

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	LVD, POR, PWM
Number of I/O	13
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68hc908qy4mdte

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

3.6	Input/Output Signals	45
3.7	Input/Output Registers	45
	ADC Status and Control Register	
3.7.2	ADC Data Register.	47
3.7.3	ADC Input Clock Register	47

Chapter 4 Auto Wakeup Module (AWU)

		•	,	
4.1	Introduction			 49
4.2	Features			 49
4.3	Functional Description			 49
4.4	Wait Mode			 50
4.5	Stop Mode			 50
4.6	Input/Output Registers			 51
4.6.1	1 Port A I/O Register			 51
4.6.2	2 Keyboard Status and Control Register			 51
4.6.3	3 Keyboard Interrupt Enable Register			 52

Chapter 5 Configuration Register (CONFIG)

5.1	Introduction	53
5.2	Functional Description	53

Chapter 6 Computer Operating Properly (COP)

6.1	Introduction	57
6.2	Functional Description	57
6.3	I/O Signals	58
6.3.1	BUSCLKX4	<mark>58</mark>
6.3.2	STOP Instruction	58
6.3.3	COPCTL Write	58
6.3.4	Power-On Reset.	58
6.3.5	Internal Reset	58
6.3.6	COPD (COP Disable).	
6.3.7	COPRS (COP Rate Select)	59
6.4	COP Control Register	59
6.5	Interrupts	59
6.6	Monitor Mode	59
6.7	Low-Power Modes	59
6.7.1	Wait Mode	59
6.7.2	Stop Mode	59
6.8	COP Module During Break Mode	59

1.6 Pin Function Priority

Table 1-3 is meant to resolve the priority if multiple functions are enabled on a single pin.

NOTE

Upon reset all pins come up as input ports regardless of the priority table.

Pin Name	Highest-to-Lowest Priority Sequence
PTA0	$AD0 \rightarrow TCH0 \rightarrow KBI0 \rightarrow PTA0$
PTA1	$AD1 \rightarrow TCH1 \rightarrow KBI1 \rightarrow PTA1$
PTA2	$\overline{\text{IRQ}} \rightarrow \text{KBI2} \rightarrow \text{TCLK} \rightarrow \text{PTA2}$
PTA3	$\overline{\text{RST}} \rightarrow \text{KBI3} \rightarrow \text{PTA3}$
PTA4	$OSC2 \rightarrow AD2 \rightarrow KBI4 \rightarrow PTA4$
PTA5	$OSC1 \rightarrow AD3 \rightarrow KBI5 \rightarrow PTA5$

Table 1-3. Function Priority in Shared Pins

Input/Output (I/O) Section

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
	FLASH Control Register	Read:	0	0	0	0	HVEN	MASS	ERASE	PGM
\$FE08	(FLCR)	Write:						MAGO	LINOL	
	See page 34.	Reset:	0	0	0	0	0	0	0	0
\$FE09	Break Address High Register (BRKH)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 136.	Reset:	0	0	0	0	0	0	0	0
\$FE0A	Break Address low Register (BRKL)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 136.	Reset:	0	0	0	0	0	0	0	0
	Break Status and Control	Read:	BRKE	BRKA	0	0	0	0	0	0
\$FE0B	Register (BRKSCR)	Write:	DAKE	DHNA						
	See page 136.	Reset:	0	0	0	0	0	0	0	0
	LVI Status Register	Read:	LVIOUT	0	0	0	0	0	0	R
\$FE0C	(LVISR)	Write:								
	See page 87.	Reset:	0	0	0	0	0	0	0	0
\$FE0D ↓ \$FE0F	Reserved for FLASH Test		R	R	R	R	R	R	R	R
		Dood:						L.		
\$FFBE	FLASH Block Protect Register (FLBPR)	Read: Write:	BPR7	BPR6	BPR5	BPR4	BPR3	BPR2	BPR1	BPR0
	See page 39.	Reset:				Unaffecte	d by reset			
\$FFBF	Reserved		R	R	R	R	R	R	R	R

\$FFC0	Internal Oscillator Trim (Factory Programmed,	Read: Write:	TRIM7	TRIM6	TRIM5	TRIM4	TRIM3	TRIM2	TRIM1	TRIM0
	VDD = 5.0 V)	Reset:	Unaffected by reset							
\$FFC1	Internal Oscillator Trim (Factory Programmed,	Read: Write:	TRIM7	TRIM6	TRIM5	TRIM4	TRIM3	TRIM2	TRIM1	TRIM0
	VDD = 3.0 V)	Reset:	Unaffected by reset							

