

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	LVD, POR, PWM
Number of I/O	5
Program Memory Size	1.5KB (1.5K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.209", 5.30mm Width)
Supplier Device Package	8-SO
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mchc908qt2mdwer

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Revision History

Revision History (Sheet 3 of 3)

Date	Revision Level	Description	Page Number(s)
		Reformatted to meet current documentation standards	Throughout
		6.3.1 BUSCLKX4 — Clarified description of BUSCLKX4	58
		Chapter 7 Central Processor Unit (CPU) — In 7.7 Instruction Set Summary: Reworked definitions for STOP instruction Added WAIT instruction	70 71
November, 2004	4.0	13.8.1 SIM Reset Status Register — Clarified SRSR flag setting	117
		14.9.1 TIM Status and Control Register — Added information to TSTOP note	127
		16.8 5-V Oscillator Characteristics — Added values for deviation from trimmed inernal oscillator	155
		16.12 3-V Oscillator Characteristics — Added values for deviation from trimmed inernal oscillator	158
		Figure 5-2. Configuration Register 1 (CONFIG1) — Clarified bit definitions for COPRS.	54
July,	5.0	Chapter 8 External Interrupt (IRQ) — Reworked for clarification.	73
2005	5.0	11.3.4 RC Oscillator — Improved RC oscillator wording.	93
		12.1 Introduction — Added note pertaining to non-bonded port pins.	97
		17.3 Package Dimensions — Updated package information.	165
March, 2010	6.0	Clarify internal oscillator trim register information.	26, 27, 31, 34, 35, 38, 91, 96

Chapter 1 General Description

1.1 Introduction

The MC68HC908QY4 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08 Family is a Complex Instruction Set Computer (CISC) with a Von Neumann architecture. All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types.

Device	FLASH Memory Size	Analog-to-Digital Converter	Pin Count
MC68HC908QT1	1536 bytes	—	8 pins
MC68HC908QT2	1536 bytes	4 ch, 8 bit	8 pins
MC68HC908QT4	4096 bytes	4 ch, 8 bit	8 pins
MC68HC908QY1	1536 bytes	—	16 pins
MC68HC908QY2	1536 bytes	4 ch, 8 bit	16 pins
MC68HC908QY4	4096 bytes	4 ch, 8 bit	16 pins

Table 1-1. Summary of Device Variations

1.2 Features

Features include:

- High-performance M68HC08 CPU core
- Fully upward-compatible object code with M68HC05 Family
- 5-V and 3-V operating voltages (V_{DD})
- 8-MHz internal bus operation at 5 V, 4-MHz at 3 V
- Trimmable internal oscillator
 - 3.2 MHz internal bus operation
 - 8-bit trim capability allows 0.4% accuracy⁽¹⁾
 - ± 25% untrimmed
- Auto wakeup from STOP capability
- Configuration (CONFIG) register for MCU configuration options, including:
 - Low-voltage inhibit (LVI) trip point
- In-system FLASH programming
- FLASH security⁽²⁾

^{1.} The oscillator frequency is guaranteed to $\pm 5\%$ over temperature and voltage range after trimming.

No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the FLASH difficult for unauthorized users.

