

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1787-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-12

								/			
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 2										
10Ch	LATA	PORTA Data L	.atch							xxxx xxxx	uuuu uuuu
10Dh	LATB	PORTB Data L	atch							xxxx xxxx	uuuu uuuu
10Eh	LATC	PORTC Data I	atch							xxxx xxxx	uuuu uuuu
10Fh	LATD ⁽³⁾	PORTD Data I	atch							xxxx xxxx	uuuu uuuu
110h	LATE ⁽³⁾					_	LATE2	LATE1	LATE0	111	111
111h	CM1CON0	C10N	C1OUT	C10E	C1POL	C1ZLF	C1SP	C1HYS	C1SYNC	0000 0100	0000 0100
112h	CM1CON1	C1INTP	C1INTN		C1PCH<2:0>			C1NCH<2:0>		0000 0000	0000 0000
113h	CM2CON0	C2ON	C2OUT	C2OE C2POL C2ZLF C2SP C2HYS C2SYNC				0000 0100	0000 0100		
114h	CM2CON1	C2INTP	C2INTN		C2PCH<2:0>			C2NCH<2:0>		0000 0000	0000 0000
115h	CMOUT	_	_	_	_	MC4OUT ⁽³⁾	MC3OUT	MC2OUT	MC1OUT	0000	0000
116h	BORCON	SBOREN	BORFS		_	_	_	_	BORRDY	1xq	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	R<1:0>	ADFV	R<1:0>	0q00 0000	0q00 0000
118h	DAC1CON0	DAC1EN		DAC10E1	DAC10E2	DAC1PS	SS<1:0>		DAC1NSS	0-00 00-0	0-00 00-0
119h	DAC1CON1				DAC1R	<7:0>				0000 0000	0000 0000
11Ah	CM4CON0	C4ON	C4OUT	C4OE	C4POL	C4ZLF	C4SP	C4HYS	C4SYNC	0000 0100	0000 0100
11Bh	CM4CON1	C4INTP	C4INTN	C4PCI	H<1:0>	—	-	C4NC	H<1:0>	000000	000000
11Ch	APFCON2	—	_	-	—	_	_	—	CCP3SEL	0	0
11Dh	APFCON1	C2OUTSEL	CC1PSEL	SDOSEL	SCKSEL	SDISEL	TXSEL	RXSEL	CCP2SEL	0000 0000	0000 0000
11Eh	CM3CON0	C3ON	C3OUT	C3OE	C3POL	C3ZLF	C3SP	C3HYS	C3SYNC	0000 0100	0000 0100
11Fh	CM3CON1	C3INTP	C3INTN		C3PCH<2:0>	•		C3NCH<2:0>		0000 0000	0000 0000
Ban	k 3	•									
18Ch	ANSELA	ANSA7	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	1-11 1111	1-11 1111
18Dh	ANSELB	_	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	-111 1111	-111 1111
18Eh	Unimplemente	d							_	_	_
18Fh	ANSELD ⁽³⁾	_	_	—	_	_	ANSD2	ANSD1	ANSD0	111	111
190h	ANSELE ⁽³⁾	_		_	—	_	ANSE2	ANSE1	ANSE0	111	111
191h	EEADRL	EEPROM / Pro	ogram Memor	y Address Reg	ister Low Byte					0000 0000	0000 0000
192h	EEADRH	(2)	EEPROM / F	Program Memor	ry Address Reg	ister High Byte				1000 0000	1000 0000
193h	EEDATL	EEPROM / Pro	ogram Memor	y Read Data R	egister Low Byt	e				xxxx xxxx	uuuu uuuu
194h	EEDATH	_	_	EEPROM / Pro	ogram Memory	Read Data Re	gister High By	te		xx xxxx	uu uuuu
195h	EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	$000x \ 0000$	0000 q000
196h	EECON2	EEPROM / Pro	ogram Memor	y Control Regis	ster 2					0000 0000	0000 0000
197h	VREGCON ⁽⁴⁾	—	_	—	—	—	—	VREGPM	Reserved	01	01
198h	—	Unimplemente	d							_	_
199h	RCREG	EUSART Receive Data Register								0000 0000	0000 0000
19Ah	TXREG	EUSART Trans	smit Data Reg	gister						0000 0000	0000 0000
19Bh	SPBRG				BRG<	7:0>				0000 0000	0000 0000
19Ch	SPBRGH				BRG<	15:8>				0000 0000	0000 0000
19Dh	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	0000 0000
19Eh	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Fh	BAUDCON	ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. These registers can be addressed from any bank. Unimplemented, read as '1'. Legend:

1:

2:

PIC16(L)F1784/7 only. 3:

4: PIC16F1784/6/7 only.