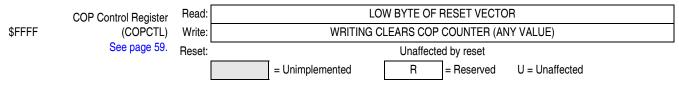


Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 5)

Vector Priority	Vector	Address	Vector
Lowest	IF15	\$FFDE	ADC conversion complete vector (high)
▲	1613	\$FFDF	ADC conversion complete vector (low)
	IF14	\$FFE0	Keyboard vector (high)
	1614	\$FFE1	Keyboard vector (low)
	IF13 ↓ IF6	_	Not used
	IF5	\$FFF2	TIM overflow vector (high)
	IFD	\$FFF3	TIM overflow vector (low)
	IF4	\$FFF4	TIM Channel 1 vector (high)
		\$FFF5	TIM Channel 1 vector (low)
	IF3	\$FFF6	TIM Channel 0 vector (high)
	IFS	\$FFF7	TIM Channel 0 vector (low)
	IF2	—	Not used
	IF1	\$FFFA	IRQ vector (high)
		\$FFFB	IRQ vector (low)
		\$FFFC	SWI vector (high)
	—	\$FFFD	SWI vector (low)
♥		\$FFFE	Reset vector (high)
Highest		\$FFFF	Reset vector (low)

 Table 2-1. Vector Addresses

2.5 Random-Access Memory (RAM)

Addresses \$0080–\$00FF are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space.

NOTE

For correct operation, the stack pointer must point only to RAM locations.

Before processing an interrupt, the central processor unit (CPU) uses five bytes of the stack to save the contents of the CPU registers.

NOTE

For M6805, M146805, and M68HC05 compatibility, the H register is not stacked.

During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls.

NOTE

Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation.

Memory

3.5.2 Stop Mode

The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the analog circuitry before using ADC data after exiting stop mode.

3.6 Input/Output Signals

The ADC module has four channels that are shared with I/O port A.

ADC voltage in (ADCVIN) is the input voltage signal from one of the four ADC channels to the ADC module.

3.7 Input/Output Registers

These I/O registers control and monitor ADC operation:

- ADC status and control register (ADSCR)
- ADC data register (ADR)
- ADC clock register (ADICLK)

3.7.1 ADC Status and Control Register

The following paragraphs describe the function of the ADC status and control register (ADSCR). When a conversion is in process and the ADSCR is written, the current conversion data should be discarded to prevent an incorrect reading.

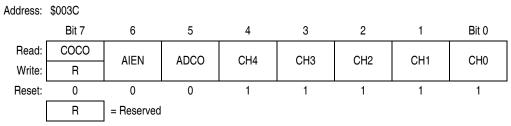


Figure 3-3. ADC Status and Control Register (ADSCR)

COCO — Conversions Complete Bit

In non-interrupt mode (AIEN = 0), COCO is a read-only bit that is set at the end of each conversion. COCO will stay set until cleared by a read of the ADC data register. Reset clears this bit.

In interrupt mode (AIEN = 1), COCO is a read-only bit that is not set at the end of a conversion. It always reads as a 0.

1 = Conversion completed (AIEN = 0)

0 = Conversion not completed (AIEN = 0) or CPU interrupt enabled (AIEN = 1)

NOTE

The write function of the COCO bit is reserved. When writing to the ADSCR register, always have a 0 in the COCO bit position.

Chapter 7 Central Processor Unit (CPU)

7.1 Introduction

The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The *CPU08 Reference Manual* (document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture.

7.2 Features

Features of the CPU include:

- Object code fully upward-compatible with M68HC05 Family
- 16-bit stack pointer with stack manipulation instructions
- 16-bit index register with x-register manipulation instructions
- 8-MHz CPU internal bus frequency
- 64-Kbyte program/data memory space
- 16 addressing modes
- Memory-to-memory data moves without using accumulator
- Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions
- Enhanced binary-coded decimal (BCD) data handling
- Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes
- Low-power stop and wait modes

7.3 CPU Registers

Figure 7-1 shows the five CPU registers. CPU registers are not part of the memory map.

Z — Zero Flag

The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of \$00.

- 1 = Zero result
- 0 = Non-zero result

C — Carry/Borrow Flag

The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag.

