

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1787-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0/0) R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1G	F ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, reac	l as '0'	
u = Bit is u	nchanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is	set	'0' = Bit is cle	ared				
bit 7	TMR1GIF:	: Timer1 Gate Inte	errupt Flag bit				
		pt is pending pt is not pending					
bit 6		C Converter Interi	upt Flag bit				
	1 = Interru	pt is pending pt is not pending					
bit 5		SART Receive Int	errupt Flag bi	t			
		pt is pending					
		pt is not pending					
bit 4	TXIF: EUS	SART Transmit In	terrupt Flag bi	t			
		pt is pending pt is not pending					
bit 3	SSP1IF: S	ynchronous Seria	al Port (MSSP) Interrupt Flag	bit		
		pt is pending pt is not pending					
bit 2	CCP1IF: (CCP1 Interrupt Fla	ag bit				
		pt is pending					
		pt is not pending					
bit 1		Timer2 to PR2 Inte	errupt Flag bit				
		pt is pending pt is not pending					
bit 0		Timer1 Overflow I	nterrupt Flag I	oit			
		pt is pending					
		pt is not pending					
Note:	condition occur its correspondin Enable bit, GIE User softwar	errupt flag bits	e state of he Global I register. ure the				

REGISTER 8-6: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

13.4 Register Definitions: PORTA

REGISTER 13-3: PORTA: PORTA REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x		
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleared									

bit 7-0 RA<7:0>: PORTA I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

REGISTER 13-4: TRISA: PORTA TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | • | | | • | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

- TRISA<7:0>: PORTA Tri-State Control bits
 - 1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

REGISTER 13-5: LATA: PORTA DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATA7 | LATA6 | LATA5 | LATA4 | LATA3 | LATA2 | LATA1 | LATA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 LATA<7:0>: PORTA Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0		
			·	•		bit 0		
bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleared		ared						
	ANSB6	ANSB6 ANSB5 bit W = Writable anged x = Bit is unkr	ANSB6 ANSB5 ANSB4	ANSB6 ANSB5 ANSB4 ANSB3 bit W = Writable bit U = Unimpler anged x = Bit is unknown -n/n = Value a	ANSB6 ANSB5 ANSB4 ANSB3 ANSB2 bit W = Writable bit U = Unimplemented bit, read anged x = Bit is unknown -n/n = Value at POR and BO	ANSB6ANSB5ANSB4ANSB3ANSB2ANSB1bitW = Writable bitU = Unimplemented bit, read as '0'angedx = Bit is unknown-n/n = Value at POR and BOR/Value at all of the second s		

bit 7 Unimplemented: Read as '0'

bit 6-0 **ANSB<6:0>**: Analog Select between Analog or Digital Function on pins RB<6:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

REGISTER 13-15: WPUB: WEAK PULL-UP PORTB REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 13-29: ANSELD: PORTD ANALOG SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	
—	_	—	—		ANSD2	ANSD1	ANSD0	
bit 7			•				bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set '0' = Bit is cleared			ared					

bit 7-3	Unimplemented: Read as '0'
bit 2-0	 ANSD<2:0>: Analog Select between Analog or Digital Function on pins RD<2:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 13-30: WPUD: WEAK PULL-UP PORTD REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUD7 | WPUD6 | WPUD5 | WPUD4 | WPUD3 | WPUD2 | WPUD1 | WPUD0 |
| bit 7 | • | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUD<7:0>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled
- Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
 - **2:** The weak pull-up device is automatically disabled if the pin is in configured as an output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	ADRMD			CHS<4:0>		GO/DONE	ADON	172	
ADCON1	ADFM		ADCS<2:0>		—	ADNREF	ADPRE	F<1:0>	173
ADCON2		TRIGSE	EL<3:0>			CHSN	\ <3:0>		174
ADRESH	SH A/D Result Register High							175, 176	
ADRESL	A/D Result I	Register Low					175, 176		
ANSELA	ANSA7	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	132
ANSELB	—	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	138
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	131
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	137
FVRCON	FVREN	FVRRDY	FVRRDY TSEN TSRNG CDAFVR<1:0> ADFVR<1:0>						

TABLE 17-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for the ADC module.