NP

Memory

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$0006	Unimplemented									
↓ \$000A										
4000A	Unimplemented									
\$000B	Port A Input Pullup Enable Register (PTAPUE)	Read: Write:	OSC2EN	0	PTAPUE5	PTAPUE4	PTAPUE3	PTAPUE2	PTAPUE1	PTAPUE0
		Reset:	0	0	0	0	0	0	0	0
\$000C	Port B Input Pullup Enable Register (PTBPUE)	Read: Write:	PTBPUE7	PTBPUE6	PTBPUE5	PTBPUE4	PTBPUE3	PTBPUE2	PTBPUE1	PTBPUE0
	See page 102.	Reset:	0	0	0	0	0	0	0	0
\$000D ↓ \$0019	Unimplemented									
	Keykeerd Otatus and	Read:	0	0	0	0	KEYF	0		
\$001A	Keyboard Status and Control Register (KBSCR)	Write:	•	Ŭ	Ŭ	Ŭ	ILE II	ACKK	IMASKK	MODEK
,	See page 83.	Reset:	0	0	0	0	0	0	0	0
\$001B	Keyboard Interrupt Enable Register (KBIER)	Read: Write:	0	AWUIE	KBIE5	KBIE4	KBIE3	KBIE2	KBIE1	KBIE0
	See page 84.	Reset:	0	0	0	0	0	0	0	0
\$001C	Unimplemented									
		1		-	-	-				1
¢001D	IRQ Status and Control	Read:	0	0	0	0	IRQF	0 ACK	IMASK	MODE
\$001D	Register (INTSCR) See page 77.	Write: Reset:	0	0	0	0	0	ACK 0	0	0
\$001E	Configuration Register 2 (CONFIG2) ⁽¹⁾	Read: Write:	IRQPUD	IRQEN	R	OSCOPT1	OSCOPT0	R	R	RSTEN
\$001E	See page 53.	Reset:	0	0	0	0	0	0	0	0 ⁽²⁾
				writable regis eset to 0 by a		reset. et (POR) only				
\$001F	Configuration Register 1 (CONFIG1) ⁽¹⁾	Read: Write:	COPRS	LVISTOP	LVIRSTD	LVIPWRD	LVI5OR3	SSREC	STOP	COPD
	See page 54.	Reset:	0	0	0	0	0 ⁽²⁾	0	0	0
				writable regis reset to 0 by a		reset. eset (POR) on	ly.			
\$0020	\$0020 Register (TSC) W	Read: Write:	TOF 0	TOIE	TSTOP	0 TRST	0	PS2	PS1	PS0
		Reset:	0	0	1	0	0	0	0	0
	TIM Counter Register High	Read:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
\$0021	(TCNTH) See page 128.	Write:								
	000 paye 120.	Reset:	0	0 Linimalam	0	0	0 Decented	0	0 Factor	0
				= Unimplem	lentea	R	= Reserved	U = Unaf	lected	

Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 5)

Input/Output (I/O) Section

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
	FLASH Control Register	Read:	0	0	0	0	HVEN	MASS	ERASE	PGM
\$FE08	(FLCR)	Write:						MAGO	LINOL	
	See page 34.	Reset:	0	0	0	0	0	0	0	0
\$FE09	Break Address High Register (BRKH)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 136.	Reset:	0	0	0	0	0	0	0	0
\$FE0A	Break Address low Register (BRKL)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 136.	Reset:	0	0	0	0	0	0	0	0
	Break Status and Control	Read:	BRKE	BRKA	0	0	0	0	0	0
\$FE0B	\$FE0B Register (BRKSCR) See page 136.	Write:	DAKE	DHNA						
		Reset:	0	0	0	0	0	0	0	0
	LVI Status Register	Read:	LVIOUT	0	0	0	0	0	0	R
\$FE0C	(LVISR)	Write:								
	See page 87.	Reset:	0	0	0	0	0	0	0	0
\$FE0D ↓ \$FE0F	Reserved for FLASH Test		R	R	R	R	R	R	R	R
		Dood:						-		
\$FFBE	FLASH Block Protect Register (FLBPR)	Read: Write:	BPR7	BPR6	BPR5	BPR4	BPR3	BPR2	BPR1	BPR0
	See page 39.	Reset:				Unaffecte	d by reset			
\$FFBF	Reserved		R	R	R	R	R	R	R	R

\$FFC0	Internal Oscillator Trim (Factory Programmed,	Read: Write:	TRIM7	TRIM6	TRIM5	TRIM4	TRIM3	TRIM2	TRIM1	TRIM0
	VDD = 5.0 V)	Reset:	Unaffected by reset							
\$FFC1	Internal Oscillator Trim (Factory Programmed,	Read: Write:	TRIM7	TRIM6	TRIM5	TRIM4	TRIM3	TRIM2	TRIM1	TRIM0
	VDD = 3.0 V)	Reset:	Unaffected by reset							

