

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1787-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

											-						
0/	40-Pin PDIP	40-Pin UQFN	44-Pin TQFP	44-Pin QFN	ADC	Reference	Comparator	Op Amps	8-bit DAC	Timers	PSMC	ССР	EUSART	MSSP	Interrupt	Pull-up	Basic
RC1	16	31	35	35	—	_	_	_	—	T10SI	PSMC1B	CCP2	—	_	IOC	Y	_
RC2	17	32	36	36	—	—	_	-	—	-	PSMC1C	CCP1	—	—	IOC	Y	
RC3	18	33	37	37	—	—	—	_	—	_	PSMC1D	_	-	SCL SCK	IOC	Y	—
RC4	23	38	42	42	-	—	-	-	—	—	PSMC1E	-	-	SDI SDA	IOC	Y	—
RC5	24	39	43	43		—		—	—	—	PSMC1F	—	-	SDO	IOC	Y	—
RC6	25	40	44	44	-	_	—	-	-	—	PSMC2A	-	TX CK	_	IOC	Y	_
RC7	26	1	1	1	—	—	—	—	—	—	PSMC2B	-	RX DT	—	IOC	Y	—
RD0	19	34	38	38	_	—		OPA3IN+	—	_	—	_	—	—	_	Y	_
RD1	20	35	39	39	AN21	_	C1IN4- C2IN4- C3IN4- C4IN4-	OPA3OUT	_	_	_	-	_	_	_	Y	_
RD2	21	36	40	40	—	_	_	OPA3IN-	—	—	—	—	—	—	—	Y	_
RD3	22	37	41	41	—		—	_	—	_	_	—		—	_	Y	
RD4	27	2	2	2	—	—		—	—	—	PSMC3F	—	—	—	—	Y	—
RD5	28	3	3	3	—		—	_	—	-	PSMC3E	—	—	—	—	Y	—
RD6	29	4	4	4	—	—	C3OUT	—	—	—	PSMC3D	—	—	—	—	Y	—
RD7	30	5	5	5	—	—	C4OUT	_	—	—	PSMC3C	—	—	—	—	Y	—
RE0	8	23	25	25	AN5	—	—		—	—	—	CCP3	—	—	_	Y	—
RE1	9	24	26	26	AN6	—	—	—	—	—	PSMC3B	—	—	—	—	Y	—
RE2	10	25	27	27	AN7	—	—	-	—	—	PSMC3A	—	—	—	—	Y	—
RE3	1	16	18	18	_	—	—	—	—	—	_	-	_	—	IOC	Y	MCLR VPP
VDD	11,32	7,26	7,28	7,8, 28	-	—	—	—	_	—	_	—	—	—	-	—	VDD
Vss	12,31	6,27	6,29	6,30,	_	_	_	_	_	_	_	_	_	_	—	—	Vss

TABLE 2: 40/44-PIN ALLOCATION TABLE (PIC16(L)F1784/7) (Continued)

Note 1: Alternate pin function selected with the APFCON1 (Register 13-1) and APFCON2 (Register 13-2) registers.

3.5 Stack

All devices have a 16-level x 15-bit wide hardware stack (refer to Figures 3-1 and 3-2). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

Note: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

3.5.1 ACCESSING THE STACK

The stack is available through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is 5 bits to allow detection of overflow and underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. At any time, STKPTR can be inspected to see how much stack is left. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC and then decrement the STKPTR.

Reference Figure 3-5 through Figure 3-8 for examples of accessing the stack.

FIGURE 3-5: ACCESSING THE STACK EXAMPLE 1

TOSH:TOSL 0x0F	STKPTR = 0x1F Stack Reset Disabled (STVREN = 0)
0x0E	
0x0D	
0x0C	
0x0B	
0x0A	Initial Stack Configuration:
0x09	
0x08	After Reset, the stack is empty. The empty stack is initialized so the Stack
0x07	Pointer is pointing at 0x1F. If the Stack Overflow/Underflow Reset is enabled, the
0x06	TOSH/TOSL registers will return '0'. If the Stack Overflow/Underflow Reset is
0x05	disabled, the TOSH/TOSL registers will
0x04	
0x03	
0x02	
0x01	
0x00	
TOSH:TOSL 0x1F	0x0000 STKPTR = 0x1F Stack Reset Enabled (STVREN = 1)
	N

8.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

This chapter contains the following information for Interrupts:

- · Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 8-1.

