

Welcome to <u>E-XFL.COM</u>

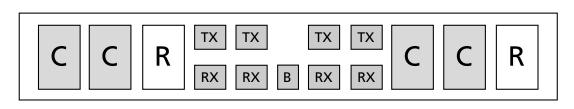
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details


Details	
Product Status	Active
Number of LABs/CLBs	18144
Number of Logic Elements/Cells	-
Total RAM Bits	165888
Number of I/O	418
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax1000-2fg676

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Two C-cells, a single R-cell, two Transmit (TX), and two Receive (RX) routing buffers form a Cluster, while two Clusters comprise a SuperCluster (Figure 1-4). Each SuperCluster also contains an independent Buffer (B) module, which supports buffer insertion on high-fanout nets by the place-and-route tool, minimizing system delays while improving logic utilization.

Figure 1-4 • AX SuperCluster

The logic modules within the SuperCluster are arranged so that two combinatorial modules are side-byside, giving a C–C–R – C–C–R pattern to the SuperCluster. This C–C–R pattern enables efficient implementation (minimum delay) of two-bit carry logic for improved arithmetic performance (Figure 1-5 on page 1-3).

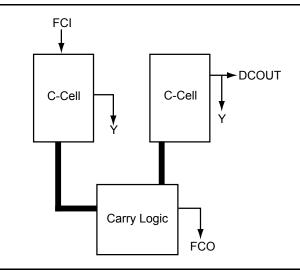


Figure 1-5 • AX 2-Bit Carry Logic

The AX architecture is fully fracturable, meaning that if one or more of the logic modules in a SuperCluster are used by a particular signal path, the other logic modules are still available for use by other paths.

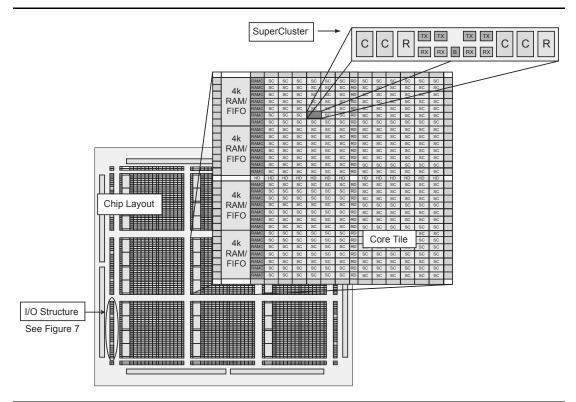

At the chip level, SuperClusters are organized into core tiles, which are arrayed to build up the full chip. For example, the AX1000 is composed of a 3x3 array of nine core tiles. Surrounding the array of core tiles are blocks of I/O Clusters and the I/O bank ring (Table 1-1). Each core tile consists of an array of 336 SuperClusters and four SRAM blocks (176 SuperClusters and three SRAM blocks for the AX250).

Table 1-1	• Number	of Core	Tiles	per	Device
-----------	----------	---------	-------	-----	--------

Device	Number of Core Tiles
AX125	1 regular tile
AX250	4 smaller tiles
AX500	4 regular tiles
AX1000	9 regular tiles
AX2000	16 regular tiles

General Description

The SRAM blocks are arranged in a column on the west side of the tile (Figure 1-6 on page 1-4).

Figure 1-6 • AX Device Architecture (AX1000 shown)

Embedded Memory

As mentioned earlier, each core tile has either three (in a smaller tile) or four (in the regular tile) embedded SRAM blocks along the west side, and each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are: 128x36, 256x18, 512x9, 1kx4, 2kx2 or 4kx1 bits. The individual blocks have separate read and write ports that can be configured with different bit widths on each port. For example, data can be written in by eight and read out by one.

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using core logic modules. The FIFO width and depth are programmable. The FIFO also features programmable ALMOST-EMPTY (AEMPTY) and ALMOST-FULL (AFULL) flags in addition to the normal EMPTY and FULL flags. In addition to the flag logic, the embedded FIFO control unit also contains the counters necessary for the generation of the read and write address pointers as well as control circuitry to prevent metastability and erroneous operation. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

I/O Logic

The Axcelerator family of FPGAs features a flexible I/O structure, supporting a range of mixed voltages with its bank-selectable I/Os: 1.5V, 1.8V, 2.5V, and 3.3V. In all, Axcelerator FPGAs support at least 14 different I/O standards (single-ended, differential, voltage-referenced). The I/Os are organized into banks, with eight banks per device (two per side). The configuration of these banks determines the I/O standards supported (see "User I/Os" on page 2-11 for more information). All I/O standards are available in each bank.

Each I/O module has an input register (InReg), an output register (OutReg), and an enable register (EnReg) (Figure 1-7 on page 1-5). An I/O Cluster includes two I/O modules, four RX modules, two TX modules, and a buffer (B) module.

