

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	LVD, POR, PWM
Number of I/O	13
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.295", 7.50mm Width)
Supplier Device Package	16-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mchc908qy4mdwe

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Chapters

Chapter 1 General Description
Chapter 2 Memory
Chapter 3 Analog-to-Digital Converter (ADC)41
Chapter 4 Auto Wakeup Module (AWU)49
Chapter 5 Configuration Register (CONFIG)53
Chapter 6 Computer Operating Properly (COP)57
Chapter 7 Central Processor Unit (CPU)61
Chapter 8 External Interrupt (IRQ)73
Chapter 9 Keyboard Interrupt Module (KBI)79
Chapter 10 Low-Voltage Inhibit (LVI)
Chapter 11 Oscillator Module (OSC)
Chapter 12 Input/Output Ports (PORTS)
Chapter 13 System Integration Module (SIM)103
Chapter 14 Timer Interface Module (TIM)119
Chapter 15 Development Support
Chapter 16 Electrical Specifications149
Chapter 17 Ordering Information and Mechanical Specifications

Memory

\$0000	I/O REGISTERS	
\$003F	64 BYTES	
\$0040	RESERVED ⁽¹⁾]
↓ \$007F	64 BYTES	Note 1.
\$0080	DAV	Attempts to execute code from addresses in this
↓	RAM 128 BYTES	range will generate an illegal address reset.
\$00FF \$0100		
\$0100 ↓	UNIMPLEMENTED ⁽¹⁾ 9984 BYTES	
\$27FF	9904 BTTES	
\$2800 ↓	AUXILIARY ROM	
\$2DFF	1536 BYTES	
\$2E00	UNIMPLEMENTED ⁽¹⁾	\$2E00
↓ \$EDFF	49152 BYTES	
φĽDIT		51712 BYTES \$F7FF
\$EE00		\$E800
↓ \$FDFF	MC68HC908QT4 AND MC68HC908QY4 4096 BYTES	FLASH MEMORY 1536 BYTES
		\$FDFF
\$FE00	BREAK STATUS REGISTER (BSR)	MC68HC908QT1, MC68HC908QT2,
\$FE01		MC68HC908QY1, and MC68HC908QY2 Memory Map
\$FE02 \$FE03	BREAK AUXILIARY REGISTER (BRKAR) BREAK FLAG CONTROL REGISTER (BFCR)	,,,,
\$FE03 \$FE04	INTERRUPT STATUS REGISTER (brch)	4
\$FE05	INTERRUPT STATUS REGISTER 7 (INT7)	-
\$FE06	INTERRUPT STATUS REGISTER 3 (INT3)	-
\$FE07	RESERVED FOR FLASH TEST CONTROL REGISTER (FLTCR)	
\$FE08	FLASH CONTROL REGISTER (FLCR)	
\$FE09	BREAK ADDRESS HIGH REGISTER (BRKH)	
\$FE0A	BREAK ADDRESS LOW REGISTER (BRKL)	
\$FE0B	BREAK STATUS AND CONTROL REGISTER (BRKSCR)	
\$FE0C	LVISR	
\$FE0D	RESERVED FOR FLASH TEST	
↓ \$FE0F	3 BYTES	
\$FE10		1
↓ \$FFAF	MONITOR ROM 416 BYTES	
\$FFB0		4
\downarrow	FLASH 14 BYTES	
\$FFBD		
\$FFBE	FLASH BLOCK PROTECT REGISTER (FLBPR)	
\$FFBF	RESERVED FLASH	-
\$FFC0	INTERNAL OSCILLATOR TRIM VALUE (VDD = 5.0 V)	4
\$FFC1	INTERNAL OSCILLATOR TRIM VALUE (VDD = 3.0 V)	4
\$FFC2 ↓	FLASH	
\$FFCF	14 BYTES	
\$FFD0	USER VECTORS]
↓ \$FFFF	48 BYTES	
Ψ····		L

