

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1787-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1: 28-PIN ALLOCATION TABLE (PIC16(L)F1786) (Continued)

0/I	28-Pin SPDIP, SOIC, SSOP	28-Pin QFN,	ADC	Reference	Comparator	Operation Amplifiers	8-bit DAC	Timers	DMSP	ССР	EUSART	MSSP	Interrupt	Pull-up	Basic
RB7	28	25	—	_	—	-	DAC1OUT2	—	_	—	RX ⁽¹⁾ DT ⁽¹⁾	SCK ⁽¹⁾ SCL ⁽¹⁾	IOC	Y	ICSPDAT
RC0	11	8	_	—	—	—	—	T1OSO T1CKI	PSMC1A	—	-	_	IOC	Y	—
RC1	12	9	_	—	_	—	—	T10SI	PSMC1B	CCP2	-	_	IOC	Y	—
RC2	13	10	_	—	—	—	—	—	PSMC1C PSMC3B	CCP1	-	_	IOC	Y	—
RC3	14	11	—	—	—	—	—	—	PSMC1D	—		SCK SCL	IOC	Y	—
RC4	15	12	_	—	—	—	—	—	PSMC1E	—	_	SDI SDA	IOC	Y	—
RC5	16	13	—	—	—	—	_	—	PSMC1F PSMC3A	—	_	SDO	IOC	Y	—
RC6	17	14	_	—	—	—	—	—	PSMC2A	CCP3	TX CK	—	IOC	Y	—
RC7	18	15	—	—	C4OUT	—	—	—	PSMC2B	—	RX DT	—	IOC	Y	—
RE3	1	26	_	—	_	_	_	—	_	—	—	—	IOC	Y	MCLR VPP
Vdd	20	17		—	—	_	—	—	—	—	—	—	_	-	Vdd
Vss	8, 19	5, 16	_	—	—	—	—	—	—	—	—	—	—	-	Vss

PIC16(L)F1784/6/7

Note 1: Alternate pin function selected with the APFCON1 (Register 13-1) and APFCON2 (Register 13-2) registers.

6.2.2.5 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register.

The output of the 16 MHz HFINTOSC, 500 kHz MFINTOSC, and 31 kHz LFINTOSC connects to a postscaler and multiplexer (see Figure 6-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency output of the internal oscillators. One of the following frequencies can be selected via software:

- 32 MHz (requires 4x PLL)
- 16 MHz
- 8 MHz
- 4 MHz
- 2 MHz
- 1 MHz
- 500 kHz (default after Reset)
- 250 kHz
- 125 kHz
- 62.5 kHz
- 31.25 kHz
- 31 kHz (LFINTOSC)
- Note: Following any Reset, the IRCF<3:0> bits of the OSCCON register are set to '0111' and the frequency selection is set to 500 kHz. The user can modify the IRCF bits to select a different frequency.

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

6.2.2.6 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4x PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Words must be set to use the INTOSC source as the device system clock (FOSC<2:0> = 100).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<2:0> in Configuration Words (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz or 16 MHz HFINTOSC set to use (IRCF<3:0> = 111x).
- The SPLLEN bit in the OSCCON register must be set to enable the 4x PLL, or the PLLEN bit of the Configuration Words must be programmed to a '1'.
 - **Note:** When using the PLLEN bit of the Configuration Words, the 4x PLL cannot be disabled by software and the SPLLEN option will not be available.

The 4x PLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4x PLL with the internal oscillator.