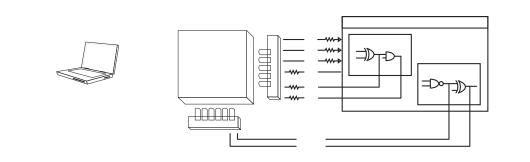
Design Environment

The Axcelerator family of FPGAs is fully supported by both Microsemi's Libero[®] Integrated Design Environment and Designer FPGA Development software. Libero IDE is an integrated design manager that seamlessly integrates design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment (see the *Libero IDE Flow* diagram located on the Microsemi SoC Products Group website). Libero IDE includes Synplify[®] Actel Edition (AE) from Synplicity[®], ViewDraw[®] AE from Mentor Graphics[®], Model*Sim[®]* HDL Simulator from Mentor Graphics, WaveFormer Lite[™] AE from SynaptiCAD[®], and Designer software from Microsemi.

Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes the following:

- Timer a world-class integrated static timing analyzer and constraints editor which support timing-driven place-and-route
- NetlistViewer a design netlist schematic viewer
- · ChipPlanner a graphical floorplanner viewer and editor
- SmartPower allows the designer to quickly estimate the power consumption of a design
- PinEditor a graphical application for editing pin assignments and I/O attributes
- I/O Attribute Editor displays all assigned and unassigned I/O macros and their attributes in a spreadsheet format

With the Designer software, a user can lock the design pins before layout while minimally impacting the results of place-and-route. Additionally, Microsemi's back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Microsemi's integrated verification and logic analysis tool. Another tool included in the Designer software is the SmartGen core generator, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design.


Designer software is compatible with the most popular FPGA design entry and verification tools from EDA vendors, such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

Programming

Programming support is provided through Silicon Sculptor II, a single-site programmer driven via a PCbased GUI. In addition, BP Microsystems offers multi-site programmers that provide qualified support for Microsemi devices. Factory programming is available for high-volume production needs.

In-System Diagnostic and Debug Capabilities

The Axcelerator family of FPGAs includes internal probe circuitry, allowing the designer to dynamically observe and analyze any signal inside the FPGA without disturbing normal device operation (Figure 1-9).

The maximum power dissipation allowed for Military temperature and Mil-Std 883B devices is specified as a function of θ_{ic} .

Package Type	Pin Count	θ_{jc}	$\theta_{\text{ja}}\text{Still}\text{Air}$	θ_{ja} 1.0m/s	θ_{ja} 2.5m/s	Units
Chip Scale Package (CSP)	180	N/A	57.8	51.0	50	°C/W
Plastic Quad Flat Pack (PQFP)	208	8.0	26	23.5	20.9	°C/W
Plastic Ball Grid Array (PBGA)	729	2.2	13.7	10.6	9.6	°C/W
Fine Pitch Ball Grid Array (FBGA)	256	3.0	26.6	22.8	21.5	°C/W
Fine Pitch Ball Grid Array (FBGA)	324	3.0	25.8	22.1	20.9	°C/W
Fine Pitch Ball Grid Array (FBGA)	484	3.2	20.5	17.0	15.9	°C/W
Fine Pitch Ball Grid Array (FBGA)	676	3.2	16.4	13.0	12.0	°C/W
Fine Pitch Ball Grid Array (FBGA)	896	2.4	13.6	10.4	9.4	°C/W
Fine Pitch Ball Grid Array (FBGA)	1152	1.8	12.0	8.9	7.9	°C/W
Ceramic Quad Flat Pack (CQFP) ¹	208	2.0	22	19.8	18.0	°C/W
Ceramic Quad Flat Pack (CQFP) ¹	352	2.0	17.9	16.1	14.7	°C/W
Ceramic Column Grid Array (CCGA) ²	624	6.5	8.9	8.5	8	°C/W

 Table 2-6 • Package Thermal Characteristics

Notes:

1. θ_{jc} for the 208-pin and 352-pin CQFP refers to the thermal resistance between the junction and the bottom of the package.

2. θ_{jc} for the 624-pin CCGA refers to the thermal resistance between the junction and the top surface of the package. Thermal resistance from junction to board (θ_{ib}) for CCGA 624 package is 3.4°C/W.

Timing Characteristics

Axcelerator devices are manufactured in a CMOS process, therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing. The derating factors shown in Table 2-7 should be applied to all timing data contained within this datasheet.

	Junction Temperature								
VCCA	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C		
1.4 V	0.83	0.86	0.91	0.96	1.02	1.05	1.15		
1.425 V	0.82	0.84	0.90	0.94	1.00	1.04	1.13		
1.5 V	0.78	0.80	0.85	0.89	0.95	0.98	1.07		
1.575 V	0.74	0.76	0.81	0.85	0.90	0.94	1.02		
1.6 V	0.73	0.75	0.80	0.84	0.89	0.92	1.01		

Table 2-7 • Temperature and Voltage Timing Derating Factors(Normalized to Worst-Case Commercial, T_J = 70°C, VCCA = 1.425V)

Notes:

1. The user can set the junction temperature in Designer software to be any integer value in the range of – 55°C to 175°C.

