

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1787-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA6/C2OUT ⁽¹⁾ /OSC2/	RA6	TTL/ST	CMOS	General purpose I/O.
CLKOUT/VCAP	C2OUT	—	CMOS	Comparator C2 output.
	OSC2	—	XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKOUT	_	CMOS	Fosc/4 output.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator.
RA7/PSMC1CLK/PSMC2CLK/	RA7	TTL/ST	CMOS	General purpose I/O.
PSMC3CLK/OSC1/CLKIN	PSMC1CLK	ST	—	PSMC1 clock input.
	PSMC2CLK	ST	_	PSMC2 clock input.
	PSMC3CLK	ST	—	PSMC3 clock input.
	OSC1	—	XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKIN	st	—	External clock input (EC mode).
RB0/AN12/C2IN1+/PSMC1IN/	RB0	TTL/ST	CMOS	General purpose I/O.
PSMC2IN/PSMC3IN/CCP1 ⁽¹⁾ /	AN12	AN	_	ADC Channel 12 input.
	C2IN1+	AN		Comparator C2 positive input.
	PSMC1IN	ST		PSMC1 Event Trigger input.
	PSMC2IN	ST		PSMC2 Event Trigger input.
	PSMC3IN	ST		PSMC3 Event Trigger input.
	CCP1	ST	CMOS	Capture/Compare/PWM1.
	INT	ST	_	External interrupt.
RB1/AN10/C1IN3-/C2IN3-/	RB1	TTL/ST	CMOS	General purpose I/O.
C3IN3-/C4IN3-/OPA2OUT	AN10	AN	_	ADC Channel 10 input.
	C1IN3-	AN	—	Comparator C1 negative input.
	C2IN3-	AN	—	Comparator C2 negative input.
	C3IN3-	AN	—	Comparator C3 negative input.
	C4IN3-	AN	—	Comparator C4 negative input.
	OPA2OUT	—	AN	Operational Amplifier 2 output.
RB2/AN8/OPA2IN-/CLKR	RB2	TTL/ST	CMOS	General purpose I/O.
	AN8	AN	—	ADC Channel 8 input.
	OPA2IN-	AN	—	Operational Amplifier 2 inverting input.
	CLKR	—	CMOS	Clock output.
RB3/AN9/C1IN2-/C2IN2-/	RB3	TTL/ST	CMOS	General purpose I/O.
C3IN2-/OPA2IN+/CCP2(1)	AN9	AN	_	ADC Channel 9 input.
	C1IN2-	AN	—	Comparator C1 negative input.
	C2IN2-	AN	—	Comparator C2 negative input.
	C3IN2-	AN	_	Comparator C3 negative input.
	OPA2IN+	AN	—	Operational Amplifier 2 non-inverting input.
	CCP2	ST	CMOS	Capture/Compare/PWM2.
RB4/AN11/C3IN1+	RB4	TTL/ST	CMOS	General purpose I/O.
	AN11	AN		ADC Channel 11 input.
	C3IN1+	AN	—	Comparator C3 positive input.

TABLE 1-2: PIC16(L)F1784/6/7 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain

TTL = TTL compatible inputST= Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C HV = High VoltageXTAL= Crystallevels

Note 1: Pin functions can be assigned to one of two locations via software. See *Register 13-1*.

2: All pins have interrupt-on-change functionality.

3: PIC16(L)F1784/7 only.

4: PIC16(L)F1786 only.