1 = Carry out of bit 7

0 = No carry out of bit 7

7.4 Arithmetic/Logic Unit (ALU)

The ALU performs the arithmetic and logic operations defined by the instruction set.

Refer to the *CPU08 Reference Manual* (document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU.

7.5 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power-consumption standby modes.

7.5.1 Wait Mode

The WAIT instruction:

- Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.
- Disables the CPU clock

7.5.2 Stop Mode

The STOP instruction:

- Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.
- Disables the CPU clock

After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.

7.6 CPU During Break Interrupts

If a break module is present on the MCU, the CPU starts a break interrupt by:

- Loading the instruction register with the SWI instruction
- Loading the program counter with \$FFFC:\$FFFD or with \$FEFC:\$FEFD in monitor mode

The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.

A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted.

Input/Output Ports (PORTS)

12.2.1 Port A Data Register

The port A data register (PTA) contains a data latch for each of the six port A pins.

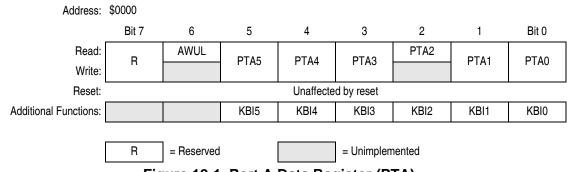


Figure 12-1. Port A Data Register (PTA)

PTA[5:0] — Port A Data Bits

These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data.

AWUL — Auto Wakeup Latch Data Bit

This is a read-only bit which has the value of the auto wakeup interrupt request latch. The wakeup request signal is generated internally (see Chapter 4 Auto Wakeup Module (AWU)). There is no PTA6 port nor any of the associated bits such as PTA6 data register, pullup enable or direction.

KBI[5:0] — Port A Keyboard Interrupts

The keyboard interrupt enable bits, KBIE5–KBIE0, in the keyboard interrupt control enable register (KBIER) enable the port A pins as external interrupt pins (see Chapter 9 Keyboard Interrupt Module (KBI)).

12.2.2 Data Direction Register A

Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a 0 disables the output buffer.

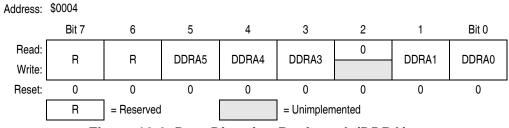


Figure 12-2. Data Direction Register A (DDRA)

DDRA[5:0] — Data Direction Register A Bits

These read/write bits control port A data direction. Reset clears DDRA[5:0], configuring all port A pins as inputs.

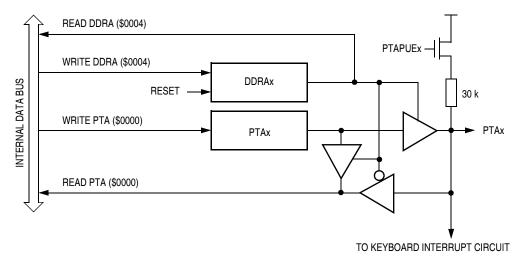
1 = Corresponding port A pin configured as output

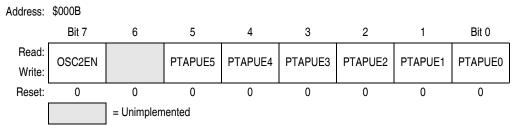
0 = Corresponding port A pin configured as input

NOTE

Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1.

Figure 12-3 shows the port A I/O logic.




Figure 12-3. Port A I/O Circuit

NOTE Figure 12-3 does not apply to PTA2

When DDRAx is a 1, reading address \$0000 reads the PTAx data latch. When DDRAx is a 0, reading address \$0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit.

12.2.3 Port A Input Pullup Enable Register

The port A input pullup enable register (PTAPUE) contains a software configurable pullup device for each if the six port A pins. Each bit is individually configurable and requires the corresponding data direction register, DDRAx, to be configured as input. Each pullup device is automatically and dynamically disabled when its corresponding DDRAx bit is configured as output.

OSC2EN — Enable PTA4 on OSC2 Pin

This read/write bit configures the OSC2 pin function when internal oscillator or RC oscillator option is selected. This bit has no effect for the XTAL or external oscillator options.