FIGURE 8-1: INTERRUPT LOGIC

9.3 Register Definitions: Voltage Regulator Control

REGISTER 9-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

Logond							
bit 7							bit 0
			_	_	_	VREGPM	Reserved
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 1 VREGPM: Voltage Regulator Power Mode Selection bit

- 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾
 Draws lowest current in Sleep, slower wake-up
- Normal-Power mode enabled in Sleep⁽²⁾
 Draws higher current in Sleep, faster wake-up
- bit 0 Reserved: Read as '1'. Maintain this bit set.

Note 1: "F" devices only.

2: See Section 30.0 "Electrical Specifications".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	RAIF	93
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	159
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	158
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	158
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	C4IE	C3IE	CCP2IE	95
PIE3	_	—	_	CCP3IE	_	—	_	—	96
PIE4	_	PSMC3TIE	PSMC2TIE	PSMC1TIE	_	PSMC3SIE	PSMC2SIE	PSMC1SIE	97
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	94
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	C4IF	C3IF	CCP2IF	99
PIR3	_	—	_	CCP3IF	_	—	_	—	100
PIR4		PSMC3TIF	PSMC2TIF	PSMC1TIF	-	PSMC3SIF	PSMC2SIF	PSMC1SIF	101
STATUS		—		TO	PD	Z	DC	С	27
VREGCON		_				_	VREGPM	Reserved	106
WDTCON		_		N N	WDTPS<4:0>	•		SWDTEN	110

TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

EXAMPLE 12-3: FLASH PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
   PROG_ADDR_HI : PROG_ADDR_LO
   data will be returned in the variables;
*
   PROG_DATA_HI, PROG_DATA_LO
   MOVLW PROG_ADDR_LO ;
MOVWF EEADRL ; Select Bank for EEPROM registers
MOVWF EEADRL ; Store LSB of address
MOVLW PROG_ADDR_HI ;
MOVWL EEADRH
             EECON1,CFGS ; Do not select Configuration Space
EECON1,EEPGD ; Select Program Memory
   BCF
           EECON1,CFGS
   BSF
             INTCON,GIE ; Disable interrupts
   BCF
                               ; Initiate read
; Executed (Figure 12-1)
   BSF
             EECON1,RD
   NOP
                                ; Ignored (Figure 12-1)
   NOP
            INTCON,GIE
                                ; Restore interrupts
   BSF
   MOVF
           EEDATL,W
                               ; Get LSB of word
   MOVWF PROG_DATA_LO ; Store in user location
                               ; Get MSB of word
   MOVE
             EEDATH,W
             PROG_DATA_HI
   MOVWF
                               ; Store in user location
```

12.7 Register Definitions: EEPROM and Flash Control

REGISTER 12-1: EEDATL: EEPROM DATA LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			EEDA	T<7:0>			
bit 7							bit 0
Logond							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	3	
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ue at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0

EEDAT<7:0>: Read/write value for EEPROM data byte or Least Significant bits of program memory

REGISTER 12-2: EEDATH: EEPROM DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			EEDA	\T<13:8>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-0	EEDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 12-3: EEADRL: EEPROM ADDRESS REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | EEADI | R<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 EEADR<7:0>: Specifies the Least Significant bits for program memory address or EEPROM address

REGISTER 12-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
(1)				EEADR<14:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 EEADR<14:8>: Specifies the Most Significant bits for program memory address or EEPROM address

Note 1: Unimplemented, read as '1'.

13.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON1 and APFCON2) registers are used to steer specific peripheral input and output functions between different pins. The APFCON1 and APFCON2 registers are shown in Register 13-1 and Register 13-2. For this device family, the following functions can be moved between different pins.

- C2OUT output
- CCP1 output
- SDO output
- SCL/SCK output
- · SDA/SDI output
- TX/RX output
- CCP2 output
- CCP3 output

These bits have no effect on the values of any TRIS register. PORT and TRIS overrides will be routed to the correct pin. The unselected pin will be unaffected.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELD	—	—	—	—	—	ANSD2	ANSD1	ANSD0	147
INLVLD	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	148
LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	146
ODCOND	ODD7	ODD6	ODD5	ODD4	ODD3	ODD2	ODD1	ODD0	148
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	146
SLRCOND	SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0	148
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	146
WPUD	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	147

TABLE 13-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.

20.11 Register Definitions: Comparator Control

REGISTER 20-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

R/W/-0/0	R-0/0	R/W/-0/0	R/W/-0/0	R/W-0/0	R/W/-1/1	R/W-0/0	R/W-0/0
CxON	CXOUT	CxOF	CxPOI		CxSP	CxHYS	CXSYNC
hit 7	0,001	OXOL	ONI OL	UNZLI	0,01	0,1110	bit 0
bit i							bit 0
Legend:							
P - Readable	bit	M = M/ritable	hit	II – Unimpler	nented hit rea	d as 'O'	
IX - Readable	anged	v = Bit is upkr		n/n = Value	at POP and BC	D AS U	other Pesets
'1' = Bit is set	angeu	$(0)^{2} = \text{Bit is clear}$	arad				
1 - Dit 13 30t							
bit 7	CxON: Comp	parator Enable I	oit				
	1 = Compara	tor is enabled					
	0 = Compara	tor is disabled a	and consumes	no active pow	er		
bit 6	CxOUT: Com	parator Output	bit				
	$\frac{\text{If CxPOL} = 1}{2}$	(inverted polari	<u>ty):</u>				
	1 = CxVP < 0						
	$0 = C_{XVF} > 0$ If CxPOL = 0	(non-inverted r	olarity):				
	1 = CxVP > 0	CxVN	<u> </u>				
	0 = CxVP < 0	CxVN					
bit 5	CxOE: Comp	parator Output E	Enable bit				
	1 = CxOUT is	s present on the	e CxOUT pin. I	Requires that th	ne associated T	RIS bit be clea	red to actually
	0 = CxOUT i	s internal only	ed by CXON.				
bit 4	CxPOL: Com	parator Output	Polarity Selec	ct bit			
	1 = Compara	tor output is inv	erted				
	0 = Compara	tor output is no	t inverted				
bit 3	CxZLF: Com	parator Zero La	atency Filter E	nable bit			
	1 = Compara	tor output is filte	ered				
	0 = Compara	tor output is un	filtered				