2. The user can set the core voltage in Designer software to be any value between 1.4V and 1.6V.

All timing numbers listed in this datasheet represent sample timing characteristics of Axcelerator devices. Actual timing delay values are design-specific and can be derived from the Timer tool in Microsemi's Designer software after place-and-route.

Timing Characteristics

Table 2-28 • 1.8V LVCMOS I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 1.7 V, TJ = 70°C

		-2 S	peed	–1 S	peed	Std S	Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units	
LVCMOS18	Output Module Timing								
t _{DP}	Input Buffer		3.26		3.71		4.37	ns	
t _{PY}	Output Buffer		4.55		5.18		6.09	ns	
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		2.82		2.83		2.84	ns	
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		3.43		3.45		3.46	ns	
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		6.01		6.85		8.05	ns	
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		6.73		7.67		9.01	ns	
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns	
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns	
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns	
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns	
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns	
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns	
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns	
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns	
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns	
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns	
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns	
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns	
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns	

Module Specifications

C-Cell

Introduction

The C-cell is one of the two logic module types in the AX architecture. It is the combinatorial logic resource in the Axcelerator device. The AX architecture implements a new combinatorial cell that is an extension of the C-cell implemented in the SX-A family. The main enhancement of the new C-cell is the addition of carry-chain logic.

The C-cell can be used in a carry-chain mode to construct arithmetic functions. If carry-chain logic is not required, it can be disabled.

The C-cell features the following (Figure 2-27):

- Eight-input MUX (data: D0-D3, select: A0, A1, B0, B1). User signals can be routed to any one of these inputs. Any of the C-cell inputs (D0-D3, A0, A1, B0, B1) can be tied to one of the four routed clocks (CLKE/F/G/H).
- Inverter (DB input) can be used to drive a complement signal of any of the inputs to the C-cell.
- A carry input and a carry output. The carry input signal of the C-cell is the carry output from the C-cell directly to the north.
- · Carry connect for carry-chain logic with a signal propagation time of less than 0.1 ns.
- A hardwired connection (direct connect) to the adjacent R-cell (Register Cell) for all C-cells on the east side of a SuperCluster with a signal propagation time of less than 0.1 ns.

This layout of the C-cell (and the C-cell Cluster) enables the implementation of over 4,000 functions of up to five bits. For example, two C-cells can be used together to implement a four-input XOR function in a single cell delay.

The carry-chain configuration is handled automatically for the user with Microsemi's extensive macro library (please see the *Antifuse Macro Library Guide* for a complete listing of available Axcelerator macros).

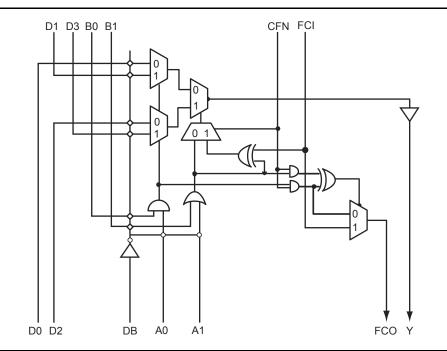


Figure 2-27 • C-Cell

PLLRCLK and PLLHCLK

PLLRCLK (PLLHCLK) is used to drive global resource CLK (HCLK) from a PLL (Figure 2-44).

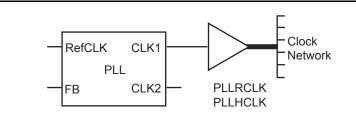


Figure 2-44 • PLLRCLK and PLLHCLK

Using Global Resources with PLLs

Each global resource has an associated PLL at its root. For example, PLLA can drive HCLKA, PLLE can drive CLKE, etc. (Figure 2-45).

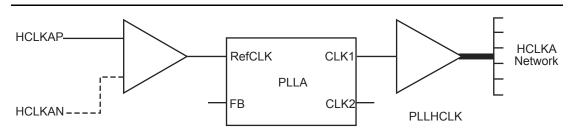


Figure 2-45 • Example of HCLKA Driven from a PLL with External Clock Source

In addition, each clock pin of the package can be used to drive either its associated global resource or PLL. For example, package pins CLKEP and CLKEN can drive either the RefCLK input of PLLE or CLKE.

There are two macros required when interfacing the embedded PLLs with the global resources: PLLINT and PLLOUT.

PLLINT

This macro is used to drive the RefCLK input of the PLL internally from user signals.

PLLOUT

This macro is used to connect either the CLK1 or CLK2 output of a PLL to the regular routing network (Figure 2-46).