1 = OSC2 pin outputs the internal or RC oscillator clock (BUSCLKX4)

0 = OSC2 pin configured for PTA4 I/O, having all the interrupt and pullup functions

Chapter 13 System Integration Module (SIM)

13.1 Introduction

This section describes the system integration module (SIM), which supports up to 24 external and/or internal interrupts. Together with the central processor unit (CPU), the SIM controls all microcontroller unit (MCU) activities. A block diagram of the SIM is shown in Figure 13-1. The SIM is a system state controller that coordinates CPU and exception timing.

The SIM is responsible for:

- Bus clock generation and control for CPU and peripherals
 - Stop/wait/reset/break entry and recovery
 - Internal clock control
- Master reset control, including power-on reset (POR) and computer operating properly (COP) timeout
- Interrupt control:
 - Acknowledge timing
 - Arbitration control timing
 - Vector address generation
- CPU enable/disable timing

Signal Name	Description
BUSCLKX4	Buffered clock from the internal, RC or XTAL oscillator circuit.
BUSCLKX2	The BUSCLKX4 frequency divided by two. This signal is again divided by two in the SIM to generate the internal bus clocks (bus clock = BUSCLKX4 \div 4).
Address bus	Internal address bus
Data bus	Internal data bus
PORRST	Signal from the power-on reset module to the SIM
IRST	Internal reset signal
R/W	Read/write signal

Table 13-1. Signal Name Conventions

System Integration Module (SIM)

13.6.3 Reset

All reset sources always have equal and highest priority and cannot be arbitrated.

13.6.4 Break Interrupts

The break module can stop normal program flow at a software programmable break point by asserting its break interrupt output. (See Chapter 15 Development Support.) The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how each module is affected by the break state.

13.6.5 Status Flag Protection in Break Mode

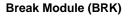
The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the break flag control register (BFCR).

Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information.

Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a two-step clearing mechanism — for example, a read of one register followed by the read or write of another — are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal.

13.7 Low-Power Modes

Executing the WAIT or STOP instruction puts the MCU in a low power- consumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described below. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur.


13.7.1 Wait Mode

In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 13-14 shows the timing for wait mode entry.

ADDRESS BUS	WAIT ADDR	WAIT AD	DR + 1	SAME	X	SAME	X
DATA BUS	PREVIOUS	S DATA			SAME	SAME	
R/W			у				

NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction.

Figure 13-14. Wait Mode Entry Timing

15.2.2.3 Break Auxiliary Register

The break auxiliary register (BRKAR) contains a bit that enables software to disable the COP while the MCU is in a state of break interrupt with monitor mode.

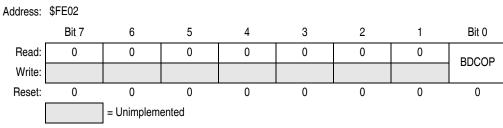


Figure 15-6. Break Auxiliary Register (BRKAR)

BDCOP — Break Disable COP Bit

This read/write bit disables the COP during a break interrupt. Reset clears the BDCOP bit.

- 1 = COP disabled during break interrupt
- 0 = COP enabled during break interrupt

15.2.2.4 Break Status Register

The break status register (BSR) contains a flag to indicate that a break caused an exit from wait mode. This register is only used in emulation mode.

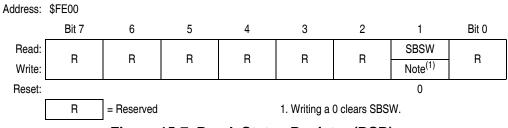


Figure 15-7. Break Status Register (BSR)

SBSW — SIM Break Stop/Wait

SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it.

1 = Wait mode was exited by break interrupt

0 = Wait mode was not exited by break interrupt

Electrical Specifications

16.3 Functional Operating Range

Characteristic	Symbol	Value	Unit	Temp. Code
Operating temperature range	T _A	-40 to +125 -40 to +105 -40 to +85	۰C	M V C
Operating voltage range	V _{DD}	2.7 to 5.5	V	_

