

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	SH-2
Core Size	32-Bit Single-Core
Speed	28.7MHz
Connectivity	EBI/EMI, SCI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	74
Program Memory Size	128KB (128K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	112-BQFP
Supplier Device Package	112-QFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/hd6477042af28v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section	Page	Description				
11.2.3 DMA	220	Description amended				
Registers 0–3 (DMATCR0– DMATCR3)		The data for the upper 8 bits of a DMATCR is 0 when read.				
11.2.4 DMA	221	Description amended				
Channel Control Registers 0–3 (CHCR0–CHCR3)		• Bits 31–21—Reserved bits: Data are 0 when read. The write value always be 0.				
	224	Description amended				
		• Bit 7—Reserved bits: Data is 0 when read. The write value always be 0.				
11.2.5 DMAC	226	Description amended				
Operation Register (DMAOR)		• Bits 15–10—Reserved bits: Data are 0 when read. The write value always be 0.				
	227	Description amended				
		• Bits 7–3—Reserved bits: Data are 0 when read. The write value always be 0.				
11.3.3 Channel Priority	233	Figure amended				
Figure 11.3 Round Robin Mode		Channel 0 is given the lowest priority.				
12.4.5 Cascade Connection Mode	337	Figure amended				
Figure 12.23 Cascade Connection Operation Example						
(Phase Counting Mode)		TCLKD				
12.4.9 Complementary	373	Figure amended				
		When $BDC = 1$, N = 0, P = 0, FB = 0, output active level = high				
Example of Output Phase Switching by External Input (1)						

Pin No.	MCU Mode	PROM Mode	
1	PA23/WRHH	NC	
2	PE14/TIOC4C/DACK0/AH	V _{cc}	
3	PA22/WRHL	NC	
4	PA21/CASHH	NC	
5	PE15/TIOC4D/DACK1/IRQOUT	CE	
6	V _{ss}	V _{ss}	
7	PC0/A0	A0	
8	PC1/A1	A1	
9	PC2/A2	A2	
10	PC3/A3	A3	
11	PC4/A4	A4	
12	V _{cc}	V _{cc}	
13	PC5/A5	A5	
14	V _{ss}	V _{ss}	
15	PC6/A6	A6	
16	PC7/A7	A7	
17	PC8/A8	A8	
18	PC9/A9	NC	
19	PC10/A10	A10	
20	PC11/A11	A11	
21	PC12/A12	A12	
22	PC13/A13	A13	
23	PC14/A14	A14	
24	PC15/A15	A15	
25	PB0/A16	A16	
26	V _{cc}	V _{cc}	
27	PB1/A17	NC	
28	V _{ss}	V _{ss}	
29	PA20/CASHL	NC	
30	PA19/BACK/DRAK1	NC	

 Table 1.4
 Pin Arrangement by Mode for SH7041, SH7043 (QFP-144 Pin)

Addressing Mode	Instruction Format	Effective Addresses Calculation	Equation
Indirect register addressing with displacement	@(disp:4, Rn)	The effective address is Rn plus a 4-bit displacement (disp). The value of disp is zero- extended, and remains the same for a byte operation, is doubled for a word operation, and is quadrupled for a longword operation. Rn disp (zero-extended) 1/2/4	Byte: Rn + disp Word: Rn + disp × 2 Longword: Rn + disp × 4
Indirect indexed register addressing	@(R0, Rn)	The effective address is the Rn value plus R0. Rn + Rn + R0 R0	Rn + R0
Indirect GBR addressing with displacement	@(disp:8, GBR)	The effective address is the GBR value plus an 8-bit displacement (disp). The value of disp is zero- extended, and remains the same for a byte opera- tion, is doubled for a word operation, and is quadrupled for a longword operation. GBR (zero-extended) $+$ + disp \times 1/2/4 1/2/4	Byte: GBR + disp Word: GBR + disp × 2 Longword: GBR + disp × 4