Figure 2-1. Memory Map

Vector Priority	Vector	Address	Vector					
Lowest	IF15	\$FFDE	ADC conversion complete vector (high)					
▲	1613	\$FFDF	ADC conversion complete vector (low)					
	IF14	\$FFE0	Keyboard vector (high)					
	1614	\$FFE1	Keyboard vector (low)					
	IF13 ↓ IF6	_	Not used					
	IF5	\$FFF2	TIM overflow vector (high)					
	IFO	\$FFF3	TIM overflow vector (low)					
	IF4	\$FFF4 TIM Channel 1 vector (high)						
	164	\$FFF5	TIM Channel 1 vector (low)					
	IF3	\$FFF6	TIM Channel 0 vector (high)					
	IFS	\$FFF7	TIM Channel 0 vector (low)					
	IF2	—	Not used					
	IF1	\$FFFA	IRQ vector (high)					
		\$FFFB	IRQ vector (low)					
		\$FFFC	SWI vector (high)					
		\$FFFD	SWI vector (low)					
♥		\$FFFE	Reset vector (high)					
Highest		\$FFFF	Reset vector (low)					

 Table 2-1. Vector Addresses

2.5 Random-Access Memory (RAM)

Addresses \$0080–\$00FF are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space.

NOTE

For correct operation, the stack pointer must point only to RAM locations.

Before processing an interrupt, the central processor unit (CPU) uses five bytes of the stack to save the contents of the CPU registers.

NOTE

For M6805, M146805, and M68HC05 compatibility, the H register is not stacked.

During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls.

NOTE

Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation.

Configuration Register (CONFIG)

Chapter 6 Computer Operating Properly (COP)

6.1 Introduction

The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the configuration 1 (CONFIG1) register.

6.2 Functional Description

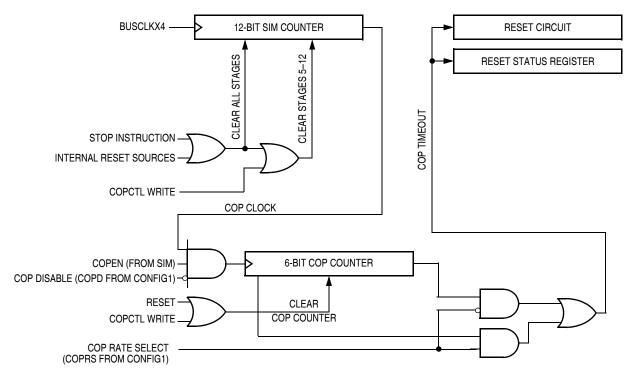


Figure 6-1. COP Block Diagram

Central Processor Unit (CPU)

Source	Operation	Description	Ef on						Address Mode	Opcode	Operand	es
Form	- por union		۷	н	I	Ν	z	С	Add Mod	Opc	Ope	Cycles
PULA	Pull A from Stack	$SP \leftarrow (SP + 1); Pull (A)$	-	-	-	-	-	-	INH	86		2
PULH	Pull H from Stack	$SP \leftarrow (SP + 1); Pull (H)$	-	-	-	-	-	-	INH	8A		2
PULX	Pull X from Stack	$SP \leftarrow (SP + 1); Pull (X)$	-	-	-	-	-	-	INH	88		2
ROL opr ROLA ROLX ROL opr,X ROL ,X ROL opr,SP	Rotate Left through Carry	C b7 b0	ţ	_	_	ţ	ţ	ţ	DIR INH INH IX1 IX SP1	39 49 59 69 79 9E69	dd ff ff	4 1 4 3 5
ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP	Rotate Right through Carry	b7 b0	ţ	_	_	ţ	ţ	ţ	DIR INH INH IX1 IX SP1	36 46 56 66 76 9E66	dd ff ff	4 1 4 3 5
RSP	Reset Stack Pointer	$SP \leftarrow \$FF$	-	-	-	-	-	-	INH	9C		1
RTI	Return from Interrupt	$\begin{array}{l} SP \leftarrow (SP) + 1; \ Pull \ (CCR) \\ SP \leftarrow (SP) + 1; \ Pull \ (A) \\ SP \leftarrow (SP) + 1; \ Pull \ (X) \\ SP \leftarrow (SP) + 1; \ Pull \ (PCH) \\ SP \leftarrow (SP) + 1; \ Pull \ (PCL) \end{array}$	t	ţ	ţ	ţ	ţ	ţ	INH	80		7
RTS	Return from Subroutine	$SP \leftarrow SP + 1$; Pull (PCH) $SP \leftarrow SP + 1$; Pull (PCL)	-	-	-	-	-	-	INH	81		4
SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP	Subtract with Carry	$A \leftarrow (A) - (M) - (C)$	ţ	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A2 B2 C2 D2 E2 F2 9EE2 9ED2		23443245
SEC	Set Carry Bit	C ← 1	-	-	-	-	-	1	INH	99		1
SEI	Set Interrupt Mask	l ← 1	-	-	1	-	-	-	INH	9B		2
STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP	Store A in M	M ← (A)	0	_	_	ţ	ţ	_	DIR EXT IX2 IX1 IX SP1 SP2	B7 C7 D7 E7 F7 9EE7 9ED7	dd hh II ee ff ff ee ff	3 4 4 3 2 4 5
STHX opr	Store H:X in M	(M:M + 1) ← (H:X)	0	-	-	1	1	-	DIR	35	dd	4
STOP	Enable Interrupts, Stop Processing, Refer to MCU Documentation	$I \leftarrow 0$; Stop Processing	-	-	0	-	-	-	INH	8E		1
STX opr STX opr STX opr,X STX opr,X STX ,X STX opr,SP STX opr,SP	Store X in M	M ← (X)	0	_	_	ţ	ţ	_	DIR EXT IX2 IX1 IX SP1 SP2	BF CF DF EF FF 9EEF 9EDF	dd hh ll ee ff ff ee ff	3 4 3 2 4 5
SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB opr,SP SUB opr,SP	Subtract	A ← (A) – (M)	ţ	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A0 B0 C0 D0 E0 F0 9EE0 9ED0		2 3 4 3 2 4 5