bit 2	CxSP: Comp	arator Speed/P	ower Select b	it			
	1 = Compara0 = Compara	tor operates in	normal power, low-power, low	, nigner speed	mode		
bit 1	CxHYS: Com	parator Hyster	esis Fnable bi	t			
2	1 = Compara	ator hysteresis	enabled	•			
	0 = Compara	ator hysteresis of	disabled				
bit 0	CxSYNC: Co	mparator Outp	ut Synchronou	is Mode bit			
	1 = Compara	ator output to T	imer1 and I/C	pin is synchro	onous to chang	ges on Timer1	clock source.
	Output u	pdated on the f	alling edge of	Limer1 clock s	ource.		
		αιοι ουιραί ιο Π		pin is asynchic	11005.		

EXAMPLE 24-1: SINGLE-PHASE SETUP

;	Single-ph	ase PWM PSMC setup
;	Fully syr	chronous operation
;	Period =	10 us
;	Duty cycl	.e = 50%
	BANKSEL	PSMC1CON
	MOVLW	0x02 ; set period
	MOVWF	PSMC1PRH
	MOVLW	0x7F
	MOVWF	PSMC1PRL
	MOVLW	0x01 ; set duty cycle
	MOVWF	PSMC1DCH
	MOVLW	0x3F
	MOVWF	PSMC1DCL
	CLRF	PSMC1PHH ; no phase offset
	CLRF	PSMC1PHL
	MOVLW	0x01 ; PSMC clock=64 MHz
	MOVWF	PSMC1CLK
;	output or	A, normal polarity
	BSF	PSMC1STR0,P1STRA
	BCF	PSMC1POL, P1POLA
	BSF	PSMC10EN, P10EA
;	set time	base as source for all events
	BSF	PSMC1PRS, P1PRST
	BSF	PSMC1PHS, P1PHST
	BSF	PSMC1DCS, P1DCST
;	enable PS	SMC in Single-Phase Mode
;	this also	o loads steering and time buffers
	MOVLW	B'11000000'
	MOVWF	PSMC1CON
	BANKSEL	TRISC
	BCF	TRISC, 0 ; enable pin driver

FIGURE 24-4: SINGLE PWM WAVEFORM – PSMCXSTR0 = 01H

PWM Period Number	1	2	3
Period Event		<u> </u>	
Rising Edge Event			
Falling Edge Event			
PSMCxA			

24.7 Auto-Shutdown

Auto-shutdown is a method to immediately override the PSMC output levels with specific overrides that allow for safe shutdown of the application.

Auto-shutdown includes a mechanism to allow the application to restart under different conditions.

Auto-shutdown is enabled with the PxASDEN bit of the PSMC Auto-shutdown Control (PSMCxASDC) register (Register 24-15). All auto-shutdown features are enabled when PxASDEN is set and disabled when cleared.

24.7.1 SHUTDOWN

There are two ways to generate a shutdown event:

- Manual
- External Input

24.7.1.1 Manual Override

The auto-shutdown control register can be used to manually override the pin functions. Setting the PxASE bit of the PSMC Auto-shutdown Control (PSMCxASDC) register (Register 24-15) generates a software shut-down event.

The auto-shutdown override will persist as long as PxASE remains set.

24.7.1.2 External Input Source

Any of the given sources that are available for event generation are also available for system shut-down. This is so that external circuitry can monitor and force a shutdown without any software overhead. Auto-shutdown sources are selected with the PSMC Auto-shutdown Source (PSMCxASDS) register (Register 24-17).

When any of the selected external auto-shutdown sources go high, the PxASE bit is set and an auto-shutdown interrupt is generated.

Note: The external shutdown sources are level sensitive, not edge sensitive. The shutdown condition will persist as long as the circuit is driving the appropriate logic level.

24.7.2 PIN OVERRIDE LEVELS

The logic levels driven to the output pins during an auto-shutdown event are determined by the PSMC Auto-shutdown Output Level (PSMCxASDL) register (Register 24-16).

24.7.2.1 PIN Override Enable

Setting the PxASDOV bit of the PSMC Auto-shutdown Control (PSMCxASDC) register (Register 24-15) will also force the override levels onto the pins, exactly like what happens when the auto-shutdown is used. However, whereas setting PxASE causes an auto-shutdown interrupt, setting PxASDOV does not generate an interrupt.

24.7.3 RESTART FROM AUTO-SHUTDOWN

After an auto-shutdown event has occurred, there are two ways for the module to resume operation:

- Manual restart
- Automatic restart

The restart method is selected with the PxARSEN bit of the PSMC Auto-shutdown Control (PSMCxASDC) register (Register 24-15).

24.7.3.1 Manual Restart

When PxARSEN is cleared, and once the PxASDE bit is set, it will remain set until cleared by software.

The PSMC will restart on the period event after PxASDE bit is cleared in software.

24.7.3.2 Auto-Restart

When PxARSEN is set, the PxASDE bit will clear automatically when the source causing the Reset and no longer asserts the shut-down condition.

The PSMC will restart on the next period event after the auto-shutdown condition is removed.

Examples of manual and automatic restart are shown in Figure 24-20.

Note: Whether manual or auto-restart is selected, the PxASDE bit cannot be cleared in software when the auto-shutdown condition is still present.

REGISTER 24-10: PSMCxREBS: PSMC RISING EDGE BLANKED SOURCE REGISTER

DAM AVA			D #44 0/6	D M M A /C	5444.040	D M M M	
R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0
PxREBSIN	—	_	PxREBSC4	PxREBSC3	PxREBSC2	PxREBSC1	—
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read as '0)'	
u = Bit is unchan	ged	x = Bit is unknow	vn	-n/n = Value at	POR and BOR/Val	ue at all other Re	esets
'1' = Bit is set		'0' = Bit is cleare	ed				