Table 2.8 Addressing Modes and Effective Addresses (cont)

Instructi	on	Instruction Code	Operation	Execu- tion Cycles	T Bit
DMULS.L	Rm,Rn	0011nnnnmmm1101	Signed operation of Rn \times Rm \rightarrow MACH, MACL $32 \times 32 \rightarrow 64$ bit	2 to 4*	_
DMULU.L	Rm,Rn	0011nnnnmmm0101	Unsigned operation of Rn \times Rm \rightarrow MACH, MACL 32 \times 32 \rightarrow 64 bit	2 to 4*	_
DT	Rn	0100nnnn00010000	$\begin{array}{l} Rn-1 \rightarrow Rn, \text{when } Rn \\ \text{is } 0, 1 \rightarrow T. \text{When } Rn \text{is} \\ \text{nonzero, } 0 \rightarrow T \end{array}$	1	Comparison result
EXTS.B	Rm,Rn	0110nnnnmmm1110	A byte in Rm is sign-extended \rightarrow Rn	1	—
EXTS.W	Rm,Rn	0110nnnnmmm1111	A word in Rm is sign-extended \rightarrow Rn	1	_
EXTU.B	Rm, Rn	0110nnnnmmm1100	A byte in Rm is zero- extended \rightarrow Rn	1	_
EXTU.W	Rm, Rn	0110nnnnmmm1101	A word in Rm is zero- extended \rightarrow Rn	1	_
MAC.L	@Rm+,@Rn+	0000nnnnmm1111	Signed operation of (Rn) × (Rm) + MAC \rightarrow MAC 32 × 32 \rightarrow 64 bit	3/(2 to 4)*	_
MAC.W	@Rm+,@Rn+	0100nnnnmm1111	Signed operation of (Rn) × (Rm) + MAC \rightarrow MAC 16 × 16 + 64 \rightarrow 64 bit	3/(2)*	_
MUL.L	Rm,Rn	0000nnnnmmm0111	$\begin{array}{c} Rn\timesRm\toMACL,32\\\times32\to32\ \text{bit} \end{array}$	2 to 4*	_
MULS.W	Rm,Rn	0010nnnnmmm1111	Signed operation of Rn \times Rm \rightarrow MAC 16 \times 16 \rightarrow 32 bit	1 to 3*	—
MULU.W	Rm,Rn	0010nnnnmmm1110	Unsigned operation of Rn \times Rm \rightarrow MAC 16 \times 16 \rightarrow 32 bit	1 to 3*	—
NEG	Rm,Rn	0110nnnnmmm1011	$0-Rm \rightarrow Rn$	1	_
NEGC	Rm,Rn	0110nnnnmmm1010	0–Rm–T \rightarrow Rn, Borrow \rightarrow T	1	Borrow

Table 2.13 Arithmetic Operation Instructions (cont)

8.3.2 Activating Sources

The DTC performs write operations to the DTCSR with either interrupt sources or software as its activating sources. Each interrupt source is designated by specific DTER bits to determine whether it becomes an interrupt request to the CPU or a DTC activating source.

When the DISEL bit is 1, an interrupt, established as the DTC activating source, is requested of the CPU after each data transfer in DRC. When the DISEL bit is a 0, a request is made only after the completion of a designated number of data transfers. When the activating source interrupt is requested of the CPU, the corresponding DTER bit is automatically cleared.

In the case of software activation also, when the DISEL bit is a 1, a software DTC activation interrupt (SWDTCE) is requested of the CPU after each data transfer. When the DISEL bit is a 0, a request is made only after the completion of a designated number of data transfers. When no SWDTCE interrupt is requested of the CPU, the SWDTE bit of the DTCSR is automatically cleared. When a request is made of the CPU, the SWDTE bit is maintained as a 1.

When multiple DTC activating sources occur simultaneously, they are accepted and the DTC is activated in accordance with the default priority rankings shown in table 8.2.