R/W-0/0	0 R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
OSFIF	C2IF	C1IF	EEIF	BCL1IF	C4IF	C3IF	CCP2IF				
bit 7		•					bit 0				
Legend:											
R = Reada	able bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is	set	'0' = Bit is clea	ared								
bit 7	OSFIF: Oscill	ator Fail Interru	upt Flag bit								
	1 = Interrupt i	s pending									
hit C		s not pending	unt Elea hit								
DILO	1 - Interrupt is pending										
	0 = Interrupt i	s not pending									
bit 5	C1IF: Compa	C1IF: Comparator C1 Interrupt Flag bit									
	1 = Interrupt is pending										
	0 = Interrupt i	0 = Interrupt is not pending									
bit 4	EEIF: EEPRO	OM Write Comp	pletion Interru	pt Flag bit							
	1 = Interrupt i	1 = Interrupt is pending									
		s not pending									
DIT 3	BCL1IF: MS	SP Bus Collisio	n Interrupt Fla	ag bit							
	0 = Interrupt i	r = Interrupt is pending 0 = Interrupt is not pending									
bit 2	C4IF: Compa	rator C4 Interru	upt Flag bit								
	1 = Interrupt i	s pending	1 0								
	0 = Interrupt i	s not pending									
bit 1	C3IF: Compa	rator C3 Interru	upt Flag bit								
	1 = Interrupt i	s pending									
		s not pending									
bit 0	CCP2IF: CCH	P2 Interrupt Fla	g bit								
	$\perp = Interrupt I$ 0 = Interrupt i	is penaing									
		e net peneng									
Note:	Interrupt flag bits a	re set when an	interrupt								
	its corresponding	egargiess of the enable bit or the	e state of ne Global								
	Enable bit, GIE, c	of the INTCON	register.								
	User software	should ensu	ure the								
	appropriate interr	upt flag bits a	are clear								
	prior to enabling a	n interrupt.									

REGISTER 8-7: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

REGISTER 13-40: SLRCONE: PORTE SLEW RATE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0			
—	_	—	—	—	SLRE2	SLRE1	SLRE0			
bit 7	•	•		•			bit 0			
Legend:										
R = Readable b	it	W = Writable b	it	U = Unimplemented bit, read as '0'						
u = Bit is uncha	nged	x = Bit is unkno	own	-n/n = Value a	it POR and BOR/	Value at all othe	er Resets			
'1' = Bit is set		'0' = Bit is clea	red							
bit 7-3	Unimplemen	ted: Read as '0'								

bit 2-0	SLRE<2:0>: PORTE Slew Rate Enable bits
	For RE<2:0> pins, respectively
	1 = Port pin slew rate is limited
	0 = Port pin slews at maximum rate

Note 1: SLRE<2:0> are available on PIC16(L)F1784/7 only.

REGISTER 13-41: INLVLE: PORTE INPUT LEVEL CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
_	—	—	—	INLVLE3	INLVLE2 ⁽¹⁾	INLVLE1 ⁽¹⁾	INLVLE0 ⁽¹⁾
bit 7	•						bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

0'

bit 3-0 INLVLE<3:0>: PORTE Input Level Select bit⁽¹⁾

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

Note 1: INLVLE<2:0> are available on PIC16(L)F1784/7 only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	ADRMD			CHS<4:0>	•		GO/DONE	ADON	172
ANSELE	_	_	_			ANSE2	ANSE1	ANSE0	153
INLVLE	—	_	_	_	INLVLE3	INLVLE2 ⁽²⁾	INLVLE1 ⁽²⁾	INLVLE0 ⁽²⁾	155
LATE ⁽²⁾	—	—	—	_	-	LATE2	LATE1	LATE0	153
ODCONE ⁽²⁾	—	—	—	_	-	ODE2	ODE1	ODE0	154
PORTE	_	_	_		RE3	RE2 ⁽²⁾	RE1 ⁽²⁾	RE0 ⁽²⁾	152
SLRCONE ⁽²⁾	—	—	—	_	-	SLRE2	SLRE1	SLRE0	155
TRISE	—	—	—	_	_(1)	TRISE2 ⁽²⁾	TRISE1 ⁽²⁾	TRISE0 ⁽²⁾	152
WPUE	—	_	_	_	WPUE3	WPUE2 ⁽²⁾	WPUE1 ⁽²⁾	WPUE0 ⁽²⁾	154

TABLE 13-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTE.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1784/7 only