16.4 Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance 8-pin PDIP 8-pin SOIC 8-pin DFN 16-pin PDIP 16-pin SOIC 16-pin TSSOP	$\begin{array}{c c} & & & & & & & \\ & & & & & & & \\ \theta_{JA} & & & & & & \\ & & & & & & & & \\ \theta_{JA} & & & & & & & \\ & & & & & & & & & \\ \theta_{JA} & & & & & & & & \\ & & & & & & & & & \\ \theta_{JA} & & & & & & & & & \\ \theta_{JA} & & & & & & & & & \\ \theta_{JA} & & & & & & & & & & & & \\ \theta_{JA} & & & & & & & & & & & \\ \theta_{JA} & & & & & & & & & & & \\ \theta_{JA} & & & & & & & & & & & & & & & \\ \theta_{JA} & & & & & & & & & & & & & \\ \theta_{JA} & & & & & & & & & & & & & & & & & & \\ \theta_{JA} & & & & & & & & & & & & & & & & & & &$		•C/W
I/O pin power dissipation	P _{I/O}	User determined	W
Power dissipation ⁽¹⁾	wer dissipation ⁽¹⁾		W
Constant ⁽²⁾	К	K $P_{D} x (T_{A} + 273 \bullet C) + P_{D}^{2} x \theta_{JA}$	
Average junction temperature	TJ	$T_A + (P_D \times \theta_{JA})$	•C
Maximum junction temperature	T _{JM}	150	•C

1. Power dissipation is a function of temperature.

2. K constant unique to the device. K can be determined for a known T_A and measured P_D . With this value of K, P_D and T_J can be determined for any value of T_A .

Electrical Specifications

16.12 3-V Oscillator Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Internal oscillator frequency ⁽¹⁾	f INTCLK	—	12.8	—	MHz
Deviation from trimmed Internal oscillator $^{(2)(3)}$ 12.8 MHz, fixed voltage, fixed temp 12.8 MHz, V _{DD} ± 10%, 0 to 70°C 12.8 MHz, V _{DD} ± 10%, -40 to 125°C	ACCINT		± 0.4 ± 2 —	 	%
Crystal frequency, XTALCLK ⁽¹⁾	foscxclk	1	—	16	MHz
External RC oscillator frequency, RCCLK (1)	f _{RCCLK}	2	—	10	MHz
External clock reference frequency ^{(1) (4)}	foscxclk	dc	—	16	MHz
Crystal load capacitance ⁽⁵⁾	CL	—	20	—	pF
Crystal fixed capacitance ⁽³⁾	C ₁	—	2 x C _L	—	—
Crystal tuning capacitance ⁽³⁾	C ₂	—	2 x C _L	—	—
Feedback bias resistor	R _B	0.5	1	10	MΩ
RC oscillator external resistor	R _{EXT}	S	See Figure 16-	8	—
Crystal series damping resistor $f_{OSCXCLK} = 1 MHz$ $f_{OSCXCLK} = 4 MHz$ $f_{OSCXCLK} = > 8 MHz$	R _S		10 5 0		kΩ

Bus frequency, f_{OP}, is oscillator frequency divided by 4.
 Deviation values assumes trimming @25•C and midpoint of voltage range.
 Values are based on characterization results, not tested in production.