Name	Function	Input Type	Output Type	Description
RC5/PSMC1F/SDO ⁽¹⁾	RC5	TTL/ST	CMOS	General purpose I/O.
	PSMC1F	_	CMOS	PSMC1 output F.
	SDO	_	CMOS	SPI data output.
RC6/PSMC2A/TX ⁽¹⁾ /CK ⁽¹⁾	RC6	TTL/ST	CMOS	General purpose I/O.
	PSMC2A	_	CMOS	PSMC2 output A.
	ТХ	_	CMOS	EUSART asynchronous transmit.
	СК	ST	CMOS	EUSART synchronous clock.
RC7/PSMC2B/RX ⁽¹⁾ /DT ⁽¹⁾ /	RC7	TTL/ST	CMOS	General purpose I/O.
C4OUT ⁽⁴⁾	PSMC2B	_	CMOS	PSMC2 output B.
	RX	ST	_	EUSART asynchronous input.
	DT	ST	CMOS	EUSART synchronous data.
	C4OUT	_	CMOS	Comparator C4 output.
RD0 ⁽³⁾ /OPA3IN+	RD0	TTL/ST	CMOS	General purpose I/O.
	OPA3IN+	AN		Operational Amplifier 3 non-inverting input.
RD1 ⁽³⁾ /AN21/C1IN4-/C2IN4-/	RD1	TTL/ST	CMOS	General purpose I/O.
C3IN4-/C4IN4-/OPA3OUT	AN21	AN		ADC Channel 21 input.
	C1IN4-	AN	_	Comparator C4 negative input.
	C2IN4-	AN	_	Comparator C4 negative input.
	C3IN4-	AN		Comparator C4 negative input.
	C4IN4-	AN		Comparator C4 negative input.
	OPA3OUT	_	AN	Operational Amplifier 3 output.
RD2 ⁽³⁾ /OPA3IN-	RD2	TTL/ST	CMOS	General purpose I/O.
	OPA3IN-	AN	_	Operational Amplifier 3 inverting input.
RD3 ⁽³⁾	RD3	TTL/ST	CMOS	General purpose I/O.
RD4 ⁽³⁾ /PSMC3F	RD4	TTL/ST	CMOS	General purpose I/O.
	PSMC3F	_	CMOS	PSMC3 output F.
RD5 ⁽³⁾ /PSMC3E	RD5	TTL/ST	CMOS	General purpose I/O.
	PSMC3E	_	CMOS	PSMC3 output E.
RD6 ⁽³⁾ /C3OUT/PSMC3D	RD6	TTL/ST	CMOS	General purpose I/O.
	C3OUT	_	CMOS	Comparator C3 output.
	PSMC3D	_	CMOS	PSMC3 output D.
RD7 ⁽³⁾ /C4OUT/PSMC3C	RD6	TTL/ST	CMOS	General purpose I/O.
	C4OUT	_	CMOS	Comparator C4 output.
	PSMC3C	_	CMOS	PSMC3 output C.
RE0 ⁽³⁾ /AN5/CCP3 ⁽¹⁾	RE0	TTL/ST		General purpose input.
	AN5	AN	—	ADC Channel 5 input.
	CCP3	ST	CMOS	Capture/Compare/PWM3.
RE1 ⁽³⁾ /AN6/PSMC3B	RE1	TTL/ST	CMOS	General purpose I/O.
	AN6	AN	—	ADC Channel 6 input.
	PSMC3B	—	CMOS	PSMC3 output B.

TABLE 1-2: PIC16(L)F1784/6/7 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C HV = High Voltage XTAL = Crystal levels

Note 1: Pin functions can be assigned to one of two locations via software. See *Register* 13-1.

2: All pins have interrupt-on-change functionality.

3: PIC16(L)F1784/7 only.

4: PIC16(L)F1786 only.