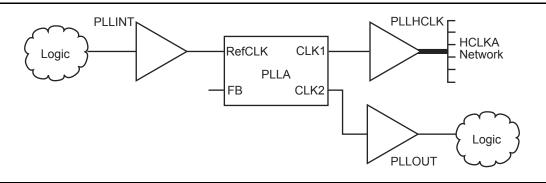


Figure 2-46 • Example of PLLINT and PLLOUT Usage

Table 2-80 • PLL Interface Signals

o	_	User	Allowable	
Signal Name	Туре	Accessible	Values	Function
RefCLK	Input	Yes		Reference Clock for the PLL
FB	Input	Yes		Feedback port for the PLL
PowerDown	Input	Yes		PLL power down control
			0	PLL powered down
			1	PLL active
DIVI[5:0]	Input	Yes	1 to 64, in	Sets value for feedback divider (multiplier)
DIVJ[5:0]	Input	Yes	unsigned binary notation offset by -1	Sets value for CLK1 divider
LowFreq	Input	Yes		Input frequency range selector
			0	50–200 MHz
			1	14–50 MHz
Osc[2:0]	Input	Yes		Output frequency range selector
			XX0	400–1000 MHZ
			001	200–400 MHZ
			011	100–200 MHZ
			101	50–100 MHZ
			111	20–50 MHZ
DelayLine[4:0]	Input	Yes	-15 to +15 (increments), in signed-and- magnitude binary representation	Clock Delay (positive/negative) in increments of 250 ps, with maximum value of ± 3.75 ns
FBMuxSel	Input	No		Selects the source for the feedback input
REFSEL	Input	No		Selects the source for the reference clock
OUTSEL	Input	No		Selects the source for the routed net output
PLLSEL	Input	No		ROOTSEL & PLLSEL are used to select the source of the global clock network
ROOTSEL	Input	No		
Lock	Output	Yes		High value indicates PLL has locked
CLK1	Output	Yes		PLL clock output
CLK2	Output	Yes		PLL clock output

Note: If the input RefClk is taken outside its operating range, the outputs Lock, CLK1 and CLK2 are indeterminate.

Detailed Specifications

Programming

Device programming is supported through the Silicon Sculptor II, a single-site, robust and compact device programmer for the PC. Up to four Silicon Sculptor IIs can be daisy-chained and controlled from a single PC host. With standalone software for the PC, Silicon Sculptor II is designed to allow concurrent programming of multiple units from the same PC when daisy-chained.

Silicon Sculptor II programs devices independently to achieve the fastest programming times possible. Each fuse is verified by Silicon Sculptor II to ensure correct programming. Furthermore, at the end of programming, there are integrity tests that are run to ensure that programming was completed properly. Not only does it test programmed and nonprogrammed fuses, Silicon Sculptor II also provides a self-test to test its own hardware extensively.

Programming an Axcelerator device using Silicon Sculptor II is similar to programming any other antifuse device. The procedure is as follows:

- 1. Load the *.AFM file.
- 2. Select the device to be programmed.
- 3. Begin programming.

When the design is ready to go to production, Microsemi offers device volume-programming services either through distribution partners or via our In-House Programming Center.

In addition, BP Microsystems offers multi-site programmers that provide qualified support for Axcelerator devices.

For more details on programming the Axcelerator devices, please refer to the Silicon Sculptor II User's Guide.