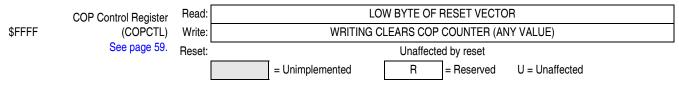
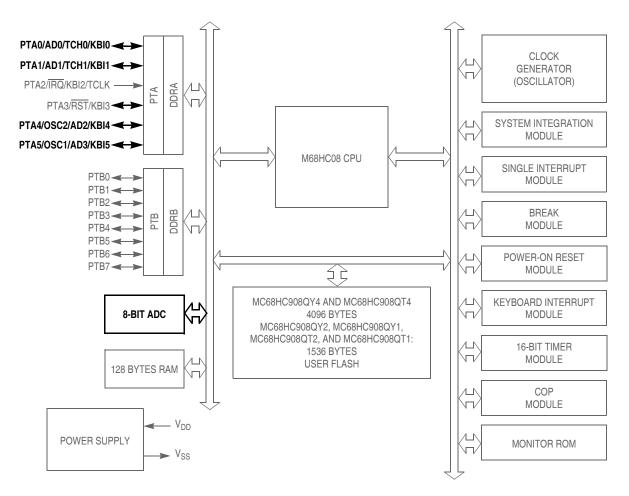



Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 5)

Analog-to-Digital Converter (ADC)

RST, IRQ: Pins have internal (about 30K Ohms) pull up

PTA[0:5]: High current sink and source capability

PTA[0:5]: Pins have programmable keyboard interrupt and pull up

PTB[0:7]: Not available on 8-pin devices – MC68HC908QT1, MC68HC908QT2, and MC68HC908QT4 (see note in 12.1 Introduction)

ADC: Not available on the MC68HC908QY1 and MC68HC908QT1

Figure 3-1. Block Diagram Highlighting ADC Block and Pins

Configuration Register (CONFIG)

System Integration Module (SIM)

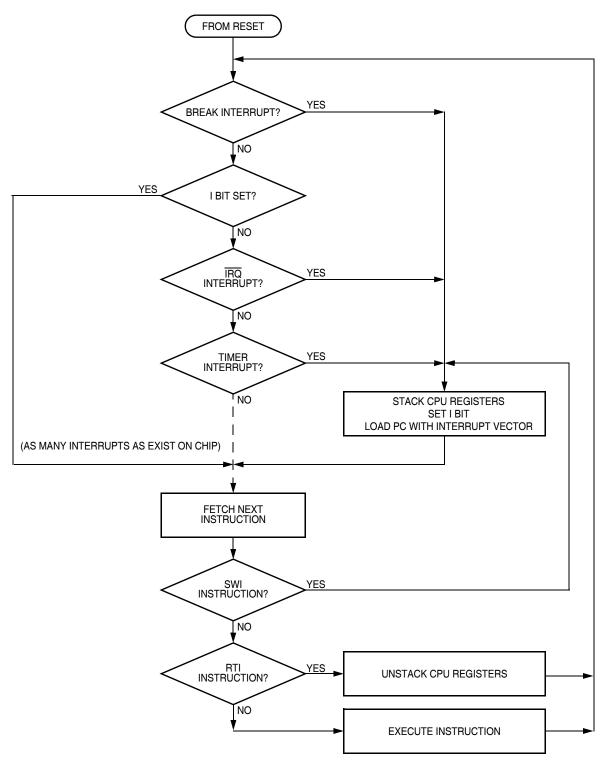
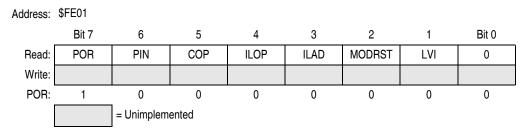



Figure 13-7. Interrupt Processing

13.8.1 SIM Reset Status Register

The SRSR register contains flags that show the source of the last reset. The status register will automatically clear after reading SRSR. A power-on reset sets the POR bit and clears all other bits in the register. All other reset sources set the individual flag bits but do not clear the register. More than one reset source can be flagged at any time depending on the conditions at the time of the internal or external reset. For example, the POR and LVI bit can both be set if the power supply has a slow rise time.