15.4 Register Definitions: FVR Control

REGISTER 15-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
FVREN	FVRRDY ⁽¹⁾	TSEN	TSRNG	CDAF\	/R<1:0>	> ADFVR<1:0>		
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
u = Bit is unc	hanged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is set	t	'0' = Bit is cle	ared	q = Value dep	ends on condit	ion		
bit 7	FVREN: Fixed 1 = Fixed Vol 0 = Fixed Vol	d Voltage Refe Itage Referenc Itage Referenc	rence Enable e is enabled e is disabled	bit				
bit 6	FVRRDY: Fix 1 = Fixed Vol 0 = Fixed Vol	ed Voltage Rei Itage Referenc Itage Referenc	ference Ready e output is rea e output is no	y Flag bit ⁽¹⁾ ady for use t ready or not e	nabled			
bit 5	TSEN: Temperat 1 = Temperat 0 = Temperat	erature Indicato ture Indicator is ture Indicator is	or Enable bit ⁽³ s enabled s disabled)				
bit 4	TSRNG: Tem 1 = Vout = V 0 = Vout = V	perature Indica ′DD - 4V⊤ (High ′DD - 2V⊤ (Low	ator Range Se Range) Range)	election bit ⁽³⁾				
bit 3-2	CDAFVR<1:0 11 = Compara 10 = Compara 01 = Compara 00 = Compara	Comparator ator and DAC I ator and DAC I ator and DAC I ator and DAC I	and DAC Fix Fixed Voltage Fixed Voltage Fixed Voltage Fixed Voltage	ed Voltage Ref Reference Per Reference Per Reference Per Reference Per	erence Selectic ipheral output is ipheral output is ipheral output is ipheral output is	on bit s 4x (4.096V) ⁽² s 2x (2.048V) ⁽² s 1x (1.024V) s off.)	
bit 1-0	ADFVR<1:0>: ADC Fixed Voltage Reference Selection bit 11 = ADC Fixed Voltage Reference Peripheral output is 4x (4.096V) ⁽²⁾ 10 = ADC Fixed Voltage Reference Peripheral output is 2x (2.048V) ⁽²⁾ 01 = ADC Fixed Voltage Reference Peripheral output is 1x (1.024V) 00 = ADC Fixed Voltage Reference Peripheral output is off							
Note 1: F	/RRDY is always	s '1' on "F" dev	ices only.					

- 2: Fixed Voltage Reference output cannot exceed VDD.
- 3: See Section 16.0 "Temperature Indicator Module" for additional information.

TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		ADFVI	R<1:0>	162

Legend: Shaded cells are not used with the Fixed Voltage Reference.

18.0 OPERATIONAL AMPLIFIER (OPA) MODULES

The Operational Amplifier (OPA) is a standard three-terminal device requiring external feedback to operate. The OPA module has the following features:

- External connections to I/O ports
- · Low leakage inputs
- Factory Calibrated Input Offset Voltage

FIGURE 18-1: OPAx MODULE BLOCK DIAGRAM

20.7 Comparator Negative Input Selection

The CxNCH<2:0> bits of the CMxCON0 register direct an analog input pin or analog ground to the inverting input of the comparator:

- CxIN- pin
- Analog Ground

Some inverting input selections share a pin with the operational amplifier output function. Enabling both functions at the same time will direct the operational amplifier output to the comparator inverting input.

Note: To use CxINy+ and CxINy- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

20.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section 30.0** "**Electrical Specifications**" for more details.

20.9 Zero Latency Filter

In high-speed operation, and under proper circuit conditions, it is possible for the comparator output to oscillate. This oscillation can have adverse effects on the hardware and software relying on this signal. Therefore, a digital filter has been added to the comparator output to suppress the comparator output oscillation. Once the comparator output changes, the output is prevented from reversing the change for a nominal time of 20 ns. This allows the comparator output to stabilize without affecting other dependent devices. Refer to Figure 20-3.