PIC16(L)F1784/6/7

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-12

								/			
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 2										
10Ch	LATA	PORTA Data L	.atch							xxxx xxxx	uuuu uuuu
10Dh	LATB	PORTB Data L	atch							xxxx xxxx	uuuu uuuu
10Eh	LATC	PORTC Data I	atch							xxxx xxxx	uuuu uuuu
10Fh	LATD ⁽³⁾	PORTD Data I	atch							xxxx xxxx	uuuu uuuu
110h	LATE ⁽³⁾					_	LATE2	LATE1	LATE0	111	111
111h	CM1CON0	C10N	C1OUT	C10E	C1POL	C1ZLF	C1SP	C1HYS	C1SYNC	0000 0100	0000 0100
112h	CM1CON1	C1INTP	C1INTN		C1PCH<2:0>			C1NCH<2:0>		0000 0000	0000 0000
113h	CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2ZLF	C2SP	C2HYS	C2SYNC	0000 0100	0000 0100
114h	CM2CON1	C2INTP	C2INTN		C2PCH<2:0>			C2NCH<2:0>		0000 0000	0000 0000
115h	CMOUT	_	_	_	_	MC4OUT ⁽³⁾	MC3OUT	MC2OUT	MC1OUT	0000	0000
116h	BORCON	SBOREN	BORFS	_	_	_	_	_	BORRDY	1xq	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	R<1:0>	ADFV	R<1:0>	0q00 0000	0q00 0000
118h	DAC1CON0	DAC1EN		DAC10E1	DAC10E2	DAC1PS	SS<1:0>		DAC1NSS	0-00 00-0	0-00 00-0
119h	DAC1CON1				DAC1R	<7:0>				0000 0000	0000 0000
11Ah	CM4CON0	C4ON	C4OUT	C4OE	C4POL	C4ZLF	C4SP	C4HYS	C4SYNC	0000 0100	0000 0100
11Bh	CM4CON1	C4INTP	C4INTN	C4PCI	H<1:0>	—	-	C4NC	H<1:0>	000000	000000
11Ch	APFCON2	—	_	-	—	_	_	—	CCP3SEL	0	0
11Dh	APFCON1	C2OUTSEL	CC1PSEL	SDOSEL	SCKSEL	SDISEL	TXSEL	RXSEL	CCP2SEL	0000 0000	0000 0000
11Eh	CM3CON0	C3ON	C3OUT	C3OE	C3POL	C3ZLF	C3SP	C3HYS	C3SYNC	0000 0100	0000 0100
11Fh	CM3CON1	C3INTP	C3INTN		C3PCH<2:0>	•		C3NCH<2:0>	•	0000 0000	0000 0000
Ban	k 3	•									
18Ch	ANSELA	ANSA7	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	1-11 1111	1-11 1111
18Dh	ANSELB	_	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	-111 1111	-111 1111
18Eh	Unimplemente	d							_	_	_
18Fh	ANSELD ⁽³⁾	_	_	—	_	_	ANSD2	ANSD1	ANSD0	111	111
190h	ANSELE ⁽³⁾	_		_	—	_	ANSE2	ANSE1	ANSE0	111	111
191h	EEADRL	EEPROM / Pro	ogram Memor	y Address Reg	ister Low Byte					0000 0000	0000 0000
192h	EEADRH	(2)	EEPROM / F	Program Memor	ry Address Reg	ister High Byte				1000 0000	1000 0000
193h	EEDATL	EEPROM / Pro	ogram Memor	y Read Data R	egister Low Byt	e				xxxx xxxx	uuuu uuuu
194h	EEDATH	_	_	EEPROM / Pro	ogram Memory	Read Data Re	gister High By	te		xx xxxx	uu uuuu
195h	EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	$000x \ 0000$	0000 q000
196h	EECON2	EEPROM / Pro	ogram Memor	y Control Regis	ster 2					0000 0000	0000 0000
197h	VREGCON ⁽⁴⁾	—	_	—	—	—	—	VREGPM	Reserved	01	01
198h	—	Unimplemente	d							_	_
199h	RCREG	EUSART Rece	eive Data Reg	ister						0000 0000	0000 0000
19Ah	TXREG	EUSART Trans	smit Data Reg	gister						0000 0000	0000 0000
19Bh	SPBRG	BRG<7:0>							0000 0000	0000 0000	
19Ch	SPBRGH				BRG<	15:8>				0000 0000	0000 0000
19Dh	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	0000 0000
19Eh	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Fh	BAUDCON	ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. These registers can be addressed from any bank. Unimplemented, read as '1'. Legend:

1:

2:

PIC16(L)F1784/7 only. 3:

4: PIC16F1784/6/7 only.

Note

4.6 Device ID and Revision ID

The memory location 8006h is where the Device ID and Revision ID are stored. The upper nine bits hold the Device ID. The lower five bits hold the Revision ID. See **Section 12.5 "User ID, Device ID and Configuration Word Access**" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

4.7 Register Definitions: Device and Revision

REGISTER 4-3: DEVID: DEVICE ID REGISTER

Legend:

R = Readable bit '1' = Bit is set

bit 13-5 **DEV<8:0>:** Device ID bits

Device	DEVICEID<13:0> Values						
Device	DEV<8:0>	REV<4:0>					
PIC16F1784	10 1010 010	x xxxx					
PIC16LF1784	10 1010 111	x xxxx					
PIC16F1786	10 1010 011	x xxxx					
PIC16LF1786	10 1011 000	x xxxx					
PIC16F1787	10 1010 100	x xxxx					
PIC16LF1787	10 1011 001	x xxxx					

'0' = Bit is cleared

bit 4-0 R

REV<4:0>: Revision ID bits

These bits are used to identify the revision (see Table under DEV<8:0> above).