Source	Operation	Description	Description			ress e	ode	Operand	es			
Form	Operation	Description	١	/ н		Ν	z	С	Add	Opcode	Ope	Cycles
SWI	Software Interrupt	$\begin{array}{c} PC \leftarrow (PC) + 1; Push (PCL) \\ SP \leftarrow (SP) - 1; Push (PCH) \\ SP \leftarrow (SP) - 1; Push (X) \\ SP \leftarrow (SP) - 1; Push (A) \\ SP \leftarrow (SP) - 1; Push (ACR) \\ SP \leftarrow (SP) - 1; I \leftarrow 1 \\ PCH \leftarrow Interrupt Vector High B_{SP} \\ PCL \leftarrow Interrupt Vector Low By \end{array}$	- yte		1	_	_	_	INH	83		9
TAP	Transfer A to CCR	$CCR \leftarrow (A)$	1	1	1	1	\$	\$	INH	84		2
TAX	Transfer A to X	X ← (A)	-	- -	-	-	Ι	-	INH	97		1
TPA	Transfer CCR to A	$A \leftarrow (CCR)$	-	- -	-	-	-	-	INH	85		1
TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP	Test for Negative or Zero							_	DIR INH INH IX1 IX SP1	3D 4D 5D 6D 7D 9E6D	dd ff ff	3 1 3 2 4
TSX	Transfer SP to H:X	H:X ← (SP) + 1	-	-	_	-		-	INH	95		2
TXA	Transfer X to A	$A \leftarrow (X)$	-	-	_	-		-	INH	9F		1
TXS	Transfer H:X to SP	(SP) ← (H:X) – 1	-	-	_	-		-	INH	94		2
WAIT	Enable Interrupts; Wait for Interrupt	I bit ← 0; Inhibit CPU clocking until interrupted	- 10	-	0	-	-	-	INH	8F		1
CCR Conditioned dd Direct a dd rr Direct a DD Direct a DIX+ Direct to DIX+ Direct to ee ff High an EXT Extende ff Offset b H Half-car H Index re hh II High an I Interrup ii Immedia IMD Immedia INH Inheren IX+ Indexed IX+ Indexed IX+ Indexed IX+ Indexed IX+ Indexed IX+ Indexed IX+ Indexed IX1 Indexed IX1 Indexed IX2 Indexed	orrow bit on code register (ddress of operand (ddress of operand and relative offset o direct addressing mode (ddressing mode o indexed with post increment address (d low bytes of offset in indexed, 16-bit ed addressing mode oyte in indexed, 8-bit offset addressing ry bit egister high byte (d low bytes of operand address in ext t mask ate operand byte ate source to direct destination address ate addressing mode t addressing mode t, no offset addressing mode t, no offset, post increment addressing twith post increment to direct address t, 8-bit offset, post increment address t, 16-bit offset addressing mode y location	of branch instruction $\begin{array}{c} opr & 0\\ PC & P\\ $	Relative Stack po	a co a co a co a co a co a co a co a co	unti unti unti gra gra er, 8 er 1 er er 1 er CLU wo's valu	er er hi er lo ssing m c m c B-bit 6-bi SIV s cor e	igh g m oui off t of	by byte nod nter set ffse	te e r offset by r offset by addressi t addressi	te ng mod		