FIGURE 20-3: COMPARATOR ZERO LATENCY FILTER OPERATION

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u				
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS	S<1:0>				
bit 7			I.			•	bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	/are					
bit 7 TMR1GE: Timer1 Gate Enable bit <u>If TMR1ON = 0</u> : This bit is ignored <u>If TMR1ON = 1</u> : 1 = Timer1 counting is controlled by the Timer1 gate function 0 = Timer1 counts regardless of Timer1 gate function											
bit 6	T1GPOL: Timer1 Gate Polarity bit 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low)										
bit 5	T1GTM: Time 1 = Timer1 G 0 = Timer1 G Timer1 gate fi	er1 Gate Toggle Gate Toggle mo Gate Toggle mo lip-flop toggles	e Mode bit de is enabled de is disabled on every rising	and toggle flip-	flop is cleared						
bit 4	T1GSPM: Tin	ner1 Gate Sing	le-Pulse Mode	e bit							
	1 = Timer1 G 0 = Timer1 G	Gate Single-Pul	se mode is en se mode is dis	abled and is co abled	ntrolling Timer	1 gate					
bit 3	T1GGO/DON	E: Timer1 Gate	e Single-Pulse	Acquisition Sta	atus bit						
	1 = Timer1 g 0 = Timer1 g	ate single-pulse ate single-pulse	e acquisition is e acquisition h	s ready, waiting as completed o	for an edge or has not been	started					
bit 2	T1GVAL: Tim	ner1 Gate Curre	ent State bit								
	Indicates the Unaffected by	current state of / Timer1 Gate I	f the Timer1 ga Enable (TMR1	ate that could b GE).	e provided to T	MR1H:TMR1L					
bit 1-0	T1GSS<1:0>	: Timer1 Gate	Source Select	bits							
	11GSS<1:U>: Imer1 Gate Source Select bits 11 = Comparator 2 optionally synchronized output (sync_C2OUT) 10 = Comparator 1 optionally synchronized output (sync_C1OUT) 01 = Timer0 overflow output 00 = Timer1 gate pin										

REGISTER 22-2: T1GCON: TIMER1 GATE CONTROL REGISTER

24.2 Event Sources

There are two main sources for the period, rising edge and falling edge events:

- · Synchronous input
 - Time base
- Asynchronous Inputs
- Digital Inputs
- Analog inputs

24.2.1 TIME BASE

The Time Base section consists of several smaller pieces.

- 16-bit time base counter
- 16-bit Period register
- 16-bit Phase register (rising edge event)
- 16-bit Duty Cycle register (falling edge event)
- · Clock control
- Interrupt Generator

An example of a fully synchronous PWM waveform generated with the time base is shown in Figure 24-2.

The PSMCxLD bit of the PSMCxCON register is provided to synchronize changes to the event Count registers. Changes are withheld from taking action until the first period event Reset after the PSMCxLD bit is set. For example, to change the PWM frequency, while maintaining the same effective duty cycle, the Period and Duty Cycle registers need to be changed. The changes to all four registers take effect simultaneously on the period event Reset after the PSMCxLD bit is set.

24.2.1.1 16-bit Counter (Time Base)

The PSMCxTMR is the counter used as a timing reference for each synchronous PWM period. The counter starts at 0000h and increments to FFFFh on the rising edge of the psmc_clk signal.

When the counter rolls over from FFFFh to 0000h without a period event occurring, the overflow interrupt will be generated, thereby setting the PxTOVIF bit of the PSMC Time Base Interrupt Control (PSMCxINT) register (Register 24-33).

The PSMCxTMR counter is reset on both synchronous and asynchronous period events.

The PSMCxTMR is accessible to software as two 8-bit registers:

- PSMC Time Base Counter Low (PSMCxTMRL) register (Register 24-18)
- PSMC PSMC Time Base Counter High (PSMCxTMRH) register (Register 24-19)

PSMCxTMR is reset to the default POR value when the PSMCxEN bit is cleared.

24.2.1.2 16-bit Period Register

The PSMCxPR Period register is used to determine a synchronous period event referenced to the 16-bit PSMCxTMR digital counter. A match between the PSMCxTMR and PSMCxPR register values will generate a period event.

The match will generate a period match interrupt, thereby setting the PxTPRIF bit of the PSMC Time Base Interrupt Control (PSMCxINT) register (Register 24-33).

The 16-bit period value is accessible to software as two 8-bit registers:

- PSMC Period Count Low Byte (PSMCxPRL) register (Register 24-24)
- PSMC Period Count High Byte (PSMCxPRH) register (Register 24-25)

The 16-bit period value is double-buffered before it is presented to the 16-bit time base for comparison. The buffered registers are updated on the first period event Reset after the PSMCxLD bit of the PSMCxCON register is set.