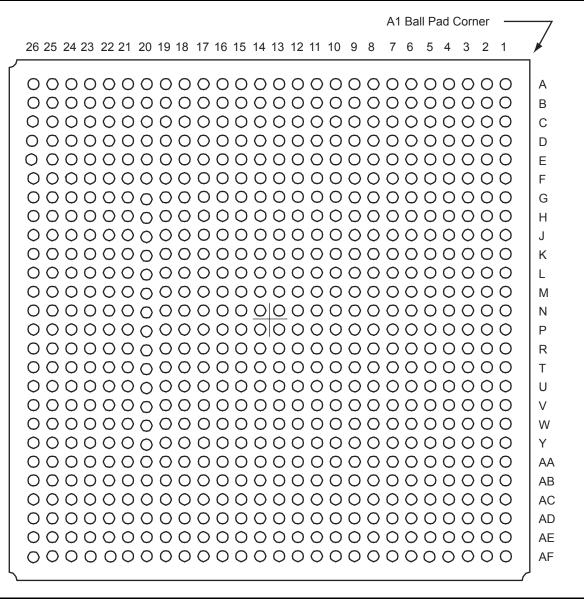
Microsemi

BG729		BG729			
AX1000 Function	Pin Number	AX1000 Function	Pin Number		
VCCIB0	B4	VCCIB4	W17		
VCCIB0	C4	VCCIB4	W18		
VCCIB0	J10	VCCIB5	AE4		
VCCIB0	J11	VCCIB5	AF4		
VCCIB0	J12	VCCIB5	AG4		
VCCIB0	K12	VCCIB5	V12		
VCCIB0	K13	VCCIB5	V13		
VCCIB1	A24	VCCIB5	W10		
VCCIB1	B24	VCCIB5	W11		
VCCIB1	C24	VCCIB5	W12		
VCCIB1	J16	VCCIB6	AD1		
VCCIB1	J17	VCCIB6	AD2		
VCCIB1	J18	VCCIB6	AD3		
VCCIB1	K15	VCCIB6	R10		
VCCIB1	K16	VCCIB6	T10		
VCCIB2	D25	VCCIB6	Т9		
VCCIB2	D26	VCCIB6	U9		
VCCIB2	D27	VCCIB6	V9		
VCCIB2	K19	VCCIB7	D1		
VCCIB2	L19	VCCIB7	D2		
VCCIB2	M18	VCCIB7	D3		
VCCIB2	M19	VCCIB7	K9		
VCCIB2	N18	VCCIB7	L9		
VCCIB3	AD25	VCCIB7	M10		
VCCIB3	AD26	VCCIB7	M9		
VCCIB3	AD27	VCCIB7	N10		
VCCIB3	R18	VCOMPLA	B13		
VCCIB3	T18	VCOMPLB	A14		
VCCIB3	T19	VCOMPLC	A15		
VCCIB3	U19	VCOMPLD	J15		
VCCIB3	V19	VCOMPLE	AG15		
VCCIB4	AE24	VCOMPLF	W15		
VCCIB4	AF24	VCOMPLG	AC14		
VCCIB4	AG24	VCOMPLH	W13		
VCCIB4	V15	VPUMP	D24		
VCCIB4	V16				
VCCIB4	W16				

Pin Number F17 D18 E17 E21 D21 E20 D20 G16 G15

> F19 E19 J16 H16 E22 D22 H19 G19 G22 F22 J17 H17 G20 F20 J18 H18 G21 F21 K19 J19 J21 H21 J20 H20 J22

FG484		FG484		FG484		
AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function		
Bank 0		IO19NB0F1/HCLKAN	E11	IO37PB1F3		
IO00NB0F0	E3	IO19PB0F1/HCLKAP	E10	IO38NB1F3		
IO00PB0F0	D3	IO20NB0F1/HCLKBN	D12	IO38PB1F3		
IO01NB0F0	E7	IO20PB0F1/HCLKBP	D11	IO39NB1F3		
IO01PB0F0	E6	Bank 1		IO39PB1F3		
IO02NB0F0	C5	IO21NB1F2/HCLKCN	F13	IO40NB1F3		
IO02PB0F0	C4	IO21PB1F2/HCLKCP	F12	IO40PB1F3		
IO03NB0F0	D7	IO22NB1F2/HCLKDN	E14	IO41NB1F3		
IO03PB0F0	D6	IO22PB1F2/HCLKDP	E13	IO41PB1F3		
IO04NB0F0	B5	IO24NB1F2	A14	Bank 2		
IO04PB0F0	B4	IO24PB1F2	A13	IO42NB2F4		
IO05NB0F0	C7	IO25NB1F2	B14	IO42PB2F4		
IO05PB0F0	C6	IO25PB1F2	B13	IO43NB2F4		
IO06NB0F0	A5	IO26NB1F2	C15	IO43PB2F4		
IO06PB0F0	A4	IO27NB1F2	A16	IO44NB2F4		
IO07NB0F0	A7	IO27PB1F2	A15	IO44PB2F4		
IO07PB0F0	A6	IO28NB1F2	B16	IO45NB2F4		
IO08NB0F0	B7	IO28PB1F2	B15	IO45PB2F4		
IO08PB0F0	B6	IO29NB1F2	D16	IO46NB2F4		
IO10NB0F0	B9	IO29PB1F2	D15	IO46PB2F4		
IO10PB0F0	B8	IO30NB1F2	A18	IO47NB2F4		
IO11NB0F0	E9	IO30PB1F2	A17	IO47PB2F4		
IO11PB0F0	E8	IO31NB1F2	F15	IO48NB2F4		
IO12NB0F1	D9	IO31PB1F2	F14	IO48PB2F4		
IO12PB0F1	D8	IO32NB1F3	C17	IO49NB2F4		
IO13NB0F1	C9	IO32PB1F3	C16	IO49PB2F4		
IO13PB0F1	C8	IO33NB1F3	E16	IO50NB2F4		
IO14NB0F1	A9	IO33PB1F3	E15	IO50PB2F4		
IO14PB0F1	A8	IO34NB1F3	B18	IO51NB2F4		
IO15NB0F1	B10	IO34PB1F3	B17	IO51PB2F4		
IO15PB0F1	A10	IO35NB1F3	B19	IO52NB2F5		
IO16NB0F1	B12	IO35PB1F3	A19	IO52PB2F5		
IO16PB0F1	B11	IO36NB1F3	C19	IO53NB2F5		
IO18NB0F1	C13	IO36PB1F3	C18	IO53PB2F5		
IO18PB0F1	C12	IO37NB1F3	F18	IO54NB2F5		