7.8 Opcode Map

See Table 7-2.

Chapter 9 Keyboard Interrupt Module (KBI)

9.1 Introduction

The keyboard interrupt module (KBI) provides six independently maskable external interrupts, which are accessible via the PTA0–PTA5 pins.

9.2 Features

Features of the keyboard interrupt module include:

- Six keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt mask
- Software configurable pullup device if input pin is configured as input port bit
- Programmable edge-only or edge and level interrupt sensitivity
- Exit from low-power modes

9.3 Functional Description

The keyboard interrupt module controls the enabling/disabling of interrupt functions on the six port A pins. These six pins can be enabled/disabled independently of each other. Refer to Figure 9-2.

9.3.1 Keyboard Operation

Writing to the KBIE0–KBIE5 bits in the keyboard interrupt enable register (KBIER) independently enables or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin in port A also enables its internal pullup device irrespective of PTAPUEx bits in the port A input pullup enable register (see 12.2.3 Port A Input Pullup Enable Register). A logic 0 applied to an enabled keyboard interrupt pin latches a keyboard interrupt request.

A keyboard interrupt is latched when one or more keyboard interrupt inputs goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt.

- If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard interrupt input does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one input because another input is still low, software can disable the latter input while it is low.
- If the keyboard interrupt is falling edge and low-level sensitive, an interrupt request is present as long as any keyboard interrupt input is low.

again in the SIM and results in the internal bus frequency being one fourth of either the XTALCLK, RCCLK, or INTCLK frequency.

11.5 Low Power Modes

The WAIT and STOP instructions put the MCU in low-power consumption standby modes.

11.5.1 Wait Mode

The WAIT instruction has no effect on the oscillator logic. BUSCLKX2 and BUSCLKX4 continue to drive to the SIM module.

11.5.2 Stop Mode

The STOP instruction disables either the XTALCLK, the RCCLK, or INTCLK output, hence BUSCLKX2 and BUSCLKX4.

11.6 Oscillator During Break Mode

The oscillator continues to drive BUSCLKX2 and BUSCLKX4 when the device enters the break state.

11.7 CONFIG2 Options

Two CONFIG2 register options affect the operation of the oscillator module: OSCOPT1 and OSCOPT0. All CONFIG2 register bits will have a default configuration. Refer to Chapter 5 Configuration Register (CONFIG) for more information on how the CONFIG2 register is used.

Table 11-2 shows how the OSCOPT bits are used to select the oscillator clock source.

 Table 11-2. Oscillator Modes

OSCOPT1	OSCOPT0	Oscillator Modes
0	0	Internal oscillator
0	1	External oscillator
1	0	External RC
1	1	External crystal

11.8 Input/Output (I/O) Registers

The oscillator module contains these two registers:

- 1. Oscillator status register (OSCSTAT)
- 2. Oscillator trim register (OSCTRIM)

Input/Output Ports (PORTS)

12.3.3 Port B Input Pullup Enable Register

The port B input pullup enable register (PTBPUE) contains a software configurable pullup device for each of the eight port B pins. Each bit is individually configurable and requires the corresponding data direction register, DDRBx, be configured as input. Each pullup device is automatically and dynamically disabled when its corresponding DDRBx bit is configured as output.

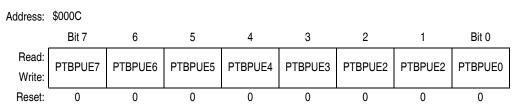


Figure 12-8. Port B Input Pullup Enable Register (PTBPUE)

PTBPUE[7:0] — Port B Input Pullup Enable Bits

These read/write bits are software programmable to enable pullup devices on port B pins

- 1 = Corresponding port B pin configured to have internal pull if its DDRB bit is set to 0
- 0 = Pullup device is disconnected on the corresponding port B pin regardless of the state of its DDRB bit.