Figure 8.3 shows a block diagram of activating source control.

8.3.3 DTC Vector Table

Figure 8.4 shows the correspondence between DTC vector addresses and register information placement. For each DTC activating source there are 2 bytes in the DTC vector table, which contain the register information start address.

Table 8.2 shows the correspondence between activating sources and vector addresses. When activating with software, the vector address is calculated as H'0400 + DTVEC[7:0].

10.1.5 Address Map

Figure 10.2 shows the address format used by the SH7040 Series.

Figure 10.2 Address Format

This LSI uses 32-bit addresses:

- A31–A24 are used to select the type of space and are not output externally.
- Bits A23 and A22 are decoded and output as chip select signals (CS0–CS3) for the corresponding areas when bits A31–A24 are 00000000.
- A21–A0 are output externally.

Table 10.3 shows an address map for on-chip ROM effective mode. Table 10.4 shows an address map for on-chip ROM ineffective mode.

Renesas

Figure 10.28 32-Bit Data Bus Width SRAM Connection

• Bits 3–0—I/O Control C3–C0 (IOC3–IOC0): These bits set the TGR4C register function.

Bit 3: IOC3	Bit 2: IOC2	Bit 1: IOC1	Bit 0: IOC0	Description					
0 0		0	0	TGR4C	Output disabled (Output disabled (initial value)			
			1	is an	Initial	Output 0 on compare-match			
		1	0	output	output	Output 1 on compare-match			
			1	compare	is 0	Toggle output on compare-match			
	1	0	0	register	Output disabled				
			1		Initial	Output 0 on compare-match			
		1	0	_	output	Output 1 on compare-match			
			1	_	is 1	Toggle output on compare-match			
1	0	0	0	TGR4C	Capture	Input capture on rising edge			
			1	is an	input source	Input capture on falling edge			
		1	0	input	is the	Input capture on both edges			
			1	capture	TIOC4C pin				
	1	0	0	register		Input capture on rising edge			
			1	_		Input capture on falling edge			
		1	0	_		Input capture on both edges			
			1	_					

Note: When the BFA bit of TMDR4 is set to 1 and TGR4C is being used as a buffer register, these settings become ineffective and input capture/output compares do not occur.

12.2.4 Timer Interrupt Enable Register (TIER)

The TIER is an 8-bit register that controls the enable/disable of interrupt requests for each channel. The MTU has five TIER registers, one each for channel. TIER is initialized to H'40 by a reset or by standby mode.

Channel 0: TIER0:

Bit:	7	6	5	4	3	2	1	0
	TTGE		—	TCIEV	TGIED	TGIEC	TGIEB	TGIEA
Initial value:	0	1	0	0	0	0	0	0
R/W:	R/W	R	R	R/W	R/W	R/W	R/W	R/W

12.4.5 Cascade Connection Mode

Cascade connection mode is a function that connects the 16-bit counters of two channels together to act as a 32-bit counter.

This function operates by using the TPSC2–TPSC0 bits of the TCR register to set the channel 1 counter clock to count by TCNT2 counter overflow/underflow.

Note: When channel 1 is set to phase counting mode, the counter clock settings become ineffective.

Table 12.6 shows the cascade connection combinations.

Table 12.6 Cascade Connection Combinations

Combination	Upper 16 Bits	Lower 16 Bits
Channel 1, channel 2	TCNT1	TCNT2

Procedure for Setting Cascade Connection Mode (Figure 12.22):

- 1. Set the TPSC2–TPSC 0 bits of the channel 1 timer control register (TCR) to B'111 to select "count by TCNT2 overflow/underflow."
- 2. Set the CST bits corresponding to the upper and lower 16 bits in the TSTR to 1 to start the count operation.

Figure 12.22 Procedure for Selecting Cascade Connection Mode

12.7.7 Contention between TGR Write and Input Capture

If an input capture signal is issued in the T_2 state of the TGR read cycle, input capture has priority, and TGR write does not occur (figure 12.82).