5.4 Low-Power Brown-Out Reset (LPBOR)

The Low-Power Brown-Out Reset (LPBOR) is an essential part of the Reset subsystem. Refer to Figure 5-1 to see how the BOR interacts with other modules.

The LPBOR is used to monitor the external VDD pin. When too low of a voltage is detected, the device is held in Reset. When this occurs, a register bit ($\overline{\text{BOR}}$) is changed to indicate that a BOR Reset has occurred. The same bit is set for both the BOR and the LPBOR. Refer to Register 5-2.

5.4.1 ENABLING LPBOR

The LPBOR is controlled by the LPBOR bit of Configuration Words. When the device is erased, the LPBOR module defaults to disabled.

5.4.1.1 LPBOR Module Output

The output of the LPBOR module is a signal indicating whether or not a Reset is to be asserted. This signal is OR'd together with the Reset signal of the BOR module to provide the generic BOR signal, which goes to the PCON register and to the power control block.

5.5 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 5-2).

TABLE 5-2: MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

5.5.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note: A Reset does not drive the MCLR pin low.

5.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 13.11** "**PORTE Registers**" for more information.

5.6 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See **Section 11.0** "**Watchdog Timer (WDT)**" for more information.

5.7 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 5-4 for default conditions after a RESET instruction has occurred.

5.8 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **Section 5.8** "**Stack Overflow/Underflow Reset**" for more information.

5.9 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

5.10 Power-Up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the PWRTE bit of Configuration Words.

5.11 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for oscillator source).
- 3. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator start-up timer will expire. Upon bringing MCLR high, the device will begin execution immediately (see Figure 5-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

R-1/q	R-0/q	R-q/q	R-0/q	R-0/q	R-q/q	R-0/0	R-0/q	
T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared	q = Condition	nal			
bit 7	T1OSCR: Tin <u>If T1OSCEN</u> 1 = Timer1 c 0 = Timer1 c <u>If T1OSCEN</u> 1 = Timer1 c	ner1 Oscillator = 1: oscillator is read oscillator is not = 0: clock source is	Ready bit dy ready always ready					
bit 6	PLLR 4x PLL 1 = 4x PLL i 0 = 4x PLL i	. Ready bit s ready s not ready						
bit 5	OSTS: Oscilla 1 = Running 0 = Running	ator Start-up Ti from the clock from an intern	mer Status bit defined by the al oscillator (F	e FOSC<2:0> OSC<2:0> = 1	bits of the Config 00)	guration Word	S	
bit 4	HFIOFR: High 1 = HFINTOS 0 = HFINTOS	h-Frequency In SC is ready SC is not ready	ternal Oscillato	or Ready bit				
bit 3	 HFIOFL: High-Frequency Internal Oscillator Locked bit 1 = HFINTOSC is at least 2% accurate 0 = HFINTOSC is not 2% accurate 							
bit 2	t 2 MFIOFR: Medium-Frequency Internal Oscillator Ready bit 1 = MFINTOSC is ready 0 = MFINTOSC is not ready							
bit 1 LFIOFR: Low-Frequency Internal Oscillator Ready bit 1 = LFINTOSC is ready 0 = LFINTOSC is not ready								
bit 0	 HFIOFS: High-Frequency Internal Oscillator Stable bit 1 = HFINTOSC is at least 0.5% accurate 0 = HFINTOSC is not 0.5% accurate 							

REGISTER 6-2: OSCSTAT: OSCILLATOR STATUS REGISTER

8.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 or PIE2 registers)

The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 8.5 "Automatic Context Saving".")
- PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

Note 1:	Individual	inte	rrupt	flag	bits	are are	set,
	regardless	of	the	state	of	any	other
	enable bits						

2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

8.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 8-2 and Figure 8.3 for more details.

REGISTER 13-36: LATE: PORTE DATA LATCH REGISTER⁽²⁾

U-0	U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u
_	_	_	_	_	LATE2	LATE1	LATE0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 LATE<2:0>: PORTE Output Latch Value bits⁽²⁾

- **Note 1:** Writes to PORTE are actually written to corresponding LATE register. Reads from PORTE register is return of actual I/O pin values.
 - 2: LATE<2:0> are available on PIC16(L)F1784/7 only.