4. No more than 10% duty cycle deviation from 50%

5. Consult crystal vendor data sheet

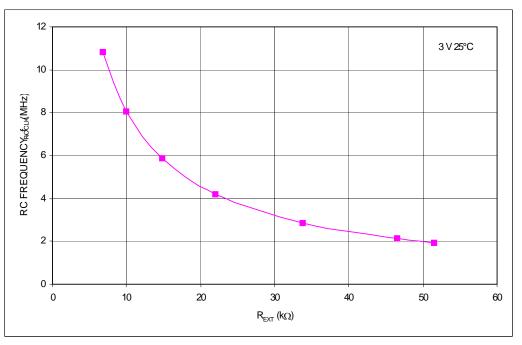
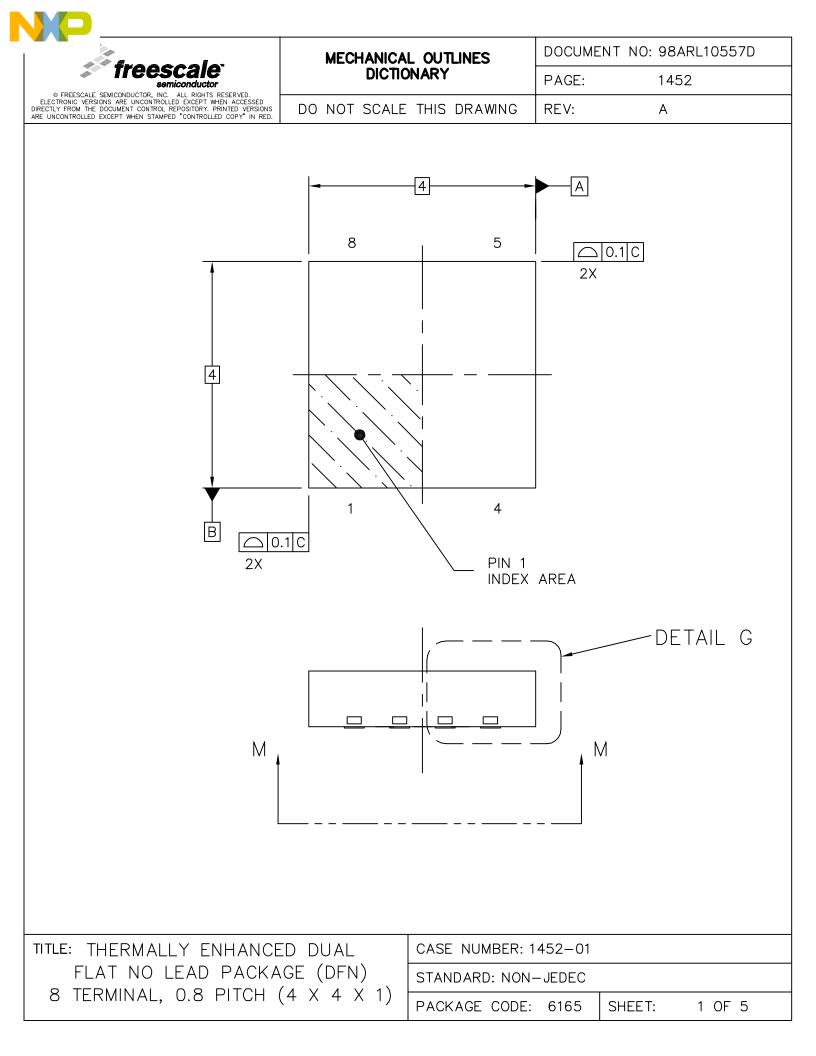
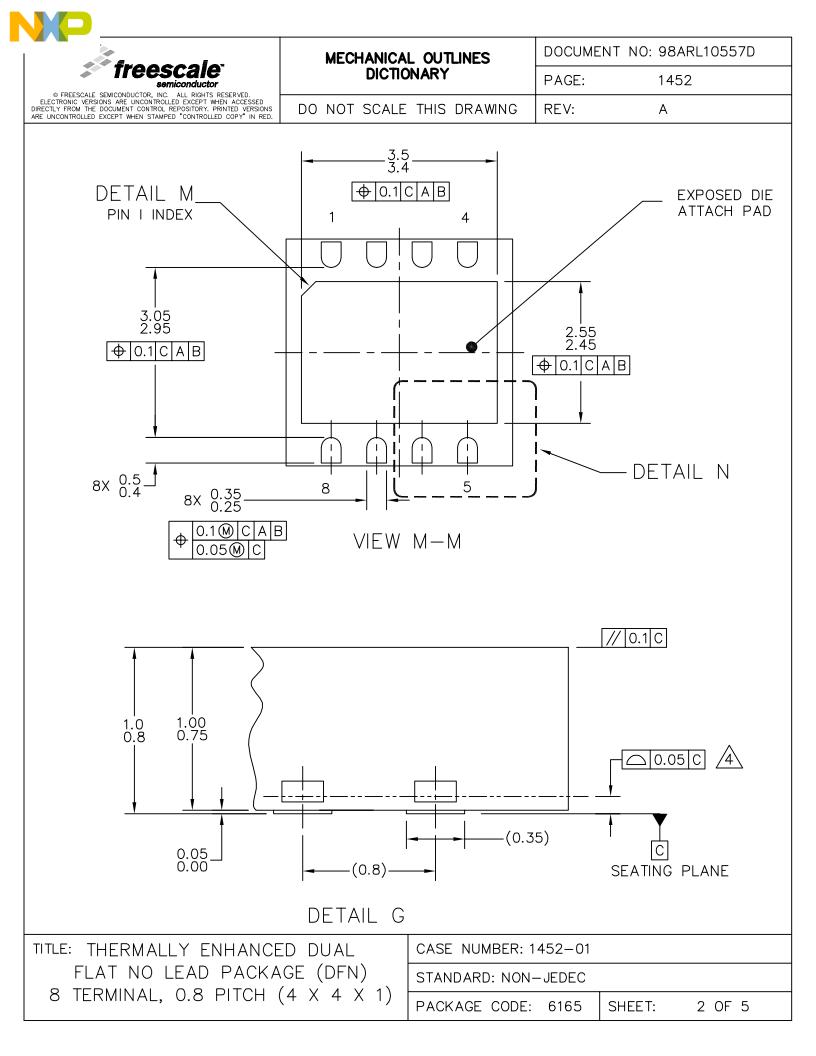
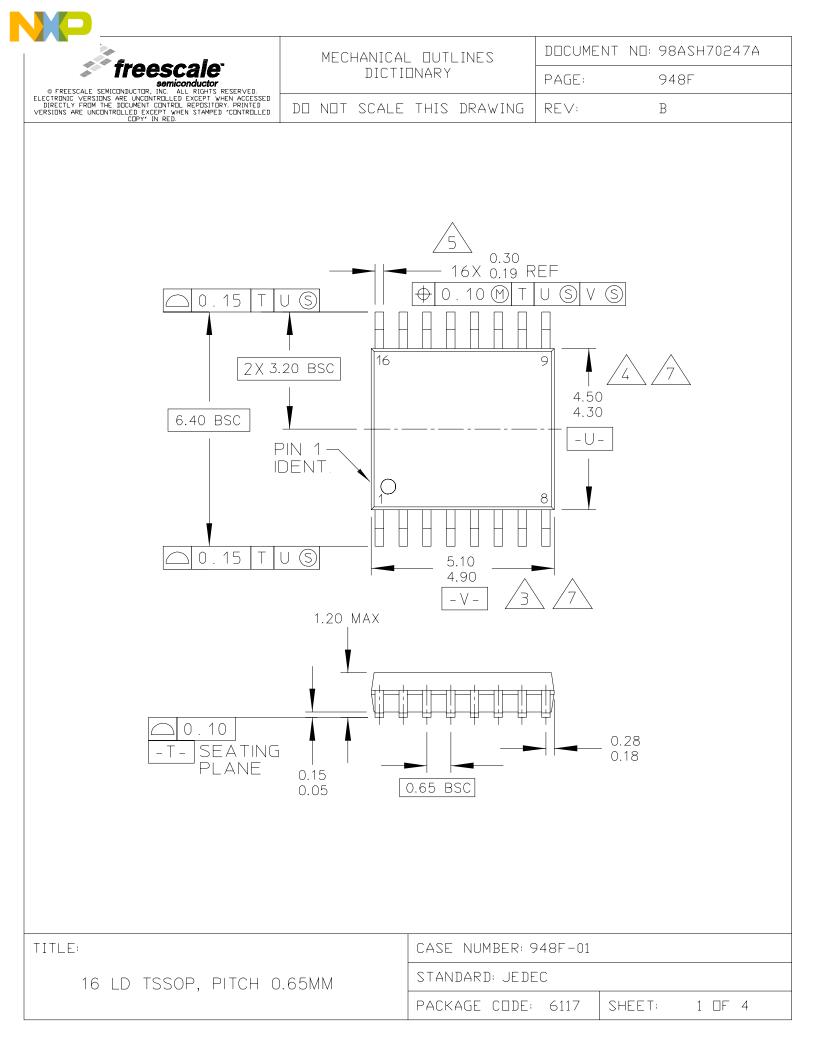




Figure 16-8. RC versus Frequency (3 Volts @ 25•C)


 		MECHANICAL OUTLINES DICTIONARY		DOCUMENT NO: 98ARL10557			
© FREESCALE S	FICESCALE semiconcluctor EMICONDUCTOR, INC. ALL RIGHTS RESERVED.			PAGE:	1452		
DIRECTLY FROM	IONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED THE DOCUMENT CONTROL REPOSITORY. PRINTED CONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NO	T SCALE	THIS	DRAWING	REV:	A

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. THE COMPLETE JEDEC DESIGNATOR FOR THIS PACKAGE IS: HP-VFDFP-N.

4. COPLANARITY APPLIES TO LEADS AND DIE ATTACH PAD.

TITLE:THERMALLY ENHANCED DUAL	CASE NUMBER: 1452-01
FLAT NO LEAD PACKAGE (DFN)	STANDARD: NON-JEDEC
8 TERMINAL, 0. 8 PITCH $(4 \times 4 \times 1)$	PACKAGE CODE: 6165 SHEET: 4 OF 5