Figure 13-19. SIM Reset Status Register (SRSR)

POR — Power-On Reset Bit

- 1 = Last reset caused by POR circuit
- 0 = Read of SRSR

PIN — External Reset Bit

- 1 = Last reset caused by external reset pin (\overline{RST})
- 0 = POR or read of SRSR

COP — Computer Operating Properly Reset Bit

- 1 = Last reset caused by COP counter
- 0 = POR or read of SRSR

ILOP — Illegal Opcode Reset Bit

- 1 = Last reset caused by an illegal opcode
- 0 = POR or read of SRSR

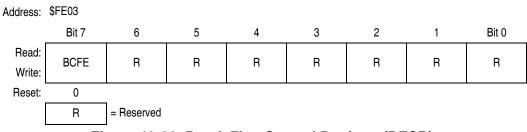
ILAD — Illegal Address Reset Bit (illegal attempt to fetch an opcode from an unimplemented address)

- 1 = Last reset caused by an opcode fetch from an illegal address
- 0 = POR or read of SRSR

MODRST — Monitor Mode Entry Module Reset Bit

- 1 = Last reset caused by monitor mode entry when vector locations \$FFFE and \$FFFF are \$FF after POR while $\overline{IRQ} \neq V_{TST}$
- 0 = POR or read of SRSR

LVI — Low Voltage Inhibit Reset Bit


- 1 = Last reset caused by LVI circuit
- 0 = POR or read of SRSR

System Integration Module (SIM)

13.8.2 Break Flag Control Register

The break control register (BFCR) contains a bit that enables software to clear status bits while the MCU is in a break state.

Figure 13-20. Break Flag Control Register (BFCR)

BCFE — Break Clear Flag Enable Bit

This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set.

1 = Status bits clearable during break

0 = Status bits not clearable during break

Chapter 14 Timer Interface Module (TIM)

14.1 Introduction

This section describes the timer interface module (TIM). The TIM is a two-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 14-2 is a block diagram of the TIM.

14.2 Features

Features of the TIM include the following:

- Two input capture/output compare channels
 - Rising-edge, falling-edge, or any-edge input capture trigger
 - Set, clear, or toggle output compare action
- Buffered and unbuffered pulse width modulation (PWM) signal generation
- Programmable TIM clock input
 - 7-frequency internal bus clock prescaler selection
 - External TIM clock input
- Free-running or modulo up-count operation
- Toggle any channel pin on overflow
- TIM counter stop and reset bits

14.3 Pin Name Conventions

The TIM shares two input/output (I/O) pins with two port A I/O pins. The full names of the TIM I/O pins are listed in Table 14-1. The generic pin name appear in the text that follows.

Table 14-1. Pin Name Conventions

TIM Generic Pin Names:	TCH0	TCH1	TCLK	
Full TIM Pin Names:	PTA0/TCH0	PTA1/TCH1	PTA2/TCLK	

Timer Interface Module (TIM)

14.6 Wait Mode

The WAIT instruction puts the MCU in low power-consumption standby mode.

The TIM remains active after the execution of a WAIT instruction. In wait mode the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode.

If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction.

14.7 TIM During Break Interrupts

A break interrupt stops the TIM counter.

The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. See 13.8.2 Break Flag Control Register.

To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a two-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the second step clears the status bit.

14.8 Input/Output Signals

Port A shares three of its pins with the TIM. Two TIM channel I/O pins are PTA0/TCH0 and PTA1/TCH1 and an alternate clock source is PTA2/TCLK.

14.8.1 TIM Clock Pin (PTA2/TCLK)

PTA2/TCLK is an external clock input that can be the clock source for the TIM counter instead of the prescaled internal bus clock. Select the PTA2/TCLK input by writing 1s to the three prescaler select bits, PS[2–0]. (See 14.9.1 TIM Status and Control Register.) When the PTA2/TCLK pin is the TIM clock input, it is an input regardless of port pin initialization.

14.8.2 TIM Channel I/O Pins (PTA0/TCH0 and PTA1/TCH1)

Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. PTA0/TCH0 can be configured as a buffered output compare or buffered PWM pin.