REGISTER 13-37: ANSELE: PORTE ANALOG SELECT REGISTER⁽²⁾

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	—	—	ANSE2	ANSE1	ANSE0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 2-0 **ANSE<2:0>**: Analog Select between Analog or Digital Function on pins RE<2:0>, respectively
 - 0 = Digital I/O. Pin is assigned to port or digital special function.
 - 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.
 - 2: ANSELE<2:0> are available on PIC16(L)F1784/7 only.

PIC16(L)F1784/6/7

|--|

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	_	ADFVR<1:0>		161

Legend: Shaded cells are unused by the temperature indicator module.

24.0 PROGRAMMABLE SWITCH MODE CONTROL (PSMC)

The Programmable Switch Mode Controller (PSMC) is a high-performance Pulse Width Modulator (PWM) that can be configured to operate in one of several modes to support single or multiple phase applications.

A simplified block diagram indicating the relationship between inputs, outputs, and controls is shown in Figure 24-1.

This section begins with the fundamental aspects of the PSMC operation. A more detailed description of operation for each mode is located later in **Section 24.3** "**Modes of Operation**"

Modes of operation include:

- Single-phase
- · Complementary Single-phase
- Push-Pull
- Push-Pull 4-Bridge
- · Complementary Push-Pull 4-Bridge
- · Pulse Skipping
- Variable Frequency Fixed Duty Cycle
- Complementary Variable Frequency Fixed Duty
 Cycle
- · ECCP Compatible modes
 - Full-Bridge
 - Full-Bridge Reverse
- · 3-Phase 6-Step PWM

24.2.6 CLOCK PRESCALER

There are four prescaler choices available to be applied to the selected clock:

- Divide by 1
- Divide by 2
- Divide by 4
- Divide by 8

FIGURE 24-3: TIME BASE WAVEFORM GENERATION

The clock source is selected with the PxCPRE<1:0> bits of the PSMCx Clock Control (PSMCxCLK) register

The prescaler output is psmc_clk, which is the clock

used by all of the other portions of the PSMC module.

(Register 24-6).

REGISTER 24-26: PSMCxDBR: PSMC RISING EDGE DEAD-BAND TIME REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PSMCxI	DBR<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0

—

PSMCxDBR<7:0>: Rising Edge Dead-Band Time bits

= Unsigned number of PSMCx psmc_clk clock periods in rising edge dead band

REGISTER 24-27: PSMCxDBF: PSMC FALLING EDGE DEAD-BAND TIME REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PSMCxD)BF<7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSMCxDBF<7:0>:** Falling Edge Dead-Band Time bits

Unsigned number of PSMCx psmc_clk clock periods in falling edge dead band

REGISTER 24-28: PSMCxFFA: PSMC FRACTIONAL FREQUENCY ADJUST REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		PSMCxF	FA<3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

=

bit 3-0 **PSMCxFFA<3:0>:** Fractional Frequency Adjustment bits

 Unsigned number of fractional PSMCx psmc_clk clock periods to add to each period event time. The fractional time period = 1/(16*psmc_clk)