Note

TABLE 3-12:	SPECIAL FUNCTION REGISTER	SUMMARY ((CONTINUED)
-			

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other
											Resets
Ban	k 31										
F8Ch to FE3h	_	Unimplemente	Jnimplemented								_
FE4h	STATUS_ SHAD	—	—	—	—	—	Z	DC	С	xxx	uuu
FE5h	WREG_SHAD	Working Regis	orking Register Shadow								
FE6h	BSR_SHAD	— — Bank Select Register Shadow								x xxxx	:u uuuu
FE7h	PCLATH_ SHAD	Program Counter Latch High Register Shadow								-xxx xxxx	uuuu uuuu
FE8h	FSR0L_SHAD	Indirect Data N	lemory Addre	ess 0 Low Point	er Shadow					XXXX XXXX	uuuu uuuu
FE9h	FSR0H_ SHAD	Indirect Data N	lemory Addre	ess 0 High Poin	ter Shadow					XXXX XXXX	uuuu uuuu
FEAh	FSR1L_SHAD	Indirect Data N	lemory Addre	ess 1 Low Point	er Shadow					XXXX XXXX	uuuu uuuu
FEBh	FSR1H_ SHAD	Indirect Data N	Indirect Data Memory Address 1 High Pointer Shadow								uuuu uuuu
FECh	_	Unimplemented								-	_
FEDh	STKPTR	_	—	_	Current Stack	Pointer				1 1111	1 1111
FEEh	TOSL	Top of Stack L	Top of Stack Low byte								uuuu uuuu
FEFh	TOSH	_	Top of Stack	High byte						-xxx xxxx	-uuu uuuu

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. These registers can be addressed from any bank. Unimplemented, read as '1'. Legend:

Note

1: 2:

PIC16(L)F1784/7 only. 3:

4: PIC16F1784/6/7 only.

R/W-0/0	0 R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
OSFIF	C2IF	C1IF	EEIF	BCL1IF	C4IF	C3IF	CCP2IF	
bit 7		•					bit 0	
Legend:								
R = Reada	able bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets	
'1' = Bit is	set	'0' = Bit is clea	ared					
bit 7	OSFIF: Oscill	ator Fail Interru	upt Flag bit					
	1 = Interrupt i	s pending						
hit C		s not pending	unt Elea hit					
DILO	Leintorrupt	rator C2 Intern	upt Flag bit					
	0 = Interrupt i	s not pending						
bit 5	C1IF: Compa	rator C1 Interru	upt Flag bit					
	1 = Interrupt i	s pending						
	0 = Interrupt i	s not pending						
bit 4	EEIF: EEPRO	OM Write Comp	pletion Interru	pt Flag bit				
	1 = Interrupt i	s pending						
		s not pending						
DIT 3	BCL1IF: MS	SP Bus Collisio	n Interrupt Fla	ag bit				
	0 = Interrupt i	s not pending						
bit 2	C4IF: Compa	rator C4 Interru	upt Flag bit					
	1 = Interrupt i	s pending	1 0					
	0 = Interrupt i	s not pending						
bit 1	C3IF: Compa	rator C3 Interru	upt Flag bit					
	1 = Interrupt i	s pending						
		s not pending						
bit 0	CCP2IF: CCH	P2 Interrupt Fla	g bit					
	$\perp = Interrupt I$ 0 = Interrupt i	is penaing						
		e net peneng						
Note:	Interrupt flag bits a	re set when an	interrupt					
	its corresponding	egargiess of the enable bit or the	e state of ne Global					
	Enable bit, GIE, c	of the INTCON	register.					
	User software	should ensu	ure the					
	appropriate interr	upt flag bits a	are clear					
	prior to enabling a	n interrupt.						