14.9 Input/Output Registers

The following I/O registers control and monitor operation of the TIM:

- TIM status and control register (TSC)
- TIM counter registers (TCNTH:TCNTL)
- TIM counter modulo registers (TMODH:TMODL)
- TIM channel status and control registers (TSC0 and TSC1)
- TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L)

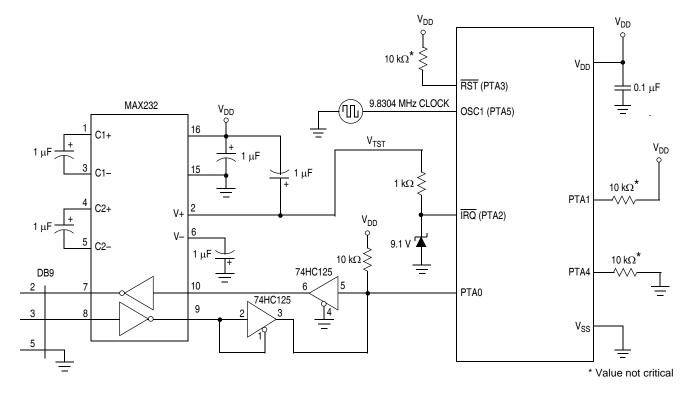


Figure 15-10. Monitor Mode Circuit (External Clock, with High Voltage)

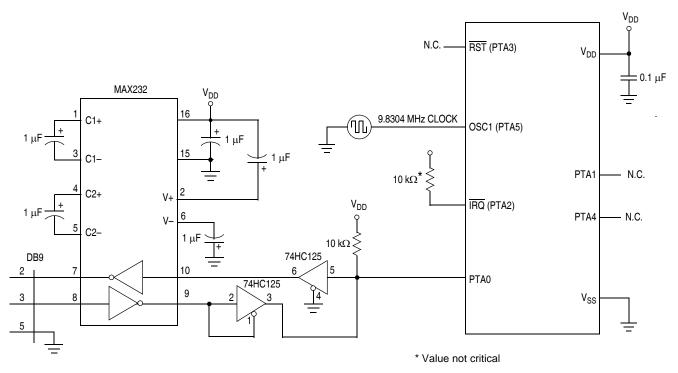


Figure 15-11. Monitor Mode Circuit (External Clock, No High Voltage)

Development Support

Mode	IRQ (PTA2)	RST (PTA3)	Reset Vector	Serial Communi- cation		ode ction	СОР	Co	mmunicatior Speed	ו	Comments	
	(FTA2)	(FTA3)	vector	PTA0	PTA1	PTA4		External Clock	Bus Frequency	Baud Rate		
Normal Monitor	V _{TST}	V _{DD}	х	1	1	0	Disabled	9.8304 MHz	2.4576 MHz	9600	Provide external clock at OSC1.	
Forced	V _{DD}	Х	\$FFFF (blank)	1	Х	х	Disabled	9.8304 MHz	2.4576 MHz	9600	Provide external clock at OSC1.	
Monitor	V _{SS}	Х	\$FFFF (blank)	1	Х	х	Disabled	Х	3.2 MHz (Trimmed)	9600	Internal clock is active.	
User	Х	Х	Not \$FFFF	Х	Х	х	Enabled	Х	Х	Х		
MON08 Function [Pin No.]	V _{TST} [6]	RST [4]		COM [8]	MOD0 [12]	MOD1 [10]		OSC1 [13]				

 Table 15-1. Monitor Mode Signal Requirements and Options

1. PTA0 must have a pullup resistor to V_{DD} in monitor mode.

2. Communication speed in the table is an example to obtain a baud rate of 9600. Baud rate using external oscillator is bus frequency / 256 and baud rate using internal oscillator is bus frequency / 335.

3. External clock is a 9.8304 MHz oscillator on OSC1.

4. X = don't care

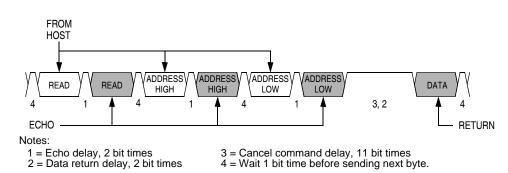
5. MON08 pin refers to P&E Microcomputer Systems' MON08-Cyclone 2 by 8-pin connector.