The synchronous PWM period time can be determined from Equation 24-1.

EQUATION 24-1: PWM PERIOD

$$Period = \frac{\text{PSMCxPR[15:0]} + 1}{F_{\text{psmc_clk}}}$$

24.2.1.3 16-bit Phase Register

The PSMCxPH Phase register is used to determine a synchronous rising edge event referenced to the 16-bit PSMCxTMR digital counter. A match between the PSMCxTMR and the PSMCxPH register values will generate a rising edge event.

The match will generate a phase match interrupt, thereby setting the PxTPHIF bit of the PSMC Time Base Interrupt Control (PSMCxINT) register (Register 24-33).

The 16-bit phase value is accessible to software as two 8-bit registers:

- PSMC Phase Count Low Byte (PSMCxPHL) register (Register 24-33)
- PSMC Phase Count High Byte (PSMCxPHH) register (Register 24-33)

The 16-bit phase value is double-buffered before it is presented to the 16-bit PSMCxTMR for comparison. The buffered registers are updated on the first period event Reset after the PSMCxLD bit of the PSMCxCON register is set.

24.6 PSMC Modulation (Burst Mode)

PSMC modulation is a method to stop/start PWM operation of the PSMC without having to disable the module. It also allows other modules to control the operational period of the PSMC. This is also referred to as Burst mode.

This is a method to implement PWM dimming.

24.6.1 MODULATION ENABLE

The modulation function is enabled by setting the PxMDLEN bit of PSMC Modulation Control (PSMCxMDL) register (Register 24-2).

When modulation is enabled, the modulation source controls when the PWM signals are active and inactive.

When modulation is disabled, the PWM signals operate continuously, regardless of the selected modulation source.

24.6.2 MODULATION SOURCES

There are multiple sources that can be used for modulating the PSMC. However, unlike the PSMC input sources, only one modulation source can be selected at a time. Modulation sources include:

- PSMCxIN pin
- Any CCP output
- · Any Comparator output
- · PxMDLBIT of the PSMCxMDL register

FIGURE 24-19: PSMC MODULATION WAVEFORM

24.6.2.1 PxMDLBIT Bit

The PxMDLBIT bit of the PSMC Modulation Control (PSMCxMDL) register (Register 24-2) allows for software modulation control without having to enable/disable other module functions.

24.6.3 MODULATION EFFECT ON PWM SIGNALS

When modulation starts, the PSMC begins operation on a new period, just as if it had rolled over from one period to another during continuous operation.

When modulation stops, its operation depends on the type of waveform being generated.

In operation modes other than Fixed Duty Cycle, the PSMC completes its current PWM period and then freezes the module. The PSMC output pins are forced into the default inactive state ready for use when modulation starts.

In Fixed Duty Cycle mode operation, the PSMC continues to operate until the period event changes the PWM to its inactive state, at which point the PSMC module is frozen. The PSMC output pins are forced into the default inactive state ready for use when modulation starts.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	PxASDLF ⁽¹⁾	PxASDLE ⁽¹⁾	PxASDLD ⁽¹⁾	PxASDLC ⁽¹⁾	PxASDLB	PxASDLA
bit 7		·	·				bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is set	t	'0' = Bit is clea	ared				
bit 7-6	Unimpleme	nted: Read as '	0'				
bit 5	PxASDLF: F	PSMCx Output F	FAuto-Shutdo	wn Pin Level b	it(1)		
	1 = When a	auto-shutdown i	s asserted, pir	n PSMCxF will	drive logic '1'		
	0 = When a	auto-shutdown i	s asserted, pir	n PSMCxF will	drive logic '0'		
bit 4	PxASDLE: F	PSMCx Output E	E Auto-Shutdo	wn Pin Level b	it ⁽¹⁾		
	1 = When a	auto-shutdown i	s asserted, pir		drive logic '1'		
h it 0			s asserted, pir				
DIL 3			D Auto-Shutat		drive legie (1)		
	1 = When a	auto-shutdown i	s asserted, pir	n PSMCxD will	drive logic 1		
bit 2	PxASDLC:	PSMCx Output (C Auto-Shutdo	own Pin Level b	_{oit} (1)		
	1 = When a	auto-shutdown i	s asserted. pir	n PSMCxC will	drive logic '1'		
	0 = When a	auto-shutdown i	s asserted, pir	n PSMCxC will	drive logic '0'		
bit 1	PxASDLB:	SMCx Output I	B Auto-Shutdo	own Pin Level b	it		
	1 = When a	auto-shutdown i	s asserted, pir	n PSMCxB will	drive logic '1'		
	0 = When a	auto-shutdown i	s asserted, pir	n PSMCxB will	drive logic '0'		
bit 0	PxASDLA:	PSMCx Output /	A Auto-Shutdo	own Pin Level b	bit		
	1 = When a	auto-shutdown i	s asserted, pir	n PSMCxA will	drive logic '1'		
	0 = When a	auto-shutdown is	s asserted, pir	n PSMCXA WIII	arive logic '0'		