REGISTER 8-7: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF	<3:0>		_	SCS<1:0>		82
STATUS	—	_	_	TO	PD	Z	DC	С	27
WDTCON	—	—		١	WDTPS<4:0	>		SWDTEN	110

TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 11-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	—	_	FCMEN	FCMEN IESO CLKOUTEN BOREN<1:0>		N<1:0>	CPD	E A	
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		FOSC<2:0>			54

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0		
bit 7				•			bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets					

REGISTER 13-8: ODCONA: PORTA OPEN DRAIN CONTROL REGISTER

bit 7-0

'1' = Bit is set

ODA<7:0>: PORTA Open Drain Enable bits

'0' = Bit is cleared

For RA<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 13-9: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRA7 | SLRA6 | SLRA5 | SLRA4 | SLRA3 | SLRA2 | SLRA1 | SLRA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRA<7:0>: PORTA Slew Rate Enable bits

For RA<7:0> pins, respectively

1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

REGISTER 13-10: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLA7 | INLVLA6 | INLVLA5 | INLVLA4 | INLVLA3 | INLVLA2 | INLVLA1 | INLVLA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLA<7:0>: PORTA Input Level Select bits

For RA<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets						

REGISTER 13-22: WPUC: WEAK PULL-UP PORTC REGISTER

'0' = Bit is cleared

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits 1 = Pull-up enabled 0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 13-23: ODCONC: PORTC OPEN DRAIN CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODC7 | ODC6 | ODC5 | ODC4 | ODC3 | ODC2 | ODC1 | ODC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

'1' = Bit is set

ODC<7:0>: PORTC Open Drain Enable bits For RC<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 13-24: SLRCONC: PORTC SLEW RATE CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRC7 | SLRC6 | SLRC5 | SLRC4 | SLRC3 | SLRC2 | SLRC1 | SLRC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **SLRC<7:0>:** PORTC Slew Rate Enable bits

For RC<7:0> pins, respectively

1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and		at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 13-25: INLVLC: PORTC INPUT LEVEL CONTROL REGISTER

bit 7-0 INLVLC<7:0>: PORTC Input Level Select bits

For RC<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

TABLE 13-0. SUMMANT OF REGISTERS ASSOCIATED WITH TORT	TABLE 13-8:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTC
---	-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	142
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	142
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142
WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	143
INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	144
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	142
ODCONC	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	143
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	142
SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	143

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

17.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- · Port configuration
- · Channel selection
 - Single-ended
 - Differential
- ADC voltage reference selection
- ADC conversion clock source
- · Interrupt control
- · Result formatting

17.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 13.0 "I/O Ports"** for more information.

Note: Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current.

17.1.2 CHANNEL SELECTION

There are up to 18 channel selections available:

- AN<13:8, 4:0> pins (PIC16(L)F1786 only)
- AN<21, 13:0> pins (PIC16(L)F1784/7 only)
- Temperature Indicator
- DAC_output
- FVR (Fixed Voltage Reference) Output

Refer to Section 15.0 "Fixed Voltage Reference (FVR)" and Section 16.0 "Temperature Indicator Module" for more information on these channel selections.

When converting differential signals, the negative input for the channel is selected with the CHSN<3:0> bits of the ADCON2 register. Any positive input can be paired with any negative input to determine the differential channel.

The CHS<4:0> bits of the ADCON0 register determine which positive channel is selected.

When CHSN<3:0> = 1111 then the ADC is effectively a single ended ADC converter.

When changing channels, a delay is required before starting the next conversion.

17.1.3 ADC VOLTAGE REFERENCE

The ADPREF bits of the ADCON1 register provide control of the positive voltage reference. The positive voltage reference can be:

- VREF+
- VDD
- FVR Buffer1

The ADNREF bits of the ADCON1 register provide control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See **Section 15.0** "Fixed Voltage Reference (FVR)" for more details on the Fixed Voltage Reference.

17.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal FRC oscillator)

The time to complete one bit conversion is defined as TAD. One full 12-bit conversion requires 15 TAD periods as shown in Figure 17-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the ADC conversion requirements in **Section 30.0 "Electrical Specifications"** for more information. Table 17-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

19.0 DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 256 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- OpAmp positive input
- ADC input channel
- DAC1OUT1 pin
- DAC1OUT2 pin

The Digital-to-Analog Converter (DAC) is enabled by setting the DAC1EN bit of the DAC1CON0 register.

19.1 Output Voltage Selection

The DAC has 256 voltage level ranges. The 256 levels are set with the DAC1R<7:0> bits of the DAC1CON1 register.

The DAC output voltage is determined by Equation 19-1:

EQUATION 19-1: DAC OUTPUT VOLTAGE

$$\frac{IF \ DACxEN = 1}{VOUT} = \left((VSOURCE+ - VSOURCE-) \times \frac{DACxR[7:0]}{2^8} \right) + VSOURCE-$$
$$VSOURCE+ = VDD, \ VREF, \ or \ FVR \ BUFFER \ 2$$
$$VSOURCE- = VSS$$

19.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in **Section 30.0** "**Electrical Specifications**".