18.4 Register Definitions: Op Amp Control

REGISTER 18-1: OPAxCON: OPERATIONAL AMPLIFIERS (OPAx) CONTROL REGISTERS

R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0		
OPAxEN	OPAxSP	_	_	_	_	OPAxCH<1:0>			
bit 7							bit (
Legend:									
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is und	hanged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is se	t	'0' = Bit is cleared		q = Value depends on condition					
bit 7	•	Amp Enable b	it						
	1 = Op amp i 0 = Op amp i	s enabled s disabled and	consumes no	active power					
bit 6	6 OPAxSP: Op Amp Speed/Power Select bit								

1 = Comparator operates in high GBWP mode
0 = Reserved. Do not use.
Unimplemented: Read as '0'
OPAxCH<1:0>: Non-inverting Channel Selection bits
11 = Non-inverting input connects to FVR Buffer 2 output

- 10 = Non-inverting input connects to DAC_output
- 0x = Non-inverting input connects to OPAxIN+ pin

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH OP AMPS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	ANSA7	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	132
ANSELB	_	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	138
DAC1CON0	DAC1EN	—	DAC10E1	DAC10E1 DAC10E2 DAC1PSS<1:0> — DAC1NSS					
DAC1CON1	DAC1R<7:0>								
OPA1CON	OPA1EN	OPA1SP	_	_	_	_	OPA1P0	CH<1:0>	182
OPA2CON	OPA2EN	OPA2SP	_	_	_	_	OPA2P0	CH<1:0>	182
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	131
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	137
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by op amps.

Note 1: PIC16(L)F1784/7 only

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP2CON	—	_	DC2B	<1:0>		CCP2M<3:0>			
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98
PR2	Timer2 Mod	dule Period	Register						210*
T2CON	—	T2OUTPS<3:0> TMR2ON T2CKPS<1:0>						212	
TMR2	Holding Re	gister for the	e 8-bit TMR2	2 Register					210*

TABLE 23-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

PIC16(L)F1784/6/7

EXAMPLE 24-1: SINGLE-PHASE SETUP

;	Single-pl	nase PWM PSMC setup
;	Fully syn	nchronous operation
;	Period =	10 us
;	Duty cyc	le = 50%
	BANKSEL	PSMC1CON
	MOVLW	0x02 ; set period
	MOVWF	PSMC1PRH
	MOVLW	0x7F
	MOVWF	PSMC1PRL
	MOVLW	0x01 ; set duty cycle
	MOVWF	PSMC1DCH
	MOVLW	0x3F
	MOVWF	PSMC1DCL
	CLRF	PSMC1PHH ; no phase offset
	CLRF	PSMC1PHL
	MOVLW	0x01 ; PSMC clock=64 MHz
	MOVWF	PSMC1CLK
;	output or	n A, normal polarity
	BSF	PSMC1STR0,P1STRA
		PSMC1POL, P1POLA
	BSF	PSMC10EN, P10EA
;	set time	base as source for all events
		PSMC1PRS, P1PRST
		PSMC1PHS, P1PHST
		PSMC1DCS, P1DCST
;	enable PS	SMC in Single-Phase Mode
;		o loads steering and time buffers
		B'11000000'
		PSMC1CON
	BANKSEL	
	BCF	TRISC, 0 ; enable pin driver

FIGURE 24-4: SINGLE PWM WAVEFORM – PSMCXSTR0 = 01H

PWM Period Number	1	2	3
Period Event		<u> </u>	
Rising Edge Event			
Falling Edge Event			
PSMCxA			

24.3.9 ECCP COMPATIBLE FULL-BRIDGE PWM

This mode of operation is designed to match the Full-Bridge mode from the ECCP module. It is called ECCP compatible as the term "full-bridge" alone has different connotations in regards to the output waveforms.

Full-Bridge Compatible mode uses the same waveform events as the single PWM mode to generate the output waveforms.

There are both Forward and Reverse modes available for this operation, again to match the ECCP implementation. Direction is selected with the mode control bits.

24.3.9.1 Mode Features

- · Dead-band control available on direction switch
 - Changing from forward to reverse uses the falling edge dead-band counters.
 - Changing from reverse to forward uses the rising edge dead-band counters.
- No steering control available
- PWM is output on the following four pins only:
 - PSMCxA
 - PSMCxB
 - PSMCxC
 - PSMCxD

24.3.9.2 Waveform Generation - Forward

In this mode of operation, three of the four pins are static. PSMCxA is the only output that changes based on rising edge and falling edge events.

Static Signal Assignment

- · Outputs set to active state
 - PSMCxD
- · Outputs set to inactive state
 - PSMCxB
 - PSMCxC

Rising Edge Event

· PSMCxA is set active

Falling Edge Event

· PSMCxA is set inactive

24.3.9.3 Waveform Generation – Reverse

In this mode of operation, three of the four pins are static. Only PSMCxB toggles based on rising edge and falling edge events.