bit 7	PxREBSIN: PS 1 = PSMCxIN	MCx Rising Edge I pin cannot caus	Event Blanked e a rising or falli	from PSMCxIN p	oin duration indicated l	by the PSMCxBL	NK register
	0 = PSMCxIN	l pin is not blanke	d				
bit 6-5	Unimplemente	d: Read as '0'					
bit 4	PxREBSC4: PS	MCx Rising Edge	e Event Blanked	I from sync_C4O	UT duration indicated I	by the DSMCvBI	NK register
	$0 = sync_C40$	OUT is not blanke	d				The register
bit 3	PxREBSC3: PS	MCx Rising Edge	e Event Blanked	I from sync_C3O	UT		
	1 = sync_C30 0 = sync_C30	OUT cannot caus OUT is not blanke	e a rising or falli d	ng event for the	duration indicated I	by the PSMCxBL	NK register
bit 2	PxREBSC2: PS	MCx Rising Edge	e Event Blanked	from sync C2O	UT		
2	$1 = sync_C20$	DUT cannot cause	e a rising or falli	ng event for the	duration indicated I	by the PSMCxBL	NK register
	0 = sync_C20	OUT is not blanke	d				
bit 1	PxREBSC1: PS	MCx Rising Edge	e Event Blanked	I from sync_C1O	UT		
	1 = sync_C10 0 = sync_C10	OUT cannot cause OUT is not blanke	e a rising or falli d	ng event for the	duration indicated I	by the PSMCxBL	NK register
bit 0	Unimplemente	d: Read as '0'	-				

REGISTER 24-11: PSMCxFEBS: PSMC FALLING EDGE BLANKED SOURCE REGISTER

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0
PxFEBSIN	—	—	PxFEBSC4	PxFEBSC3	PxFEBSC2	PxFEBSC1	_
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	 PxFEBSIN: PSMCx Falling Edge Event Blanked from PSMCxIN pin 1 = PSMCxIN pin cannot cause a rising or falling event for the duration indicated by the PSMCxBLNK register 0 = PSMCxIN pin is not blanked
bit 6-5	Unimplemented: Read as '0'
bit 4	PxFEBSC4: PSMCx Falling Edge Event Blanked from sync_C4OUT 1 = sync_C4OUT cannot cause a rising or falling event for the duration indicated by the PSMCxBLNK register 0 = sync_C4OUT is not blanked
bit 3	 PxFEBSC3: PSMCx Falling Edge Event Blanked from sync_C3OUT 1 = sync_C3OUT cannot cause a rising or falling event for the duration indicated by the PSMCxBLNK register 0 = sync_C3OUT is not blanked
bit 2	 PxFEBSC2: PSMCx Falling Edge Event Blanked from sync_C2OUT 1 = sync_C2OUT cannot cause a rising or falling event for the duration indicated by the PSMCxBLNK register 0 = sync_C2OUT is not blanked
bit 1	PxFEBSC1: PSMCx Falling Edge Event Blanked from sync_C1OUT 1 = sync_C1OUT cannot cause a rising or falling event for the duration indicated by the PSMCxBLNK register 0 = sync_C1OUT is not blanked
bit 0	Unimplemented: Read as '0'

26.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Slave Select (SS)

Figure 26-1 shows the block diagram of the MSSP module when operating in SPI mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 26-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, 8 bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 26-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information out on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register. During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on its SDO pin) and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After 8 bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

R/W-0/0	R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0	
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BOF	R/Value at all c	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared	HC = Cleared	d by hardware	S = User set		
bit 7	GCEN: General 1 = Enable inf 0 = General c	ral Call Enable terrupt when a all address dis	bit (in I ² C Sla [,] general call ac abled	ve mode only) ddress (0x00 c	or 00h) is receive	ed in the SSPS	ŝR	
bit 6	ACKSTAT: Ac 1 = Acknowle 0 = Acknowle	cknowledge Sta dge was not re dge was receiv	atus bit (in I ² C ceived red	mode only)				
bit 5	ACKDT: Acknowledge Data bit (in I ² C mode only) <u>In Receive mode:</u> Value transmitted when the user initiates an Acknowledge sequence at the end of a receive 1 = Not Acknowledge							
bit 4	ACKEN: Ackr In Master Rec 1 = Initiate A Automatio 0 = Acknowle	nowledge Sequ <u>ceive mode:</u> Acknowledge s cally cleared by edge sequence	ence Enable I sequence on / hardware. idle	oit (in I ² C Mas SDA and S	ter mode only) CL pins, and	transmit ACk	CDT data bit.	
bit 3	RCEN: Receiv 1 = Enables F 0 = Receive io	ve Enable bit (i Receive mode f dle	n I ² C Master r or I ² C	node only)				
bit 2	 PEN: Stop Condition Enable bit (in I²C Master mode only) <u>SCKMSSP Release Control:</u> 1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Stop condition Idle 							
bit 1	RSEN: Repeated	ated Start Conc epeated Start c d Start condition	lition Enable b ondition on SI n Idle	it (in I ² C Mast DA and SCL p	er mode only) ins. Automatical	ly cleared by h	ardware.	
bit 0	SEN: Start Co In Master moo 1 = Initiate Sta 0 = Start conc In Slave mode 1 = Clock stre 0 = Clock stre	ondition Enable de: art condition on lition Idle e: stching is enabl	/Stretch Enables SDA and SC ed for both sla	le bit L pins. Automa ave transmit ar	atically cleared b nd slave receive	by hardware. (stretch enabl	ed)	