19.3 DAC Voltage Reference Output

The DAC voltage can be output to the DAC1OUT1 and DAC1OUT2 pins by setting the respective DAC1OE1 and DAC1OE2 pins of the DAC1CON0 register. Selecting the DAC reference voltage for output on either DAC1OUTx pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DAC1OUTx pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to either DAC1OUTx pin. Figure 19-2 shows an example buffering technique.

19.6 Register Definitions: DAC Control

REGISTER 19-1: DAC1CON0: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0		
DAC1EN	_	DAC10E1	DAC10E2	DAC1F	PSS<1:0>	_	DAC1NSS		
bit 7		•					bit 0		
Legend:									
R = Readable b	it	W = Writable b	oit	U = Unimplen	nented bit, read a	is '0'			
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at					Value at all oth	er Resets			
'1' = Bit is set '0' = Bit is cleared									
bit 7	7 DAC1EN: DAC1 Enable bit 1 = DAC1 is enabled 0 = DAC1 is disabled								
bit 6	Unimplement	Unimplemented: Read as '0'							
bit 5	 DAC1OE1: DAC1 Voltage Output 1 Enable bit 1 = DAC1 voltage level is also an output on the DAC1OUT1 pin 0 = DAC1 voltage level is disconnected from the DAC1OUT1 pin 								
bit 4	 DAC10E2: DAC1 Voltage Output 2 Enable bit 1 = DAC1 voltage level is also an output on the DAC1OUT2 pin 0 = DAC1 voltage level is disconnected from the DAC1OUT2 pin 								
bit 3-2	DAC1PSS<1:0 11 = Reserve 10 = FVR But 01 = VREF+ p 00 = VDD	D>: DAC1 Positi ed, do not use ffer2 output in	ve Source Sel	ect bits					
bit 1	Unimplement	ed: Read as '0'							
bit 0	DAC1NSS: DA 1 = VREF- pin 0 = VSS	AC1 Negative S	ource Select b	its					

REGISTER 19-2: DAC1CON1: VOLTAGE REFERENCE CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			DAC1	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit	:	W = Writable bit	t	U = Unimplem	nented bit, read a	as '0'	

bit 7-0	DAC1R<7:0>: DAC1 Voltage Output Select bits

x = Bit is unknown

'0' = Bit is cleared

TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVR<1:0>		162
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1PSS<1:0>		—	DAC1NSS	186
DAC1CON1		DAC1R<7:0>							

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

u = Bit is unchanged

'1' = Bit is set

-n/n = Value at POR and BOR/Value at all other Resets

24.9 Fractional Frequency Adjust (FFA)

FFA is a method by which PWM resolution can be improved on 50% fixed duty cycle signals. Higher resolution is achieved by altering the PWM period by a single count for calculated intervals. This increased resolution is based upon the PWM frequency averaged over a large number of PWM periods. For example, if the period event time is increased by one

FIGURE 24-22: FFA BLOCK DIAGRAM.

psmc_clk period (TPSMC_CLK) every N events, then the effective resolution of the average event period is TPSMC_CLK/N.

When active, after every period event the FFA hardware adds the PSMCxFFA value with the previously accumulated result. Each time the addition causes an overflow, the period event time is increased by one. Refer to Figure 24-22.

The FFA function is only available when using one of the two Fixed Duty Cycle modes of operation. In fixed duty cycle operation each PWM period is comprised of two period events. That is why the PWM periods in Table 24-3 example calculations are multiplied by two as opposed to the normal period calculations for normal mode operation.

The extra resolution gained by the FFA is based upon the number of bits in the FFA register and the psmc_clk frequency. The parameters of interest are:

- TPWM this is the lower bound of the PWM period that will be adjusted
- TPWM+1 this is the upper bound of the PWM period that will be adjusted. This is used to help determine the step size for each increment of the FFA register
- TRESOLUTION each increment of the FFA register will add this amount of period to average PWM frequency