Static Signal Assignment

- Outputs set to active state
 - PSMCxC
- · Outputs set to inactive state
 - PSMCxA
 - PSMCxD

Rising Edge Event

· PSMCxB is set active

Falling Edge Event

· PSMCxB is set inactive

FIGURE 24-12: ECCP COMPATIBLE FULL-BRIDGE PWM WAVEFORM – PSMCXSTR0 = 0FH

PWM Period Number	1	2	3	4	5	6	7	8	9	10	—11—	-12
	∢	Forward	mode o	peration-		 ⊲	Reverse	e mode c	peration			٦
Period Event												L
Falling Edge Event												_
PSMCxA												_
PSMCxB												_
PSMCxC												_
					-	Fallir	g Edge I	Dead Ba		Edge De →	ad Band ∖	
PSMCxD												

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
PxTOVIE	PxTPHIE	PxTDCIE	PxTPRIE	PxTOVIF	PxTPHIF	PxTDCIF	PxTPRIF				
bit 7		·	•			•	bit				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets				
'1' = Bit is set	-	'0' = Bit is cle	ared								
bit 7		SMC Time Base		-	Enable bit						
		ase counter ove									
h. H. C		ase counter ove	•								
bit 6	PxTPHIE: PSMC Time Base Phase Interrupt Enable bit1 = Time base phase match interrupts are enabled										
		ase phase matc	•								
bit 5		PSMC Time Base Duty Cycle Interrupt Enable bit									
bit 4	PxTPRIE: PS	PxTPRIE: PSMC Time Base Period Interrupt Enable bit									
		ase period mato	•								
bit 3		SMC Time Base		•	•						
		bit PSMCxTMF									
bit 2		SMC Time Base									
		-bit PSMCxTMF -bit PSMCxTMF				>					
bit 1		SMC Time Base				-					
bit i											
		-bit PSMCxTMR counter has matched PSMCxDC<15:0> -bit PSMCxTMR counter has not matched PSMCxDC<15:0>									
bit 0	PxTPRIF: PS	SMC Time Base	Period Interru	upt Flag bit							
		bit PSMCxTMF			CxPR<15:0>						

REGISTER 24-33: PSMCxINT: PSMC TIME BASE INTERRUPT CONTROL REGISTER

25.3 PWM Overview

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

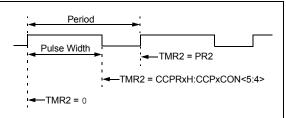
PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 25-3 shows a typical waveform of the PWM signal.

25.3.1 STANDARD PWM OPERATION

The standard PWM function described in this section is available and identical for all CCP modules.

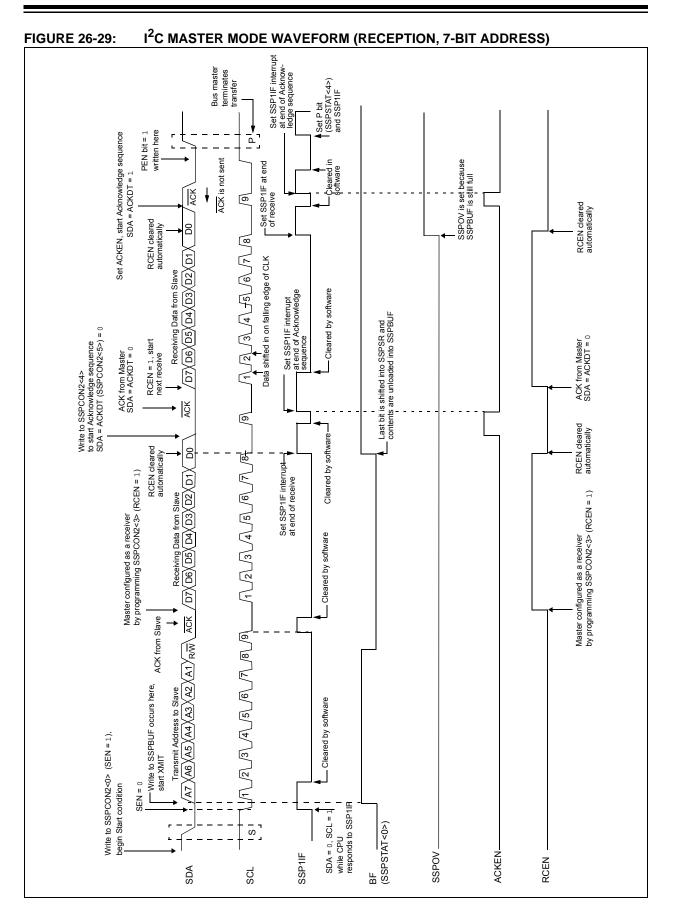

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the CCPx pin with up to 10 bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- PR2 registers
- · T2CON registers
- · CCPRxL registers
- · CCPxCON registers

Figure 25-4 shows a simplified block diagram of PWM operation.