FG484		FG484		FG484	
AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function	Pin Number
IO54PB2F5	H22	IO72PB3F6	P20	IO90NB4F8	Y17
IO55NB2F5	L17	IO73PB3F6	R19	IO90PB4F8	Y18
IO55PB2F5	K17	IO74NB3F7	V21	IO91NB4F8	V15
IO56NB2F5	K21	IO74PB3F7	U21	IO91PB4F8	V16
IO56PB2F5	K22	IO75NB3F7	V22	IO92PB4F8	AB17
IO58NB2F5	L20	IO75PB3F7	U22	IO93NB4F8	Y15
IO58PB2F5	K20	IO76NB3F7	U20	IO93PB4F8	Y16
IO59NB2F5	L18	IO76PB3F7	T20	IO94NB4F9	AA16
IO59PB2F5	K18	IO77NB3F7	R17	IO94PB4F9	AA17
IO60NB2F5	M21	IO77PB3F7	P17	IO95NB4F9	AB14
IO60PB2F5	L21	IO78NB3F7	W21	IO95PB4F9	AB15
IO61NB2F5	L16	IO78PB3F7	W22	IO96NB4F9	W15
IO61PB2F5	K16	IO79NB3F7	T18	IO96PB4F9	W16
IO62NB2F5	M19	IO79PB3F7	R18	IO97NB4F9	AA13
IO62PB2F5	L19	IO80NB3F7	W20	IO97PB4F9	AB13
Bank 3	1	IO80PB3F7	V20	IO98NB4F9	AA14
IO63NB3F6	N16	IO81NB3F7	U19	IO98PB4F9	AA15
IO63PB3F6	M16	IO81PB3F7	T19	IO100NB4F9	Y14
IO64NB3F6	P22	IO82NB3F7	U18	IO100PB4F9	W14
IO64PB3F6	N22	IO82PB3F7	V19	IO101NB4F9	Y12
IO65NB3F6	N20	IO83NB3F7	R16	IO101PB4F9	Y13
IO65PB3F6	M20	IO83PB3F7	P16	IO102NB4F9	AA11
IO66NB3F6	P21	Bank 4		IO102PB4F9	AA12
IO66PB3F6	N21	IO84NB4F8	AB18	IO103NB4F9/CLKEN	V12
IO67NB3F6	N18	IO84PB4F8	AB19	IO103PB4F9/CLKEP	V13
IO67PB3F6	N19	IO85NB4F8	T15	IO104NB4F9/CLKFN	W11
IO68NB3F6	T22	IO85PB4F8	T16	IO104PB4F9/CLKFP	W12
IO68PB3F6	R22	IO86NB4F8	AA18	Bank 5	
IO69NB3F6	N17	IO86PB4F8	AA19	IO105NB5F10/CLKGN	U10
IO69PB3F6	M17	IO87NB4F8	W17	IO105PB5F10/CLKGP	U11
IO70NB3F6	T21	IO87PB4F8	V17	IO106NB5F10/CLKHN	V9
IO70PB3F6	R21	IO88NB4F8	Y19	IO106PB5F10/CLKHP	V10
IO71NB3F6	P18	IO88PB4F8	W18	IO107NB5F10	Y10
IO71PB3F6	P19	IO89NB4F8	U14	IO107PB5F10	Y11
IO72NB3F6	R20	IO89PB4F8	U15	IO108NB5F10	AA9

FG484		FG484		FG484	FG484			
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number			
IO246NB7F22	F3	GND	D4	GND	V5			
IO246PB7F22	G3	GND	E18	GND	W19			
IO250NB7F23	F4	GND	E5	GND	W4			
IO250PB7F23	G4	GND	G18	GND	Y20			
IO253NB7F23	G5	GND	H15	GND	Y3			
IO253PB7F23	G6	GND	H8	GND/LP	G7			
IO254NB7F23	D1	GND	J14	PRA	G11			
IO254PB7F23	E1	GND	J9	PRB	F11			
IO257NB7F23	F5	GND	K10	PRC	T12			
IO257PB7F23	E4	GND	K11	PRD	U12			
Dedicated I/	0	GND	K12	ТСК	G8			
VCCDA	H7	GND	K13	TDI	F9			
GND	A1	GND	L1	TDO	F7			
GND	A11	GND	L10	TMS	F6			
GND	A12	GND	L11	TRST	F8			
GND	A2	GND	L12	VCCA	G17			
GND	A21	GND	L13	VCCA	J10			
GND	A22	GND	L22	VCCA	J11			
GND	AA1	GND	M1	VCCA	J12			
GND	AA2	GND	M10	VCCA	J13			
GND	AA21	GND	M11	VCCA	J7			
GND	AA22	GND	M12	VCCA	K14			
GND	AB1	GND	M13	VCCA	K9			
GND	AB11	GND	M22	VCCA	L14			
GND	AB12	GND	N10	VCCA	L9			
GND	AB2	GND	N11	VCCA	M14			
GND	AB21	GND	N12	VCCA	M9			
GND	AB22	GND	N13	VCCA	N14			
GND	B1	GND	P14	VCCA	N9			
GND	B2	GND	P9	VCCA	P10			
GND	B21	GND	R15	VCCA	P11			
GND	B22	GND	R8	VCCA	P12			
GND	C20	GND	U16	VCCA	P13			
GND	C3	GND	U6	VCCA	Т6			
GND	D19	GND	V18	VCCA	U17			