Note de Cor				$\sim 1^2 C$ modulo	is used in the Isla	, maala thia hi		

REGISTER 26-3: SSPCON2: SSP CONTROL REGISTER 2

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

27.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 27-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all 8 or 9 bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCREG register.

27.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

27.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 27.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREG register.

Note:	If the receive FIFO is overrun, no additiona
	characters will be received until the overrur
	condition is cleared. See Section 27.1.2.5
	"Receive Overrun Error" for more
	information on overrun errors.

27.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR1 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RCIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCIF interrupts are enabled by setting all of the following bits:

- RCIE, Interrupt Enable bit of the PIE1 register
- PEIE, Peripheral Interrupt Enable bit of the INTCON register
- GIE, Global Interrupt Enable bit of the INTCON register

The RCIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
ABDOVF	RCIDL	—	SCKP	BRG16		WUE	ABDEN
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value	at POR and BOF	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	ABDOVF: Au	to-Baud Detec	t Overflow bit				
	1 = Auto-bau	d timer overflow	ved				
	0 = Auto-bau	d timer did not	overflow				
Synchronous mode:							
bit 6	RCIDL: Receive Idle Flag bit						
Sit o	Asynchronous	s mode:					
	1 = Receiver	is idle					
	U = Start bit has been received and the receiver is receiving Synchronous mode:						
	Don't care	<u>moue</u> .					
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	SCKP: Synch	ronous Clock I	Polarity Select	bit			
	Asynchronous	<u>s mode</u> :					
	1 = Transmit i 0 = Transmit i	nverted data to non-inverted da	o the TX/CK p ata to the TX/0	in CK pin			
	Synchronous	mode:					
	1 = Data is clocked on rising edge of the clock 0 = Data is clocked on falling edge of the clock						
bit 3	BRG16: 16-bi	it Baud Rate G	enerator bit				
	1 = 16-bit Ba	ud Rate Gener	ator is used				
	0 = 8-bit Bau	d Rate Genera	tor is used				
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	WUE: Wake-u	up Enable bit					
	Asynchronous	<u>s mode</u> :	folling of stars	NI			
	⊥ = Receiver will autom	atically clear a	fter RCIF is se	No character	will be received,	byte RCIF WI	I DE SEL VVUE
	0 = Receiver	is operating no	ormally				
	Synchronous	mode:					
	Don't care						
bit 0	ABDEN: Auto	-Baud Detect	Enable bit				
	$\frac{ASYNCHronous}{1 = Auto Rous}$	<u>s mode</u> : Id Detect mode	is enabled (c	lears when a	ito-baud is comp	lete)	
	0 = Auto-Bau	Id Detect mode	e is disabled				
	Synchronous	mode:					
	Don't care						

REGISTER 27-3: BAUDCON: BAUD RATE CONTROL REGISTER

ADDLW	Add literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W reg- ister.

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWFC	ADD W and CARRY bit to f
Syntax:	[label] ADDWFC f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) + (C) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add W, the Carry flag and data memory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

ASRF	Arithmetic Right Shift
Syntax:	[label] ASRF f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

|--|

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT,} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$ \begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array} $
Operation:	(f) - (W) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.

C = 0	W > f
C = 1	$W \leq f$
DC = 0	W<3:0> > f<3:0>
DC = 1	W<3:0> ≤ f<3:0>

SUBWFB	Subtract W from f with Borrow
Syntax:	SUBWFB f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

SUBLW	Subtract W from literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k - (W) \rightarrow (W)$
Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.

C = 0	W > k
C = 1	$W \leq k$
DC = 0	W<3:0> > k<3:0>
DC = 1	$W<3:0> \le k<3:0>$

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-120: Comparator Offset, NP Mode (CxSP = 1), VDD = 5.0V, Typical Measured Values at 25°C, PIC16F1784/6/7 Only.

FIGURE 31-122: Comparator Response Time Over Voltage, NP Mode (CxSP = 1), Typical Measured Values, PIC16LF1784/6/7 Only.

FIGURE 31-124: Comparator Output Filter Delay Time Over Temp., NP Mode (CxSP = 1), Typical Measured Values, PIC16LF1784/6/7 Only.

FIGURE 31-121: Comparator Offset, NP Mode (CxSP = 1), VDD = 5.0V, Typical Measured Values From -40°C to 125°C, PIC16F1784/6/7 Only.

FIGURE 31-123: Comparator Response Time Over Voltage, NP Mode (CxSP = 1), Typical Measured Values, PIC16F1784/6/7 Only.

FIGURE 31-125: Comparator Output Filter Delay Time Over Temp., NP Mode (CxSP = 1), Typical Measured Values, PIC16F1784/6/7 Only.