NC	1	2	GND
NC	3	4	RST
NC	5	6	IRQ
NC	7	8	PTA0
NC	9	10	PTA4
NC	11	12	PTA1
OSC1	13	14	NC
V_{DD}	15	16	NC

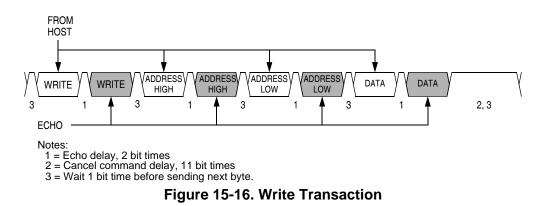
The rising edge of the internal RST signal latches the monitor mode. Once monitor mode is latched, the values on PTA1 and PTA4 pins can be changed.

Once out of reset, the MCU waits for the host to send eight security bytes (see 15.3.2 Security). After the security bytes, the MCU sends a break signal (10 consecutive logic 0s) to the host, indicating that it is ready to receive a command.

15.3.1.1 Normal Monitor Mode


RST and OSC1 functions will be active on the PTA3 and PTA5 pins respectively as long as V_{TST} is applied to the IRQ pin. If the IRQ pin is lowered (no longer V_{TST}) then the chip will still be operating in monitor mode, but the pin functions will be determined by the settings in the configuration registers (see Chapter 5 Configuration Register (CONFIG)) when V_{TST} was lowered. With V_{TST} lowered, the BIH and BIL instructions will read the IRQ pin state only if IRQEN is set in the CONFIG2 register.

Monitor Module (MON)


The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit delay at the end of each command allows the host to send a break character to cancel the command. A delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned. The data returned by a read command appears after the echo of the last byte of the command.

NOTE

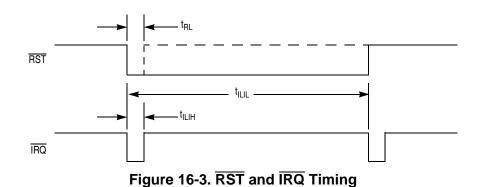
Wait one bit time after each echo before sending the next byte.

Figure 15-15. Read Transaction

A brief description of each monitor mode command is given in Table 15-3 through Table 15-8.

Description Read byte from memory 2-byte address in high-byte:low-byte order Operand **Data Returned** Returns contents of specified address Opcode \$4A **Command Sequence** SENT TO MONITOR ADDRESS ADDRES ADDRESS ADDRES READ READ DATA HIGH LOW HIGH IOW ECHO RETURN

Table 15-3. READ (Read Memory) Command



16.7 5-V Control Timing

Characteristic ⁽¹⁾	Symbol	Min	Max	Unit
Internal operating frequency	f _{OP} (f _{Bus})	—	8	MHz
Internal clock period (1/f _{OP})	t _{cyc}	125	_	ns
RST input pulse width low	t _{RL}	100	_	ns
IRQ interrupt pulse width low (edge-triggered)	t _{ILIH}	100	_	ns
IRQ interrupt pulse period	t _{ILIL}	Note ⁽²⁾		t _{cyc}

1. V_{DD} = 4.5 to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H; timing shown with respect to 20% V_{DD} and 70% V_{SS}, unless otherwise noted.

2. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 t_{cyc} .

16.11 3-V Control Timing

Characteristic ⁽¹⁾	Symbol	Min	Max	Unit
Internal operating frequency	f _{OP} (f _{Bus})	—	4	MHz
Internal clock period (1/f _{OP})	t _{cyc}	250	_	ns
RST input pulse width low	t _{RL}	200		ns
IRQ interrupt pulse width low (edge-triggered)	t _{ILIH}	200	_	ns
IRQ interrupt pulse period	t _{ILIL}	Note ⁽²⁾		t _{cyc}

1. V_{DD} = 2.7 to 3.3 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H; timing shown with respect to 20% V_{DD} and 70% V_{DD}, unless otherwise noted.

2. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 t_{cyc} .