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

Pin Number M8 Μ7 K4 L4 L6 M6 K5 L5 J4 J3 G2 H2 L8 L7 G3 H3 G4 H4 J6 K6 H5 J5 F2 F1 K8 K7 F4 F3 G6 H6 F5 G5 H7 J7

FG896		FG896		FG896		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function		
IO206PB6F19	AB4	IO224NB6F20	R2	IO241NB7F22		
IO207NB6F19	W6	IO224PB6F20	T2	IO241PB7F22		
IO207PB6F19	W7	Bank 7		IO242NB7F22		
IO208NB6F19	AB3	IO225NB7F21	R7	IO242PB7F22		
IO208PB6F19	AC3	IO225PB7F21	R6	IO243NB7F22		
IO209NB6F19	V8	IO226NB7F21	R4	IO243PB7F22	Γ	
IO209PB6F19	V9	IO226PB7F21	R5	IO244NB7F22		
IO210NB6F19	AA2	IO227NB7F21	R8	IO244PB7F22	Γ	
IO210PB6F19	AA1	IO227PB7F21	R9	IO245NB7F22	T	
IO211NB6F19	V5	IO228NB7F21	P1	IO245PB7F22		
IO211PB6F19	W5	IO228PB7F21	R1	IO246NB7F22		
IO212NB6F19	Y3	IO229NB7F21	P9	IO246PB7F22		
IO212PB6F19	Y4	IO229PB7F21	P8	IO247NB7F23		
IO213NB6F19	V7	IO230NB7F21	N2	IO247PB7F23	T	
IO213PB6F19	V6	IO230PB7F21	P2	IO248NB7F23		
IO214NB6F20	W3	IO231NB7F21	P7	IO248PB7F23		
IO214PB6F20	W4	IO231PB7F21	P6	IO249NB7F23		
IO215NB6F20	U8	IO232NB7F21	N3	IO249PB7F23		
IO215PB6F20	U9	IO232PB7F21	P3	IO250NB7F23		
IO216NB6F20	W1	IO233NB7F21	P4	IO250PB7F23		
IO216PB6F20	W2	IO233PB7F21	P5	IO251NB7F23		
IO217NB6F20	U7	IO234NB7F21	L1	IO251PB7F23		
IO217PB6F20	U6	IO234PB7F21	M1	IO252NB7F23		
IO218NB6F20	U4	IO235NB7F21	M4	IO252PB7F23		
IO218PB6F20	V4	IO235PB7F21	N4	IO253NB7F23		
IO219NB6F20	T5	IO236NB7F22	N7	IO253PB7F23		
IO219PB6F20	U5	IO236PB7F22	N6	IO254NB7F23		
IO220NB6F20	U3	IO237NB7F22	N8	IO254PB7F23		
IO220PB6F20	V3	IO237PB7F22	N9	IO255NB7F23		
IO221NB6F20	Т8	IO238NB7F22	M5	IO255PB7F23		
IO221PB6F20	Т9	IO238PB7F22	N5	IO256NB7F23		
IO222NB6F20	U2	IO239NB7F22	L2	IO256PB7F23		
IO222PB6F20	V2	IO239PB7F22	M2	IO257NB7F23	Ī	
IO223NB6F20	T7	IO240NB7F22	L3	IO257PB7F23		
IO223PB6F20	T6	IO240PB7F22	M3	Dedicated I/	0	