REGISTER 24-16: PSMCxASDL: PSMC AUTO-SHUTDOWN OUTPUT LEVEL REGISTER

Note 1: These bits are not implemented on PSMC2.

REGISTER 24-26: PSMCxDBR: PSMC RISING EDGE DEAD-BAND TIME REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PSMCxI	DBR<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0

PSMCxDBR<7:0>: Rising Edge Dead-Band Time bits

= Unsigned number of PSMCx psmc_clk clock periods in rising edge dead band

REGISTER 24-27: PSMCxDBF: PSMC FALLING EDGE DEAD-BAND TIME REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PSMCxD)BF<7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSMCxDBF<7:0>:** Falling Edge Dead-Band Time bits

Unsigned number of PSMCx psmc_clk clock periods in falling edge dead band

REGISTER 24-28: PSMCxFFA: PSMC FRACTIONAL FREQUENCY ADJUST REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		PSMCxF	FA<3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

=

bit 3-0 **PSMCxFFA<3:0>:** Fractional Frequency Adjustment bits

 Unsigned number of fractional PSMCx psmc_clk clock periods to add to each period event time. The fractional time period = 1/(16*psmc_clk)

26.8 Register Definitions: MSSP Control

R/M-0/0	R/W/-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
SMP			P	s		114	RE
pit 7	ORL	DIA	I	5	10,44	UA	bit
.egend:							
R = Readable	bit	W = Writable	bit	U = Unimpleme	ented bit, read as	'0'	
u = Bit is uncha	anged	x = Bit is unkr	own	-n/n = Value at	POR and BOR/Va	alue at all other F	Resets
1' = Bit is set		'0' = Bit is clea	ared				
oit 7	SMP: SPI Data	a Input Sample I	pit				
	<u>SPI Master mo</u> 1 = Input data 0 = Input data	ode: sampled at end sampled at mid	of data output ti	me t time			
	SMP must be o	<u>le:</u> cleared when SI	PI is used in Slav	ve mode			
	In I ² C Master of 1 = Slew rate 0 = Slew rate	or Slave mode: control disabled control enabled	for standard spe for high speed r	eed mode (100 k node (400 kHz)	Hz and 1 MHz)		
oit 6	CKE: SPI Cloc	ck Edge Select b	oit (SPI mode on	(v)			
	<u>In SPI Master</u> 1 = Transmit o	or Slave mode: ccurs on transiti	on from active to	Idle clock state			
	In I ² C™ mode 1 = Enable inp 0 = Disable SM	<u>only:</u> out logic so that t /Bus specific in	hresholds are co	ompliant with SM	Bus specification		
bit 5	D/A: Data/Add 1 = Indicates th 0 = Indicates the states the stat	lress bit (I ² C mo hat the last byte hat the last byte	de only) received or tran received or tran	smitted was data smitted was addr	ress		
oit 4	P: Stop bit						
	(I ² C mode only 1 = Indicates the 0 = Stop bit was	y. This bit is clea hat a Stop bit ha as not detected l	red when the Ms is been detected ast	SSP module is di last (this bit is '0	sabled, SSPEN is ' on Reset)	cleared.)	
oit 3	S: Start bit						
	(I ² C mode only 1 = Indicates the 0 = Start bit was	y. This bit is clea hat a Start bit ha as not detected	red when the Ms is been detected ast	SSP module is di last (this bit is '0	sabled, SSPEN is ' on Reset)	cleared.)	
pit 2	R/W: Read/Wr	ite bit informatio	n (I ² C mode onl	V)			
	This bit holds the to the next Sta	he R/W bit inforr rt bit, Stop bit, o	nation following t r not ACK bit.	he last address n	natch. This bit is o	nly valid from the	e address mate
	<u>In I²C Slave m</u> 1 = Read 0 = Write	iode:					
	In I ² C Master r	mode:					
	1 = Transmit	is in progress	-				
	0 = Transmit OR-ing th	is not in progres	s RSEN, PEN, R	CEN or ACKEN v	will indicate if the I	MSSP is in Idle n	node.
oit 1	UA: Update Ac 1 = Indicates th	ddress bit (10-bi hat the user nee	t I ² C mode only) ds to update the	address in the S	SPADD register		