TABLE 24-3: FRACTIONAL FREQUENCY ADJUST CALCULATIONS

Parameter	Value
FPSMC_CLK	64 MHz
TPSMC_CLK	15.625 ns
PSMCxPR<15:0>	00FFh = 255
ТРѠМ	= (PSMCxPR<15:0>+1)*2*TPSMC_CLK = 256*2*15.625ns = 8 us
FPWM	125 kHz
TPWM+1	= (PSMCxPR<15:0>+2)*2*TPSMC_CLK = 257*2*15.625ns = 8.03125 us
FPWM+1	= 124.513 kHz
TRESOLUTION	= (TPWM+1-TPWM)/2 ^{FFA-Bits} = (8.03125us - 8.0 us)/16 = 0.03125us/16 ~ 1.95 ns
FRESOLUTION	(FPWM+1-FPWM)/2 ^{FFA-Bits} ~ -30.4 Hz

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	
PxASDSIN	—	_	PxASDSC4	PxASDSC3	PxASDSC2	PxASDSC1	—	
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	PxASDSIN: A	uto-shutdown	occurs on PSI	MCxIN pin				
	1 = Auto-shu	utdown will occ	ur when PSM	CxIN pin goes	true			
			ause auto-snu	Itdown				
bit 6-5	Unimplement	ted: Read as '	0'					
bit 4	PxASDSC4: /	Auto-shutdown	occurs on syr	nc_C4OUT out	tput			
	1 = Auto-shu	utdown will occ	ur when sync	_C4OUT outpu	it goes true			
hit 2	D = Sync_C4							
DIL 3		tdown will occ	UCCUIS ON SYI		ipui it goes true			
	0 = sync C3	BOUT will not c	ause auto-shu	_cooon outpu	it goes tide			
bit 2	PxASDSC2:	Auto-shutdown	occurs on syr	nc C2OUT out	tput			
	1 = Auto-shutdown will occur when sync C2OUT output goes true							
	0 = sync_C2OUT will not cause auto-shutdown							
bit 1	PxASDSC1: /	Auto-shutdown	occurs on syr	nc_C1OUT out	tput			
	1 = Auto-shutdown will occur when sync_C1OU output goes true							
	$0 = sync_C1$	OU will not ca	use auto-shute	down				
bit 0	Unimplement	ted: Read as '	0'					

REGISTER 24-17: PSMCxASDS: PSMC AUTO-SHUTDOWN SOURCE REGISTER

SS Omensi											. /
											+ + + + -
- (%8. = 0) - SOX			· · · · · · · · · · · · · · · · · · ·		: : : : :	· · · · · · · · · · · · · · · · · · ·		:		:	к К Алгания К
(36* * 5) (288 * 6)		; ·						;		· · · · · · · · · · · · · · · · · · ·	
Wate to SSPERF Viets		5 5 5	. « ; «	* * * * * *	6 - 5 	· 6 · 5 5	:		, , , , , , , , , , , , , , , , , , , ,	: : :	3 3 3
- 89X0		X 68 7) ,		K 68 9	X 8884 (X 28.8) ,	$\sum_{i=1}^{n}$	X	X	<u>.</u>	2. 1954 - Mariana 1977 - Mariana 1977 - Mariana Mariana 1977 - Mariana 1977
- SEI	• • • •							///////////////////////////////////			* * * *
lingud Sampia	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		. 44 		: 4 			. <i>1</i> 9.			
staat Internasia	• • • •	* * * * *	: 3 : 3 : : .	,	· · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• : : : : : : : : : : : : : : : : : : :	· · · · · · · · · · · · · · · · · · ·	·	
**************************************	·	s • \$ • \$ •	. 4 . • . •	- - - -	: : :	· s · c · · · ·	2 4 5 7 5 7 5	:	· : · : · :		
Verito Collision delection entre											····

FIGURE 26-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

SS SCK (CKP = 0 CKE = 1) SCK (CKP = 1 CKE = 1) Write to SSPBUE										
SDO	; ' '	bit 7	X bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
SDI ———	\		\leftarrow			\sim	\sim		bit 0	
Input Sample	1 1 1		1	1	1	1	1	<u> </u>	1	
SSP1IF Interrupt Flag	, , , , , , ,	1 1 1 1 1		 	1 1 1 1 1	- 	, , , , , ,	1 1 1 1 1	1 1 1 1 1 1	
SSPSR to SSPBUF	1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	! ! !	1 1 1 1		k.
Verte Colasion detector solite	1 1 									•

© 2012-2014 Microchip Technology Inc.

26.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSP1IF, to be set (SSP interrupt, if enabled):

- Start condition detected
- · Stop condition detected
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

26.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See **Section 26.7** "**Baud Rate Generator**" for more detail.