Figure 12.82 TGR Write and Input Capture Contention

12.10 POE Register Descriptions

12.10.1 Input Level Control/Status Register (ICSR)

The input level control/status register (ICSR) is a 16-bit read/write register that selects the $\overline{POE0}$ – $\overline{POE3}$ pin input modes, controls the enable/prohibit of interrupts, and indicates status. If any of the POE3F–POE0F bits are set to 1, the high current pins become high impedance state.

ICSR is initialized to H'0000 by power-on resets; however, it is not initialized for manual resets, standby mode, or sleep mode, so the previous data is maintained.

Bit:	15	14	13	12	11	10	9	8	
	POE3F	POE2F	POE1F	POE0F	_			PIE	
Initial value:	0	0	0	0	0	0	0	0	
R/W:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R	R/W	
Bit:	7	6	5	4	3	2	1	0	
	POE3M1	POE3M0	POE2M1	POE2M0	POE1M1	POE1M0	POE0M1	POE0M0	
Initial value:	0	0	0	0	0	0	0	0	
R/W:	R/W								

Note: * Only 0 writes are possible to clear the flags.

• Bit 15—POE3 Flag (POE3F): This flag indicates that a high impedance request has been input to the POE3 pin.

Bit 15: POE3F	Description
0	Clear condition: By writing 0 to POE3F after reading a POE3F = 1 (initial value)
1	Set condition: When the input set by ICSR bits 7 and 6 occurs at the $\overline{\text{POE3}}$ pin

• Bit 14—POE2 Flag (POE2F): This flag indicates that a high impedance request has been input to the POE2 pin.

Bit 14: POE2F	Description
0	Clear condition: By writing 0 to POE2F after reading a POE2F = 1 (initial value)
1	Set condition: When the input set by ICSR bits 5 and 4 occurs at the $\overline{\text{POE2}}$ pin

12.10.2 Output Level Control/Status Register (OCSR)

The output level control/status register (OCSR) is a 16-bit read/write register that controls the enable/disable of both output level comparison and interrupts, and indicates status. If the OSF bit is set to 1, the high current pins become high impedance.

OCSR is initialized to H'0000 by an external power-on reset; however, it is not initialized for manual resets, reset by WDT standby mode, or sleep mode, so the previous data is maintained.

Bit:	15	14	13	12	11	10	9	8
	OSF	—	—	—		—	OCE	OIE
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/(W)*	R	R	R	R	R	R/W	R/W
	_		_		_	_		_
Bit:	7	6	5	4	3	2	1	0
	—	_	_	_		—	—	—
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R

Note: * Only 0 writes are possible to clear the flag.

• Bit 15—Output Short Flag (OSF): This flag indicates that among the three pairs of 2 phase outputs compared, the outputs of at least one pair have simultaneously become Low level output.

Bit 15: OSF	Description
0	Clear condition: By writing 0 to OSF after reading an OSF = 1 (initial value)
1	Set condition: When any one pair of the 2-phase outputs simultaneously become Low level

• Bits 14–10—Reserved: These bits always read as 0. The write value should always be 0.

14.5.3 Break Detection and Processing

Break signals can be detected by reading the RxD pin directly when a framing error (FER) is detected. In the break state, the input from the RxD pin consists of all 0s, so FER is set and the parity error flag (PER) may also be set. In the break state, the SCI receiver continues to operate, so if the FER bit is cleared to 0, it will be set to 1 again.

14.5.4 Sending a Break Signal

The TxD pin becomes a general I/O pin with the I/O direction and level determined by the I/O port data register (DR) and pin function controller (PFC) control register (CR). These conditions allow break signals to be sent. The DR value is substituted for the marking status until the PFC is set. Consequently, the output port is set to initially output a 1. To send a break in serial transmission, first clear the DR to 0, then establish the TxD pin as an output port using the PFC. When TE is cleared to 0, the transmission section is initialized regardless of the present transmission status.