REGISTER 26-5: SSPMSK: SSP MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
			MSK	<7:0>				
bit 7							bit 0	
Legend: R = Readable	a hit	W = Writable	hit	II = I Inimpler	nented hit read	las 'O'		
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set	t	'0' = Bit is cle	ared					
bit 7-1	MSK<7:1>:	Mask bits						
	1 = The rec 0 = The rec	eived address b eived address b	it n is compar it n is not use	ed to SSPADD d to detect I ² C	<n> to detect I² address match</n>	C address mat	tch	
bit 0	MSK<0>: Mask bit for I ² C Slave mode, 10-bit Address I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111): 1 = The received address bit 0 is compared to SSPADD<0> to detect I ² C address match 0 = The received address bit 0 is not used to detect I ² C address match							

I²C Slave mode, 7-bit address, the bit is ignored

'0' = Bit is cleared

REGISTER 26-6: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ADD	<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets

Master	mode:	

1' = Bit is set

bit 7-0	ADD<7:0>: Baud Rate Clock Divider bits
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode — Most Significant Address Byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode — Least Significant Address Byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

27.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- · Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 27-1 and Figure 27-2.

FIGURE 27-1: EUSART TRANSMIT BLOCK DIAGRAM

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD RATE	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23

TABLE 27-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD RATE	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832	
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207	
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103	
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25	
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23	
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12	
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	—	_	
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_	

TABLE 30-8: PLL CLOCK TIMING SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
F10	Fosc	Oscillator Frequency Range	4	_	8	MHz		
F11	Fsys	On-Chip VCO System Frequency	16	-	32	MHz		
F12	TRC	PLL Start-up Time (Lock Time)			2	ms		
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	_	+0.25%	%		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-7: CLKOUT AND I/O TIMING

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-103: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V, PIC16F1784/6/7 Only.

FIGURE 31-105: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 1.8V, PIC16LF1784/6/7 Only.

FIGURE 31-107: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V, PIC16LF1784/6/7 Only.

FIGURE 31-104: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC16F1784/6/7 Only.

FIGURE 31-106: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC16LF1784/6/7 Only.

FIGURE 31-108: Op Amp, Common Mode Rejection Ratio (CMRR), VDD = 3.0V.

40-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) - 5x5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensior	MIN	NOM	MAX			
Contact Pitch	E	0.40 BSC				
Optional Center Pad Width	W2			3.80		
Optional Center Pad Length	T2			3.80		
Contact Pad Spacing	C1		5.00			
Contact Pad Spacing	C2		5.00			
Contact Pad Width (X40)	X1			0.20		
Contact Pad Length (X40)	Y1			0.75		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2156B

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Pins	N	44				
Pitch	е	0.65 BSC				
Overall Height	A	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2	6.25	6.45	6.60		
Overall Length	D	8.00 BSC				
Exposed Pad Length	D2	6.25	6.45	6.60		
Terminal Width	b	0.20	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2