- Note 1: The corresponding TRIS bit must be cleared to enable the PWM output on the CCPx pin.
 - 2: Clearing the CCPxCON register will relinquish control of the CCPx pin.

FIGURE 25-3: CCP PWM OUTPUT SIGNAL



SIMPLIFIED PWM BLOCK DIAGRAM

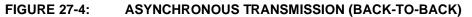
PIC16(L)F1784/6/7

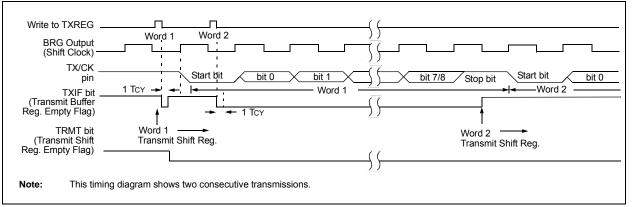
27.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- · Sleep operation


The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:


- · Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 27-1 and Figure 27-2.

FIGURE 27-1: EUSART TRANSMIT BLOCK DIAGRAM

TABLE 27-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON1	C2OUTSEL	CC1PSEL	SDOSEL	SCKSEL	SDISEL	TXSEL	RXSEL	CCP2SEL	127
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN	347
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	346
SPBRGL	BRG<7:0>								348
SPBRGH	BRG<15:8>								348
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142
TXREG	EUSART Transmit Data Register								337*
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	345

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous transmission.

* Page provides register information.

PIC16(L)F1784/6/7

TRIS	Load TRIS Register with W				
Syntax:	[label] TRIS f				
Operands:	$5 \leq f \leq 7$				
Operation:	(W) \rightarrow TRIS register 'f'				
Status Affected:	None				
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.				

XORLW	Exclusive OR literal with W				
Syntax:	[<i>label</i>] XORLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.				

XORWF	Exclusive OR W with f					
Syntax:	[label] XORWF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(W) .XOR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

TABLE 30-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

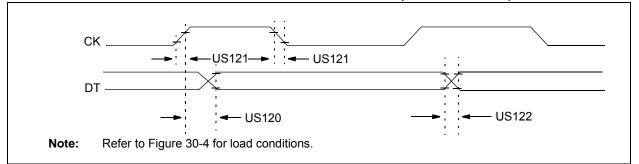
Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic		Тур†	Max.	Units	Conditions		
30	ТмсL	MCLR Pulse Width (low)	2 5	_	_	μS μS	VDD = 3.3-5V, -40°C to +85°C VDD = 3.3-5V		
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	VDD = 3.3V-5V 1:16 Prescaler used		
32	Tost	Oscillator Start-up Timer Period ^{(1), (2)}		1024	—	Tosc	(Note 3)		
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	40	65	140	ms			
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset	_	—	2.0	μS			
35	VBOR	Brown-out Reset Voltage	2.55 2.30 1.80	2.70 2.45 1.90	2.85 2.6 2.10	V V V	BORV = 0 BORV=1 (F device) BORV=1 (LF device)		
35A	VLPBOR	Low-Power Brown-out	1.8	2.1	2.5	V	LPBOR = 1		
36*	VHYST	Brown-out Reset Hysteresis	0	25	75	mV	-40°C to +85°C		
37*	TBORDC	Brown-out Reset DC Response Time	1	3	35	μS	$VDD \leq VBOR$		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- 2: By design.
- 3: Period of the slower clock.
- 4: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.


TABLE 30-17: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Operating	Operating Conditions: VDD = 3V, Temperature = 25°C (unless otherwise stated).									
Param No.	Sym.	Sym. Characteristics		Тур.	Max.	Units	Comments			
DAC01*	CLSB	Step Size	—	VDD/256		V				
DAC02*	CACC	Absolute Accuracy	_	—	± 1.5	LSb				
DAC03*	CR	Unit Resistor Value (R)	_	600	_	Ω				
DAC04*	CST	Settling Time ⁽¹⁾	—	—	10	μS				

* These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<7:0> transitions from '0x00' to '0xFF'.