14.5.5 Receive Error Flags and Transmitter Operation (Clock Synchronous Mode Only)

When a receive error flag (ORER, PER, or FER) is set to 1, the SCI will not start transmitting even if TDRE is set to 1. Be sure to clear the receive error flags to 0 before starting to transmit. Note that clearing RE to 0 does not clear the receive error flags.

14.5.6 Receive Data Sampling Timing and Receive Margin in the Asynchronous Mode

In the asynchronous mode, the SCI operates on a base clock of 16 times the bit rate frequency. In receiving, the SCI synchronizes internally with the falling edge of the start bit, which it samples on the base clock. Receive data is latched on the rising edge of the eighth base clock pulse (figure 14.24).

• Sample 32-byte programming program

The wait time set values (number of loops) are for the case where f = 28.7 MHz. For other frequencies, the set value is given by the following expression:

Wait time (μ s) × f (MHz) ÷ 4

Registers Used

R4 (input): R5 (input): R7 (output): R0-3, 8-13:	Program data stor Programming des OK (normal) or N Work registers	rage address tination address IG (error)	
FLMCR1	.EQU	Н'80	
FLMCR2	.EQU	H'81	
OK	.EQU	н′0	
NG	.EQU	Н'1	
Wait10u	.EQU	72	
Wait50u	.EQU	359	
Wait4u	.EQU	29	
Wait2u	.EQU	14	
Wait200u	.EQU	1435	
WDT_TCSR	.EQU	H'FFFF8610	
WDT_573u	.EQU	н'А579	
SWESET	.EQU	в'01000000	
PSU1SET	.EQU	в'00010000	
PISET	.EQU	в'0000001	
P1CLEAR	.EQU	в′11111110	
PSU1CLEAR	.EQU	в′11101111	
PVSET	.EQU	в'00000100	
PVCLEAR	.EQU	в′11111011	
SWECLEAR	.EQU	в′10111111	
MAXVerify	.EQU	1000	
;			
FlashProgr	am .EQU	\$	
MC	W #H'01,R	2	; R2 work register (1)
MC	V.L #PdataB	uff,R0	; Save program data to work area
MC	W R4,R12		
MC	W #8,R13		
COPY_LOOP	.EQU	\$	

Module	Registers Initialized	Registers that Retain Data	Registers with Undefined Contents
Interrupt controller (INTC)	_	All registers	_
User break controller (UBC)		All registers	_
Data transfer controller (DTC)	All registers (excluding transfer data in memory and DTDR)	_	_
Cache memory (CAC)		All registers	
Bus state controller (BSC)	_	All registers	_
Direct memory access controller (DMAC)	 DMA channel control registers 0–3 (CHCR0– CHCR3) DMA operation register (DMAOR) 	_	 DMA source address registers 0–3 (SAR0– SAR3) DMA destination address registers 0–3 (DAR0– DAR3) DMA transfer count registers 0–3 (DMATCR0– DMATCR3)
Multifunction timer pulse unit (MTU)	MTU associated registers	POE associated registers	_
Watchdog timer (WDT)	 Bits 7–5 (OVF, WT/IT, TME) of the timer control status register (TCSR) Reset control/status register (RSTCSR) 	 Bits 2–0 (CKS2–CKS0) of the TCSR Timer counter (TCNT) 	_
Serial communication interface (SCI)	 Receive data register (RDR) Transmit data register (TDR) Serial mode register (SMR) Serial control register (SCR) Serial status register (SSR) Bit rate register (BBR) 	_	_
A/D converter (A/D)	All registers		_
Compare match timer (CMT)	All registers	_	_

Table 24.3 Register States in the Standby Mode

25.3.2 Control Signal Timing

 Table 25.5
 Control Signal Timing (Conditions: $V_{CC} = 5.0 V \pm 10\%$, $AV_{CC} = 5.0 V \pm 10\%$, $AV_{CC} = V_{CC} \pm 10\%$, $AV_{ref} = 4.5 V$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 V$, Ta = -20 to $+75^{\circ}$ C)