 $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$

 $0 \rightarrow \text{dest} < 7 >$

 $(f<0>) \rightarrow C,$

C, Z

0-

 $(f<7:1>) \rightarrow dest<6:0>,$

The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is

stored back in register 'f'.

register f

Х

LSLF	Logical Left Shift	MOVF	Move f			
Syntax:	[label]LSLF f{.d}	Syntax:	[<i>label</i>] MOVF f,d			
Operands:	$0 \le f \le 127$ $d \in [0.1]$	Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	$(f < 7 >) \rightarrow C$	Operation:	$(f) \rightarrow (dest)$			
	(f<6:0>) → dest<7:1>	Status Affected:	Z			
	$0 \rightarrow \text{dest} < 0 >$	Description:	The contents of register f is			
Status Affected:	C, Z		moved to a destination dependent			
Description: The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is		upon the status of d. If d = 0, destination is W register. If d = 1, the destination is file register f itself. d = 1 is useful to test a file register since status flag Z is affected.				
		Words:	1			
	X register f	Cycles:	1			
		Example:	movf fsr, 0			
LSRF	Logical Right Shift		After Instruction W = value in FSR register			
Syntax:	[<i>label</i>]LSRF f{,d}		Z = 1			

Operands:

Operation:

Status Affected: Description:

TABLE 30-3: POWER-DOWN CURRENTS (IPD)^(1,2,4) (CONTINUED)

PIC16LF1	784/6/7	Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode						
PIC16F17	84/6/7	Low-Po	ower Sle	ep Mode,	VREGPN	= 1		
Param	Device Characteristics	Min	Trent	Max.	Max.	Unito		Conditions
No.	Device Characteristics	WIII.	турт	+85°C	+125°C	Units	Vdd	Note
	Power-down Base Current	(IPD) ⁽²⁾						
D029		—	0.05	2	9	μA	1.8	ADC Current (Note 3),
		_	0.08	3	10	μA	3.0	no conversion in progress
D029		_	0.3	4	12	μA	2.3	ADC Current (Note 3),
		_	0.4	5	13	μA	3.0	no conversion in progress
		—	0.5	7	16	μA	5.0	
D030		—	250	_	_	μA	1.8	ADC Current (Note 3),
		_	280	_	_	μA	3.0	conversion in progress
D030		—	230	—	—	μA	2.3	ADC Current (Note 3, Note 4,
		—	250	—	—	μA	3.0	Note 5), conversion in progress
		—	350	—	—	μA	5.0	
D031		—	250	650	—	μA	3.0	Op Amp (High power)
D031			250	650	—	μA	3.0	Op Amp (High power) (Note 5)
		—	350	850	_	μA	5.0	
D032		—	250	650	_	μA	1.8	Comparator, Normal-Power mode
		—	300	700	—	μA	3.0	
D032		—	280	650	—	μA	2.3	Comparator, Normal-Power mode
		—	300	700	—	μA	3.0	(Note 5)
		_	310	700	_	μA	5.0	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC oscillator source is FRC.

4: 0.1 μF capacitor on VCAP.

5: VREGPM = 0.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-91: ADC 12-bit Mode, Single-Ended DNL, VDD = 3.0V, $TAD = 1 \ \mu$ S.

FIGURE 31-92: ADC 12-bit Mode, Single-Ended INL, VDD = 3.0V, TAD = $1 \mu S$.

FIGURE 31-93: ADC 12-bit Mode, Single-Ended DNL, VDD = 5.5V, TAD = 1 μ S, 25°C.

FIGURE 31-94: ADC 12-bit Mode, Single-Ended DNL, VDD = 5.5V, TAD = 4μ S, 25°C.

FIGURE 31-95: ADC 12-bit Mode, Single-Ended INL, VDD = 5.5V, TAD = 1 μ S, 25°C.

FIGURE 31-96: ADC 12-bit Mode, Single-Ended INL, VDD = 5.5V, TAD = 4 μ S, 25°C.

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensior	MIN	NOM	MAX			
Number of Pins	N	40				
Pitch	е		0.40 BSC			
Overall Height	A	0.45	0.50	0.55		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.127 REF				
Overall Width	E	5.00 BSC				
Exposed Pad Width	E2	3.60 3.70 3.80				
Overall Length	D	5.00 BSC				
Exposed Pad Length	D2	3.60	3.70	3.80		
Contact Width	b	0.15	0.20	0.25		
Contact Length	L	0.30 0.40 0.50				
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-156A Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B