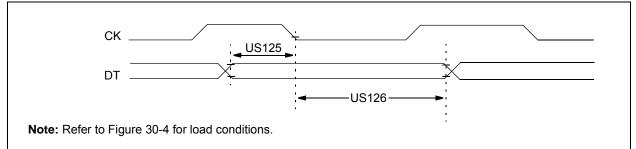

FIGURE 30-14: EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 30-18: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

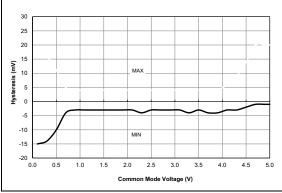
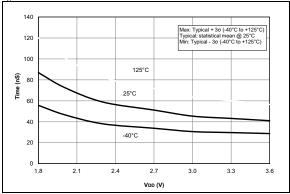
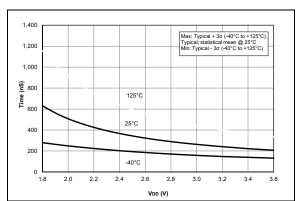
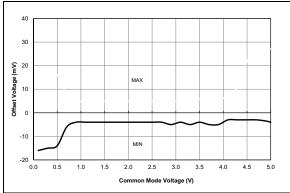

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Symbol	Characteristic	Characteristic		Max.	Units	Conditions		
US120	TCKH2DTV	SYNC XMIT (Master and Slave)	3.0-5.5V	—	80	ns			
	Clock high to data-out valid	1.8-5.5V	_	100	ns				
US121	TCKRF	Clock out rise time and fall time	3.0-5.5V	—	45	ns			
	(Master mode)	1.8-5.5V	—	50	ns				
US122	TDTRF	Data-out rise time and fall time	3.0-5.5V	—	45	ns			
			1.8-5.5V	_	50	ns			

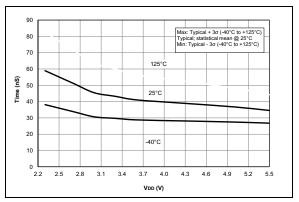
FIGURE 30-15: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING



PIC16(L)F1784/6/7


Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.


FIGURE 31-120: Comparator Offset, NP Mode (CxSP = 1), VDD = 5.0V, Typical Measured Values at 25°C, PIC16F1784/6/7 Only.


FIGURE 31-122: Comparator Response Time Over Voltage, NP Mode (CxSP = 1), Typical Measured Values, PIC16LF1784/6/7 Only.

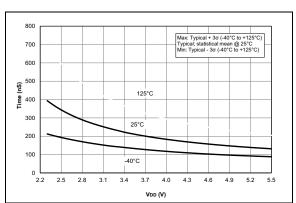

FIGURE 31-124: Comparator Output Filter Delay Time Over Temp., NP Mode (CxSP = 1), Typical Measured Values, PIC16LF1784/6/7 Only.

FIGURE 31-121: Comparator Offset, NP Mode (CxSP = 1), VDD = 5.0V, Typical Measured Values From -40°C to 125°C, PIC16F1784/6/7 Only.

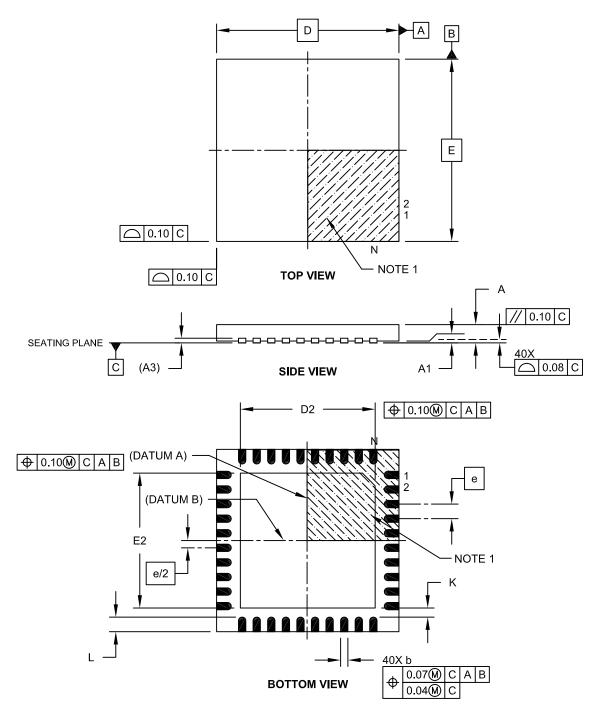

FIGURE 31-123: Comparator Response Time Over Voltage, NP Mode (CxSP = 1), Typical Measured Values, PIC16F1784/6/7 Only.

FIGURE 31-125: Comparator Output Filter Delay Time Over Temp., NP Mode (CxSP = 1), Typical Measured Values, PIC16F1784/6/7 Only.

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2012-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-525-3

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.