Table 12-3 summarizes the operation of the port B pins.

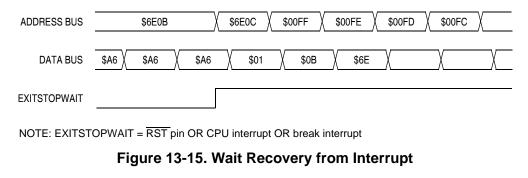
PTBPUE	DDRB	РТВ	I/O Pin	Accesses to DDRB	Access	ses to PTB
Bit	Bit	Bit	Mode	Read/Write	Read	Write
1	0	X ⁽¹⁾	Input, V _{DD} ⁽²⁾	DDRB7-DDRB0	Pin	PTB7–PTB0 ⁽³⁾
0	0	Х	Input, Hi-Z ⁽⁴⁾	DDRB7-DDRB0	Pin	PTB7–PTB0 ⁽³⁾
Х	1	Х	Output	DDRB7-DDRB0	PTB7–PTB0	PTB7–PTB0

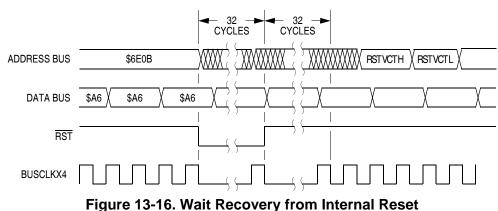
Table 12-3. Port B Pin Functions

1. X = don't care

2. I/O pin pulled to $V_{\mbox{\scriptsize DD}}$ by internal pullup.

3. Writing affects data register, but does not affect input.


4. Hi-Z = high impedance



A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.

Wait mode can also be exited by a reset (or break in emulation mode). A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the break status register (BSR). If the COP disable bit, COPD, in the configuration register is 0, then the computer operating properly module (COP) is enabled and remains active in wait mode.

Figure 13-15 and Figure 13-16 show the timing for wait recovery.

13.7.2 Stop Mode

In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode.

The SIM disables the oscillator signals (BUSCLKX2 and BUSCLKX4) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the configuration register 1 (CONFIG1). If SSREC is set, stop recovery is reduced from the normal delay of 4096 BUSCLKX4 cycles down to 32. This is ideal for the internal oscillator, RC oscillator, and external oscillator options which do not require long start-up times from stop mode.

NOTE

External crystal applications should use the full stop recovery time by clearing the SSREC bit.

Timer Interface Module (TIM)

CHxMAX — Channel x Maximum Duty Cycle Bit

When the TOVx bit is at a 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 14-8 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared.

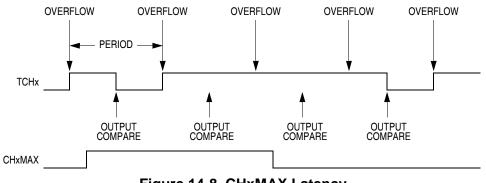


Figure 14-8. CHxMAX Latency

14.9.5 TIM Channel Registers

These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown.

In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read.

In output compare mode (MSxB:MSxA \neq 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written.



Figure 14-9. TIM Channel Registers (TCH0H/L:TCH1H/L)

Development Support

Mode												RST	Reset	Serial Communi- cation		ode ction	СОР	Co	mmunicatior Speed	Comments	
	(PTA2)	(PTA3)	Vector	PTA0	PTA1	PTA4		External Clock	Bus Frequency	Baud Rate											
Normal Monitor	V _{TST}	V _{DD}	х	1	1	0	Disabled	9.8304 MHz	2.4576 MHz	9600	Provide external clock at OSC1.										
Forced	V _{DD}	Х	\$FFFF (blank)	1	Х	х	Disabled	9.8304 MHz	2.4576 MHz	9600	Provide external clock at OSC1.										
Monitor	V _{SS}	Х	\$FFFF (blank)	1	Х	х	Disabled	Х	3.2 MHz (Trimmed)	9600	Internal clock is active.										
User	Х	Х	Not \$FFFF	Х	Х	х	Enabled	Х	Х	Х											
MON08 Function [Pin No.]	V _{TST} [6]	RST [4]		COM [8]	MOD0 [12]	MOD1 [10]		OSC1 [13]													

 Table 15-1. Monitor Mode Signal Requirements and Options

1. PTA0 must have a pullup resistor to V_{DD} in monitor mode.

2. Communication speed in the table is an example to obtain a baud rate of 9600. Baud rate using external oscillator is bus frequency / 256 and baud rate using internal oscillator is bus frequency / 335.