TABLE 24-5: SUMMARY OF REGISTERS ASSOCIATED WITH PSMC

Name	Bit7	Bit6	Bit5	Bit4	Blt3	Bit2	Bit1	Bit0	Register on Page	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93	
ODCONC	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	143	
PIE4	_	PSMC3TIE	PSMC2TIE	PSMC1TIE	—	PSMC3SIE	PSMC2SIE	PSMC1SIE	97	
PIR4	_	PSMC3TIF	PSMC2TIF	PSMC1TIF	_	PSMC3SIF	PSMC2SIF	PSMC1SIF	101	
PSMCxASDC	PxASE	PxASDEN	PxARSEN	_	_	_	_	PxASDOV	257	
PSMCxASDL	_	_	PxASDLF ⁽¹⁾	PxASDLE ⁽¹⁾	PxASDLD ⁽¹⁾	PxASDLC ⁽¹⁾	PxASDLB	PxASDLA	258	
PSMCxASDS	PxASDSIN	_	_	PxASDSC4	PxASDSC3	PxASDSC2	PxASDSC1	—	259	
PSMCxBLKF				PSMCxB	LKF<7:0>				265	
PSMCxBLKR				PSMCxBI	LKR<7:0>				265	
PSMCxBLNK	_	_	PxFEBM1	PxFEBM0	_		PxREBM1	PxREBM0	252	
PSMCxCLK	—	—	PxCPR	E<1:0>	—	—	PxCSR	C<1:0>	251	
PSMCxCON	PSMCxEN	PSMCxLD	PxDBFE	PxDBRE		PxMOE)E<3:0>		247	
PSMCxDBF				PSMCxD)BF<7:0>				264	
PSMCxDBR				PSMCxD	BR<7:0>				264	
PSMCxDCH				PSMCxD)C<15:8>				262	
PSMCxDCL				PSMCxI	DC<7:0>				262	
PSMCxDCS	PxDCSIN	—	—	PxDCSC4	PxDCSC3	PxDCSC2	PxDCSC1	PxDCST	255	
PSMCxFEBS	PxFEBSIN	_	_	PxFEBSC4	PxFEBSC3	PxFEBSC2	PxFEBSC1	—	253	
PSMCxFFA	_	_	_	_		PSMCxF	FA<3:0>		264	
PSMCxINT	PxTOVIE	PxTPHIE	PxTDCIE	PxTPRIE	PxTOVIF	PxTPHIF	PxTDCIF	PxTPRIF	269	
PSMCxMDL	PxMDLEN	PxMDLPOL	PxMDLBIT	—		PxMSR	C<3:0>		248	
PSMCxOEN	_	_	PxOEF ⁽¹⁾	PxOEE ⁽¹⁾	PxOED ⁽¹⁾	PxOEC ⁽¹⁾	PxOEB	PxOEA	251	
PSMCxPHH				PSMCxF	PH<15:8>				261	
PSMCxPHL				PSMCxI	PH<7:0>				261	
PSMCxPHS	PxPHSIN	_	_	PxPHSC4	PxPHSC3	PxPHSC2	PxPHSC1	PxPHST	254	
PSMCxPOL	_	PxPOLIN	PxPOLF ⁽¹⁾	PxPOLE ⁽¹⁾	PxPOLD ⁽¹⁾ PxPOLC ⁽¹⁾ PxPOLB PxPOLA			PxPOLA	252	
PSMCxPRH	PSMCxPR<15:8>								263	
PSMCxPRL	PSMCxPR<7:0>								263	
PSMCxPRS	PxPRSIN	_	_	PxPRSC4	PxPRSC3	PxPRSC2	PxPRSC1	PxPRST	256	
PSMCxREBS	PxREBSIN	—	—	PxREBSC4	PxREBSC3	PxREBSC2	PxREBSC1	—	253	
PSMCxSTR0	—	—	PxSTRF ⁽¹⁾	PxSTRE ⁽¹⁾	PxSTRD ⁽¹⁾	PxSTRC ⁽¹⁾	PxSTRB	PxSTRA	266	
PSMCxSTR1	PxSSYNC	—	—	—	PxLSMEN PxHSMEN					
PSMCxSYNC	; PxPOFST PxPRPOL PxDCPOL PxSYNC<1:0>								249	
PSMCxTMRH				PSMCxT	MR<15:8>				260	
PSMCxTMRL				PSMCxT	MR<7:0>				260	
SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLCR2	SRC1	SLRC0	143	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PSMC module.

Note 1: Unimplemented in PSMC2.

26.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I^2C protocol, defined as address 0x00. When the GCEN bit of the SSPCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave read SSPBUF software can and respond. Figure 26-23 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the 8th falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

26.5.9 SSP MASK REGISTER

An SSP Mask (SSPMSK) register (Register 26-5) is available in I²C Slave mode as a mask for the value held in the SSPSR register during an address comparison operation. A zero ('0') bit in the SSPMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
APFCON1	C2OUTSEL	CCP1SEL	SDOSEL	SCKSEL	SDISEL	TXSEL	RXSEL	CCP2SEL	127
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	93
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	94
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	C4IE	C3IE	CCP2IE	95
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	C4IF	C3IF	CCP2IF	99
SSP1ADD				ADD<	:7:0>				334
SSP1BUF	Synchronous Serial Port Receive Buffer/Transmit Register							285*	
SSP1CON1	WCOL	SSPOV	SSPEN	CKP	SSPM<3:0>				331
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	332
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	331
SSP1MSK	K MSK<7:0>								334
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	329
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISA0	142

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the MSSP module in I²C[™] mode. * Page provides register information.