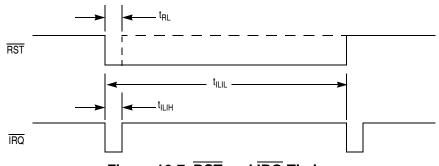


Figure 16-7. RST and IRQ Timing

Electrical Specifications

16.12 3-V Oscillator Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Internal oscillator frequency ⁽¹⁾	fintclk	—	12.8	—	MHz
Deviation from trimmed Internal oscillator $^{(2)(3)}$ 12.8 MHz, fixed voltage, fixed temp 12.8 MHz, V _{DD} ± 10%, 0 to 70°C 12.8 MHz, V _{DD} ± 10%, -40 to 125°C	ACCINT		± 0.4 ± 2 —	 	%
Crystal frequency, XTALCLK ⁽¹⁾	foscxclk	1	—	16	MHz
External RC oscillator frequency, RCCLK (1)	f _{RCCLK}	2	—	10	MHz
External clock reference frequency ^{(1) (4)}	f _{OSCXCLK}	dc	—	16	MHz
Crystal load capacitance ⁽⁵⁾	CL	—	20	—	pF
Crystal fixed capacitance ⁽³⁾	C ₁	—	2 x C _L	—	—
Crystal tuning capacitance ⁽³⁾	C ₂	—	2 x C _L	—	—
Feedback bias resistor	R _B	0.5	1	10	MΩ
RC oscillator external resistor	R _{EXT}	S	See Figure 16-	8	—
Crystal series damping resistor $f_{OSCXCLK} = 1 MHz$ $f_{OSCXCLK} = 4 MHz$ $f_{OSCXCLK} = > 8 MHz$	R _S		10 5 0		kΩ

Bus frequency, f_{OP}, is oscillator frequency divided by 4.
 Deviation values assumes trimming @25•C and midpoint of voltage range.
 Values are based on characterization results, not tested in production.