3. External clock is a 9.8304 MHz oscillator on OSC1.

4. X = don't care

5. MON08 pin refers to P&E Microcomputer Systems' MON08-Cyclone 2 by 8-pin connector.

NC	1	2	GND
NC	3	4	RST
NC	5	6	IRQ
NC	7	8	PTA0
NC	9	10	PTA4
NC	11	12	PTA1
OSC1	13	14	NC
V_{DD}	15	16	NC

The rising edge of the internal RST signal latches the monitor mode. Once monitor mode is latched, the values on PTA1 and PTA4 pins can be changed.

Once out of reset, the MCU waits for the host to send eight security bytes (see 15.3.2 Security). After the security bytes, the MCU sends a break signal (10 consecutive logic 0s) to the host, indicating that it is ready to receive a command.

15.3.1.1 Normal Monitor Mode

RST and OSC1 functions will be active on the PTA3 and PTA5 pins respectively as long as V_{TST} is applied to the IRQ pin. If the IRQ pin is lowered (no longer V_{TST}) then the chip will still be operating in monitor mode, but the pin functions will be determined by the settings in the configuration registers (see Chapter 5 Configuration Register (CONFIG)) when V_{TST} was lowered. With V_{TST} lowered, the BIH and BIL instructions will read the IRQ pin state only if IRQEN is set in the CONFIG2 register.

Development Support

	Functions						
Modes	Reset Vector High	Reset Vector Low	Break Vector High	Break Vector Low	SWI Vector High	SWI Vector Low	
User	\$FFFE	\$FFFF	\$FFFC	\$FFFD	\$FFFC	\$FFFD	
Monitor	\$FEFE	\$FEFF	\$FEFC	\$FEFD	\$FEFC	\$FEFD	

15.3.1.4 Data Format

Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. Transmit and receive baud rates must be identical.

Figure 15-13. Monitor Data Format

15.3.1.5 Break Signal

A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal.

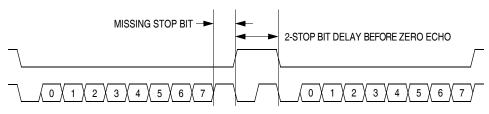
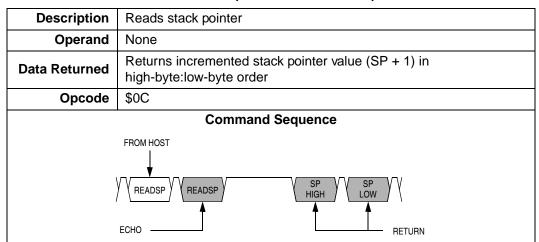


Figure 15-14. Break Transaction

15.3.1.6 Baud Rate

The monitor communication baud rate is controlled by the frequency of the external or internal oscillator and the state of the appropriate pins as shown in Table 15-1.


Table 15-1 also lists the bus frequencies to achieve standard baud rates. The effective baud rate is the bus frequency divided by 256 when using an external oscillator. When using the internal oscillator in forced monitor mode, the effective baud rate is the bus frequency divided by 335.

15.3.1.7 Commands

The monitor ROM firmware uses these commands:

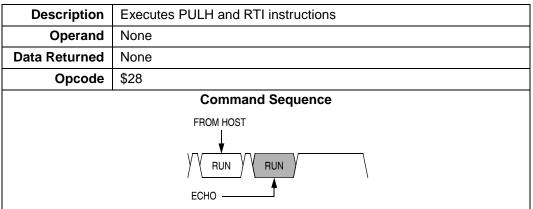

- READ (read memory)
- WRITE (write memory)
- IREAD (indexed read)
- IWRITE (indexed write)
- READSP (read stack pointer)
- RUN (run user program)

Table 15-7. READSP (Read Stack Pointer) Command

The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can modify the stacked CPU registers to prepare to run the host program. The READSP command returns the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at addresses SP + 5 and SP + 6.

