100 (3	-phase Steerii	na): ⁽¹⁾						
	1 = PSMCxE	3 and PSMCxE	are high. PSI	MCxA, PMSC>	C, PSMCxD and	d PMSCxF are	e low.			
	0 = 3-phase	output combin	ation is not ac	tive						
bit 3	PxSTRD: PW	M Steering PS	MCxD Output	Enable bit ⁽²⁾						
	$\frac{\text{If PXMODE}<3}{1 = \text{Single P}}$: <u>:0> = 0000 (Si</u> WM output is a	<u>ngle-phase Pl</u> active on pin P	<u>//M):</u> /SMCxD						
	0 = Single P	WM output is r	not active on pin r	in PSMCxD. F	WM drive is in ir	nactive state				
	If PxMODE<3	:0> = 0001 (Ce	omplementary	single-phase	<u>PWM):</u>					
	1 = Compler	mentary PWM	output is active	e on pin PSMC						
			putput is not a	ctive on pin Pa	SINCXD. PVVIVI di	rive is in inacti	ve state			
	1 = PSMCxE	$3.0^{2} = 1100$ (3) B and PSMCx(are high. PS	<u>ig).</u> MCxA. PMSC:	xD. PSMCxE and	d PMSCxF are	e low.			
	0 = 3-phase	output combin	ation is not ac	tive	,					
bit 2	PxSTRC: PW	M Steering PS	MCxC Output	Enable bit ⁽²⁾						
	If PxMODE<3	:0> = 000x (Si	ngle-phase P\	NM or Comple	ementary PWM):					
	1 = Single P	WM output is a	active on pin P		N/M drivo is in ir	pactivo stato				
		$\frac{1}{3.0} = 1100$	nhase Steerin	יוו רטויוטגט. ד _{ממ} ן.(1)		Idelive Slale				
	1 = PSMCx(C and PSMCxF	are high. PSI	ري. MCxA, PMSC>	B, PSMCxD and	d PMSCxE are	e low.			
	0 = 3-phase	output combin	ation is not ac	tive						

REGISTER 24-31: PSMCxSTR0: PSMC STEERING CONTROL REGISTER 0

25.3 PWM Overview

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 25-3 shows a typical waveform of the PWM signal.

25.3.1 STANDARD PWM OPERATION

The standard PWM function described in this section is available and identical for all CCP modules.

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the CCPx pin with up to 10 bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- · PR2 registers
- T2CON registers
- · CCPRxL registers
- · CCPxCON registers

Figure 25-4 shows a simplified block diagram of PWM operation.

- Note 1: The corresponding TRIS bit must be cleared to enable the PWM output on the CCPx pin.
 - 2: Clearing the CCPxCON register will relinquish control of the CCPx pin.

FIGURE 25-3: CCP PWM OUTPUT SIGNAL

SIMPLIFIED PWM BLOCK DIAGRAM

R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN		
bit 7							bit 0		
-									
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'			
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BOF	R/Value at all o	ther Resets		
'1' = Bit is s	et	'0' = Bit is cleared							
bit 7	ACKTIM: Ack	nowledge Tim	e Status bit (I ²	C mode only)	(3)				
	 1 = Indicates the I²C bus is in an Acknowledge sequence, set on 8TH falling edge of SCL clock 0 = Not an Acknowledge sequence, cleared on 9TH rising edge of SCL clock 								
bit 6	PCIE: Stop Co	ondition Interru	pt Enable bit	(I ² C mode only	y)				
	 1 = Enable interrupt on detection of Stop condition 0 = Stop detection interrupts are disabled⁽²⁾ 								
bit 5	SCIE: Start C	ondition Interru	pt Enable bit	(I ² C mode onl	y)				
	1 = Enable interrupt on detection of Start or Restart conditions 0 = Start detection interrupts are disabled ⁽²⁾								
bit 4	BOEN: Buffer Overwrite Enable bit								
	<u>In SPI Slave r</u>	<u>mode:</u> (1)							
	1 = SSPE	BUF updates e	very time that	a new data by	/te is shifted in ig	noring the BF	bit		
	SSPC	CON1 register	is set, and the	buffer is not u	ipdated	leady set, oor			
	In I ² C Master	mode and SPI	Master mode	<u>:</u>					
	I his bit is In I ² C Slave n	s ignored. node:							
	1 = SSPE	BUF is updated	and ACK is ge	enerated for a	received address	/data byte, ign	oring the state		
	of the SSPOV bit only if the BF bit = 0.								
hit 2	0 = SSPE	BUF IS ONLY UP	ated when S	SPOV is clear					
DIUS	3 SUAHI: SDA Hold Time Selection bit (FC mode only) 1 = Minimum of 300 ns hold time on SDA after the falling odde of SCI								
	0 = Minimum of 100 ns hold time on SDA after the falling edge of SCL								
bit 2	bit 2 SBCDE: Slave Mode Bus Collision Detect Enable bit (I ² C Slave mode only)								
	If on the rising edge of SCL, SDA is sampled low when the module is outputting a high state, the BCL1IF bit of the PIR2 register is set, and bus goes idle								
	1 = Enable sla 0 = Slave bus	ave bus collision	on interrupts upts are disat	bled					
bit 1	AHEN: Addre	ss Hold Enable	e bit (I ² C Slav	e mode only)					
	1 = Following CON1 re	the 8th falling gister will be cl	edge of SCL eared and the	for a matching SCL will be h	received addres eld low.	ss byte; CKP b	it of the SSP-		
hit 0	0 = Address h	loiding is disab		odo opły)					
	1 = Following	the 8th falling	. (i=⊂ Slave M edge of SCL f	for a received	data hyte: slave	hardware clea	rs the CKP hit		
	of the SS 0 = Data hold	PCON1 registering	er and SCL is	held low.	adia byte, slave				
Note 1: F	For daisy-chained a when a new byte is	SPI operation; received and	allows the use BF = 1, but ha	er to ignore all ardware contin	but the last recei ues to write the r	ved byte. SSP nost recent byt	OV is still set te to SSPBUF.		

REGISTER 26-4: SSPCON3: SSP CONTROL REGISTER 3

- 2: This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled.
- 3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.

27.5.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 27.5.1.5 "Synchronous Master Reception"), with the following exceptions:

- · Sleep
- CREN bit is always set, therefore the receiver is never idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 27.5.2.4 Synchronous Slave Reception Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCIF bit will be set when reception is complete. An interrupt will be generated if the RCIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

TABLE 27-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON1	C2OUTSEL	CC1PSEL	SDOSEL	SCKSEL	SDISEL	TXSEL	RXSEL	CCP2SEL	127
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	347
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98
RCREG	EUSART Receive Data Register								
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	346
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	345

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave reception.

* Page provides register information.

PIC16(L)F1784/6/7

TABLE 30-4: I/O PORTS (CONTINUED)

Standard Operating Conditions (unless otherwise stated)

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
		Capacitive Loading Specs on Output Pins							
D101*	COSC2	OSC2 pin	_	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1		
D101A*	Сю	All I/O pins	—	—	50	pF			
		VCAP Capacitor Charging							
D102		Charging current	—	200	—	μΑ			
D102A		Source/sink capability when charging complete		0.0	_	mA			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A