4. No more than 10% duty cycle deviation from 50%

5. Consult crystal vendor data sheet

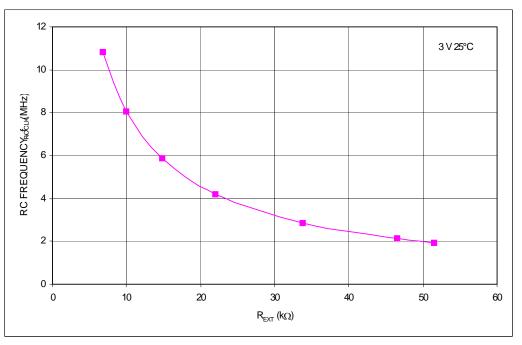
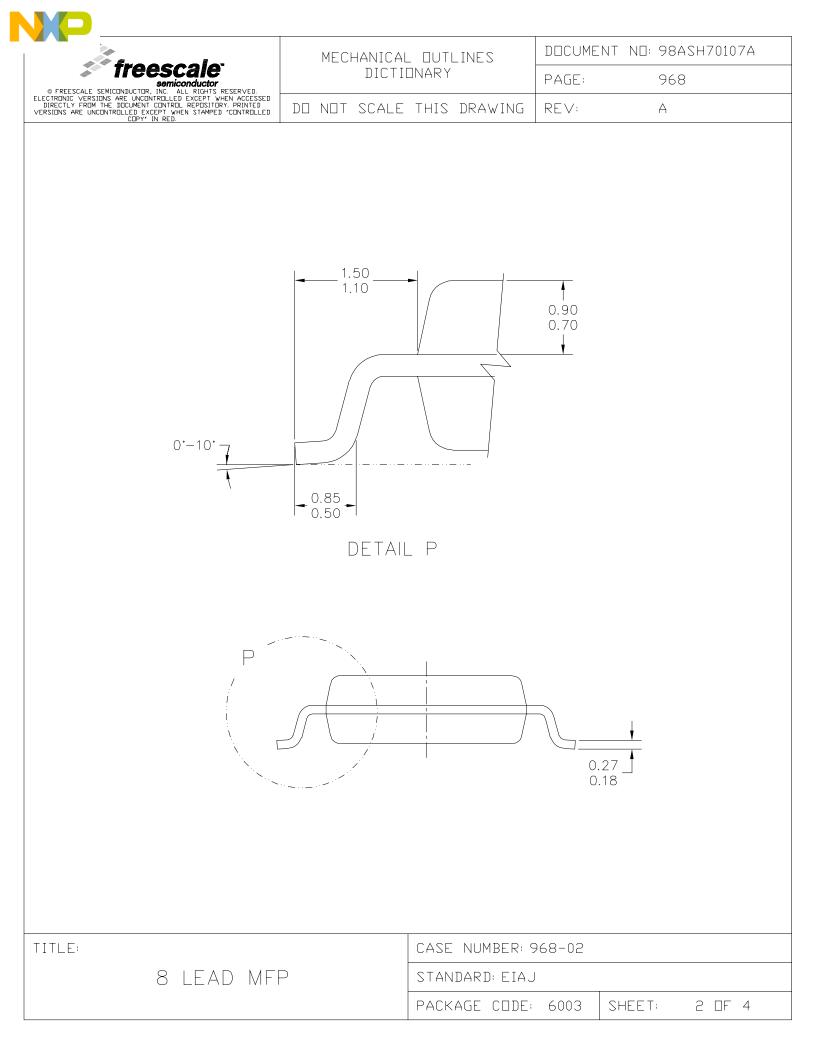
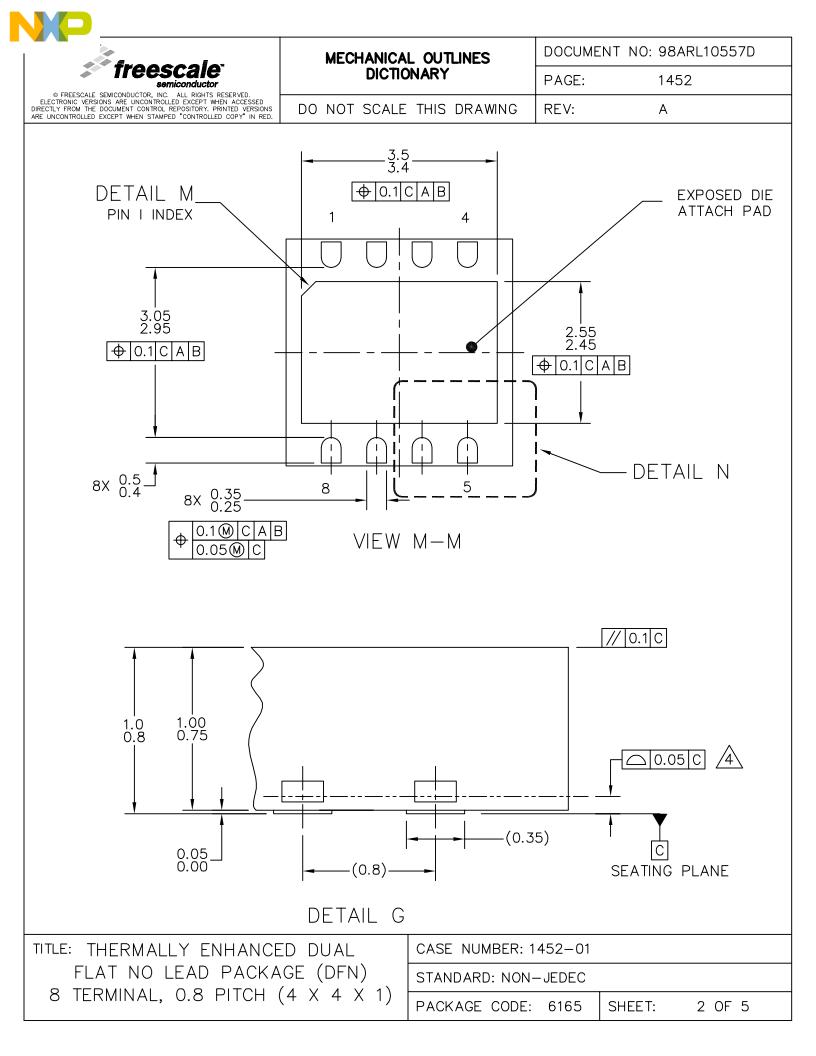




Figure 16-8. RC versus Frequency (3 Volts @ 25•C)