	J
	SP
HIGH BYTE OF INDEX REGISTER	SP + 1
CONDITION CODE REGISTER	SP + 2
ACCUMULATOR	SP + 3
LOW BYTE OF INDEX REGISTER	SP + 4
HIGH BYTE OF PROGRAM COUNTER	SP + 5
LOW BYTE OF PROGRAM COUNTER	SP + 6
	SP + 7
	1

Figure 15-17. Stack Pointer at Monitor Mode Entry

Development Support

15.3.2 Security

A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations \$FFF6–\$FFFD. Locations \$FFF6–\$FFFD contain user-defined data.

NOTE

Do not leave locations \$FFF6–\$FFFD blank. For security reasons, program locations \$FFF6–\$FFFD even if they are not used for vectors.

During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PTA0. If the received bytes match those at locations \$FFF6-\$FFFD, the host bypasses the security feature and can read all FLASH locations and execute code from FLASH. Security remains bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and security code entry is not required. See Figure 15-18.

Upon power-on reset, if the received bytes of the security code do not match the data at locations \$FFF6-\$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break character, signifying that it is ready to receive a command.

NOTE

The MCU does not transmit a break character until after the host sends the eight security bytes.

To determine whether the security code entered is correct, check to see if bit 6 of RAM address \$80 is set. If it is, then the correct security code has been entered and FLASH can be accessed.

If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation clears the security code locations so that all eight security bytes become \$FF (blank).

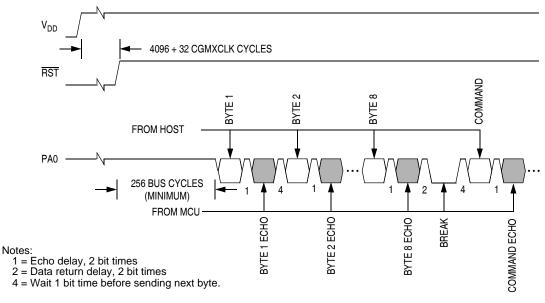
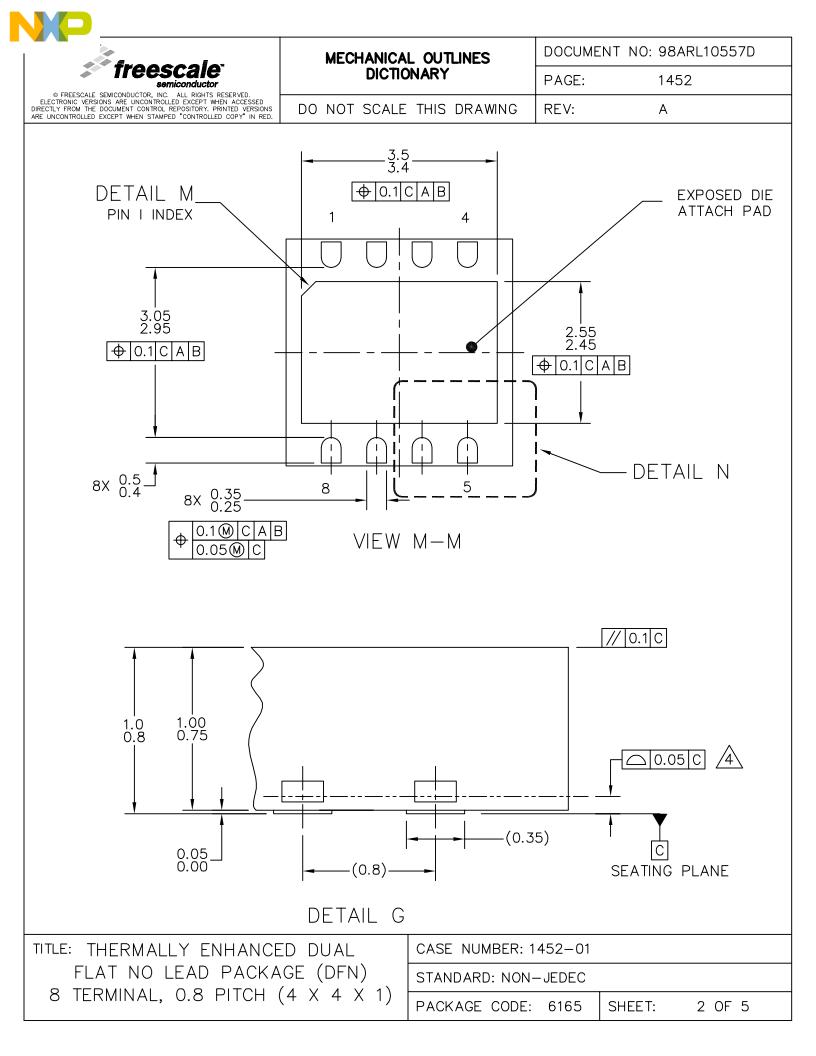