Note 1: PIC16(L)F1784/7 only.

30.4 Thermal Considerations

Param No.	Sym.	Characteristic	Тур.	Units	Conditions
TH01	θJA	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package
			80	°C/W	28-pin SOIC package
			90	°C/W	28-pin SSOP package
			27.5	°C/W	28-pin QFN 6x6mm package
			47.2	°C/W	40-pin DIP package
			41	°C/W	40-pin UQFN 5x5
			46	°C/W	44-pin TQFP package
			24.4	°C/W	44-pin QFN 8x8mm package
TH02	θJC	Thermal Resistance Junction to Case	31.4	°C/W	28-pin SPDIP package
			24	°C/W	28-pin SOIC package
			24	°C/W	28-pin SSOP package
			24	°C/W	28-pin QFN 6x6mm package
			24.7	°C/W	40-pin DIP package
			5.5	°C/W	40-pin UQFN 5x5
			14.5	°C/W	44-pin TQFP package
			20	°C/W	44-pin QFN 8x8mm package
TH03	Тјмах	Maximum Junction Temperature	150	°C	
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾
TH06	Pı/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$
TH07	Pder	Derated Power	_	W	Pder = PDmax (Τj - Τa)/θja ⁽²⁾

Standard Operating Conditions (unless otherwise stated)

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature

3: T_J = Junction Temperature

TABLE 30-17: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Operating Conditions: VDD = 3V, Temperature = 25°C (unless otherwise stated).								
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
DAC01*	CLSB	Step Size	_	VDD/256		V		
DAC02*	CACC	Absolute Accuracy	—	—	± 1.5	LSb		
DAC03*	CR	Unit Resistor Value (R)	_	600	_	Ω		
DAC04*	CST	Settling Time ⁽¹⁾	_	—	10	μS		

* These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<7:0> transitions from '0x00' to '0xFF'.

FIGURE 30-14: EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 30-18: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Symbol	Characteristic	Characteristic			Units	Conditions		
US120	ТскН2ртV	SYNC XMIT (Master and Slave)	3.0-5.5V	—	80	ns			
		Clock high to data-out valid	1.8-5.5V	_	100	ns			
US121	US121 TCKRF	Clock out rise time and fall time (Master mode)	3.0-5.5V	—	45	ns			
			1.8-5.5V	—	50	ns			
US122	TDTRF	Data-out rise time and fall time	3.0-5.5V		45	ns			
			1.8-5.5V	_	50	ns			

FIGURE 30-15: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 30-21: I²C[™] BUS START/STOP BITS REQUIREMENTS

orandard Operating Conditions (unless otherwise stated)									
Param No.	Symbol	Characteristic		Min.	Тур	Max.	Units	Conditions	
SP90*	TSU:STA	Start condition	100 kHz mode	4700	_	_	ns	Only relevant for Repeated	
		Setup time	400 kHz mode	600	_			Start condition	
SP91*	THD:STA	Start condition	100 kHz mode	4000		_	ns	After this period, the first	
		Hold time	400 kHz mode	600		—		clock pulse is generated	
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700	—	_	ns		
		Setup time	400 kHz mode	600		_			
SP93	THD:STO	Stop condition	100 kHz mode	4000		—	ns		
		Hold time	400 kHz mode	600	—	_			

Standard Operating Conditions (unless otherwise stated)

* These parameters are characterized but not tested.

FIGURE 30-21: I²C[™] BUS DATA TIMING

PIC16(L)F1784/6/7

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-61: Brown-Out Reset Voltage, Low Trip Point (BORV = 1), PIC16LF1784/6/7 Only.

FIGURE 31-63: Brown-Out Reset Voltage, Low Trip Point (BORV = 1), PIC16F1784/6/7 Only.

FIGURE 31-65: Brown-Out Reset Voltage, High Trip Point (BORV = 0).

FIGURE 31-62: Brown-Out Reset Hysteresis, Low Trip Point (BORV = 1), PIC16LF1784/6/7 Only.

FIGURE 31-66: Brown-Out Reset Hysteresis, High Trip Point (BORV = 0).

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103C Sheet 1 of 2