Item	Symbol	Min	Max	Unit	Figure
RES rise/fall	t_{RESr}, t_{RESf}	_	200	ns	25.4
RES pulse width	t _{RESW}	20	_	t _{cyc}	
MRES pulse width	t _{MRESW}	20	_	t _{cyc}	
NMI rise/fall	t _{NMI} r, t _{NMIf}		200	ns	25.5
RES setup time*	t _{RESS}	35		ns	25.4,
MRES setup time*	t _{MRESS}	35		ns	25.5
NMI setup time*	t _{NMIS}	35		ns	_
IRQ7–IRQ0 setup time (edge detection)	t _{IRQES}	35		ns	
IRQ7–IRQ0 setup time (level detection)	t _{IRQLS}	35		ns	
NMI hold time	t _{NMIH}	35		ns	25.5
IRQ7–IRQ0 hold time	t _{IRQEH}	35		ns	
IRQOUT output delay time	t _{IRQOD}	_	35	ns	25.6
Bus request setup time	t _{BRQS}	35		ns	25.7
Bus acknowledge delay time 1	t _{BACKD1}	_	35	ns	
Bus acknowledge delay time 2	t _{BACKD2}		35	ns	
Bus three-state delay time	t _{BZD}		35	ns	

Note: * The RES, MRES, NMI, BREQ, and IRQ7–IRQ0 signals are asynchronous inputs, but when thesetup times shown here are provided, the signals are considered to have produced changes at clock rise (for RES, MRES, BREQ) or clock fall (for NMI and IRQ7– IRQ0). If the setup times are not provided, recognition is delayed until the next clock rise or fall.

Figure 25.30 Analog Conversion Timing

25.4 A/D Converter Characteristics

 $\begin{array}{l} \mbox{Table 25.15 A/D Converter Timing (excluding A mask) (Conditions: $V_{CC} = 5.0 V \pm 10\%$, $AV_{CC} = 5.0 V \pm 10\%$, $AV_{CC} = V_{CC} \pm 10\%$, $AV_{ref} = 4.5 V$ to AV_{CC}, $V_{SS} = AV_{SS} = 0$ V$, $Ta = -20$ to $+75^{\circ}C$) \\ \end{array}$

	28.7 MHz					
Item	Min	Тур	Max	Unit		
Resolution	10	10	10	Bits		
Conversion time (when $CKS = 1$)	_	_	2.9	μs		
Analog input capacitance	—	_	20	pF		
Permitted signal source impedance	_	_	1	kΩ		
Non-linear error*	_	_	±8	LSB		
Offset error*	—	_	±8	LSB		
Full-scale error*	—	_	±8	LSB		
Quantization error*	_	_	±0.5	LSB		
Absolute error (when CKS = 1)	_	_	±15	LSB		

Note: * Reference values

Table 25.16A/D Converter Timing (A mask) (Condition: Vcc=5.0 ± 10%, AVcc=5.0 ± 10%,
AVcc=Vcc ± 10%, AVref=4.5V to AVcc, Vss=AVss=0V, Ta=-20 to +75°C)

	28.7 MHz		20 MHz				
Item	Min	Тур	Max	Min	Тур	Max	Unit
Resolution	10	10	10	10	10	10	Bits
Conversion time (when CKS=0)	—	—	9.3	—		13.4	μs
Analog input capacity		_	20			20	pF
Permission signal source impedance			1			1	kΩ
Non-linearity error*			±3			±3	LSB
Offset error*	_	_	±3	_	_	±3	LSB
Full scale error*		_	±3	_		±3	LSB
Quantize error*			±0.5			±0.5	LSB
Absolute error			±4			±4	LSB

Note: * Reference value

Figure B.16 PB1/A17 Block Diagram