Figure 15-18. Monitor Mode Entry Timing


16.5 5-V DC Electrical Characteristics

Characteristic ⁽¹⁾	Symbol	Min	Typ ⁽²⁾	Max	Unit
Output high voltage $I_{Load} = -2.0$ mA, all I/O pins $I_{Load} = -10.0$ mA, all I/O pins $I_{Load} = -15.0$ mA, PTA0, PTA1, PTA3–PTA5 only	V _{OH}	V _{DD} -0.4 V _{DD} -1.5 V _{DD} -0.8			v
Maximum combined I _{OH} (all I/O pins)	I _{OHT}	—	—	50	mA
Output low voltage $I_{Load} = 1.6$ mA, all I/O pins $I_{Load} = 10.0$ mA, all I/O pins $I_{Load} = 15.0$ mA, PTA0, PTA1, PTA3–PTA5 only	V _{OL}	 		0.4 1.5 0.8	v
Maximum combined I _{OL} (all I/O pins)	I _{OLT}	—	—	50	mA
Input high voltage PTA0–PTA5, PTB0–PTB7	V _{IH}	0.7 x V _{DD}	_	V _{DD}	V
Input low voltage PTA0–PTA5, PTB0–PTB7	V _{IL}	V _{SS}	_	0.3 x V _{DD}	V
Input hysteresis	V _{HYS}	0.06 x V _{DD}	—	—	V
DC injection current, all ports	I _{INJ}	-2	—	+2	mA
Total dc current injection (sum of all I/O)	I _{INJTOT}	-25	—	+25	mA
Ports Hi-Z leakage current	IIL	-1	±0.1	+1	μA
Capacitance Ports (as input) Ports (as input)	C _{IN} C _{OUT}			12 8	pF
POR rearm voltage ⁽³⁾	V _{POR}	0	—	100	mV
POR rise time ramp rate ⁽⁴⁾	R _{POR}	0.035	—	_	V/ms
Monitor mode entry voltage	V _{TST}	V _{DD} + 2.5	—	9.1	V
Pullup resistors ⁽⁵⁾ PTA0–PTA5, PTB0–PTB7	R _{PU}	16	26	36	kΩ
Low-voltage inhibit reset, trip falling voltage	V _{TRIPF}	3.90	4.20	4.50	V
Low-voltage inhibit reset, trip rising voltage	V _{TRIPR}	4.00	4.30	4.60	V
Low-voltage inhibit reset/recover hysteresis	V _{HYS}	_	100	—	mV

1. V_{DD} = 4.5 to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H , unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25•C only.

3. Maximum is highest voltage that POR is guaranteed.

4. If minimum V_{DD} is not reached before the internal POR reset is released, the LVI will hold the part in reset until minimum V_{DD} is reached. 5. R_{PU} is measured at V_{DD} = 5.0 V.

NP					
	MECHANICAL OUTLINES	DOCUMENT NO: 98ASB42567B			
• FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	DICTIONARY	PAGE: 751G			
ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE THIS DRAWING	REV: E			

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A AND B TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 4. THIS DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 5. THIS DIMENSION DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 6. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.62 mm.

1 COLC W/D = 1 OT OT CU	CASE NUMBER: 751G-05		
	STANDARD: JEDEC MS-013AA		
	PACKAGE CODE: 2003 SHEET: 2 OF 3		