FG896		FG896		
AX2000 Function	Pin Number	AX2000 Function	Pin Number	
VCCIB3	AH30	VCCIB6	W9	
VCCIB3	T21	VCCIB6	Y10	
VCCIB3	U21	VCCIB6	Y9	
VCCIB3	V21	VCCIB7	C1	
VCCIB3	W21	VCCIB7	C2	
VCCIB3	W22	VCCIB7	K9	
VCCIB3	Y21	VCCIB7	L10	
VCCIB3	Y22	VCCIB7	L9	
VCCIB4	AA16	VCCIB7	M10	
VCCIB4	AA17	VCCIB7	M9	
VCCIB4	AA18	VCCIB7	N10	
VCCIB4	AA19	VCCIB7	P10	
VCCIB4	AA20	VCCIB7	R10	
VCCIB4	AB19	VCCPLA	G14	
VCCIB4	AB20	VCCPLB	H15	
VCCIB4	AB21	VCCPLC	G17	
VCCIB4	AJ28	VCCPLD	J16	
VCCIB4	AK28	VCCPLE	AH17	
VCCIB5	AA11	VCCPLF	AC16	
VCCIB5	AA12	VCCPLG	AH14	
VCCIB5	AA13	VCCPLH	AD15	
VCCIB5	AA14	VCOMPLA	F14	
VCCIB5	AA15	VCOMPLB	J15	
VCCIB5	AB10	VCOMPLC	F17	
VCCIB5	AB11	VCOMPLD	H16	
VCCIB5	AB12	VCOMPLE	AF17	
VCCIB5	AJ3	VCOMPLF	AD16	
VCCIB5	AK3	VCOMPLG	AF14	
VCCIB6	AA9	VCOMPLH	AB15	
VCCIB6	AH1	VPUMP	G24	
VCCIB6	AH2			
VCCIB6	T10			
VCCIB6	U10			
VCCIB6	V10			
VCCIB6	W10			

FG1152		FG1152		FG1152	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
IO103PB2F9	M28	IO121NB2F11	T27	IO138NB3F12	Y29
IO104NB2F9	M34	IO121PB2F11	T26	IO138PB3F12	W29
IO104PB2F9	L34	IO122NB2F11	T30	IO139NB3F13	Y27
IO105NB2F9	P27	IO122PB2F11	T29	IO139PB3F13	W27
IO105PB2F9	N27	IO123NB2F11	U28	IO140NB3F13	AA33
IO106NB2F9	M32	IO123PB2F11	T28	IO140PB3F13	Y33
IO106PB2F9	M31	IO124NB2F11	T31	IO141NB3F13	Y25
IO107NB2F10	P25	IO124PB2F11	T32	IO141PB3F13	Y24
IO107PB2F10	P26	IO125NB2F11	U24	IO142NB3F13	AA31
IO108NB2F10	N33	IO125PB2F11	U25	IO142PB3F13	Y31
IO108PB2F10	M33	IO126NB2F11	U33	IO143NB3F13	AA28
IO109NB2F10	P29	IO126PB2F11	U34	IO143PB3F13	Y28
IO109PB2F10	N29	IO127NB2F11	U26	IO144NB3F13	AA34
IO110NB2F10	P30	IO127PB2F11	U27	IO144PB3F13	Y34
IO110PB2F10	N30	IO128NB2F11	U31	IO145NB3F13	AA26
IO111NB2F10	R24	IO128PB2F11	U32	IO145PB3F13	Y26
IO111PB2F10	R25	Bank 3		IO146NB3F13	AA29
IO112NB2F10	P31	IO129NB3F12	V29	IO146PB3F13	AA30
IO112PB2F10	N31	IO129PB3F12	U29	IO147NB3F13	AB30
IO113NB2F10	R28	IO130NB3F12	V31	IO147PB3F13	AB29
IO113PB2F10	P28	IO130PB3F12	V32	IO148NB3F13	AB32
IO114NB2F10	P32	IO131NB3F12	V24	IO148PB3F13	AA32
IO114PB2F10	N32	IO131PB3F12	V25	IO149NB3F13	AB27
IO115NB2F10	R30	IO132NB3F12	W28	IO149PB3F13	AA27
IO115PB2F10	R29	IO132PB3F12	V28	IO150NB3F14	AC31
IO116NB2F10	P34	IO133NB3F12	W26	IO150PB3F14	AB31
IO116PB2F10	P33	IO133PB3F12	V26	IO151NB3F14	AD33
IO117NB2F10	R27	IO134NB3F12	W33	IO151PB3F14	AC33
IO117PB2F10	R26	IO134PB3F12	V33	IO152NB3F14	AC28
IO118NB2F11	R34	IO135NB3F12	W25	IO152PB3F14	AB28
IO118PB2F11	R33	IO135PB3F12	W24	IO153NB3F14	AB25
IO119NB2F11	T24	IO136NB3F12	W31	IO153PB3F14	AA25
IO119PB2F11	T25	IO136PB3F12	W32	IO154NB3F14	AD32
IO120NB2F11	Т33	IO137NB3F12	Y30	IO154PB3F14	AC32
IO120PB2F11	T34	IO137PB3F12	W30	IO155NB3F14	AD29

CQ352			
AX250 Function	Pin Number		
VCCDA	346		
VCCIB0	321		
VCCIB0	333		
VCCIB0	344		
VCCIB1	273		
VCCIB1	285		
VCCIB1	297		
VCCIB2	227		
VCCIB2	239		
VCCIB2	245		
VCCIB2	257		
VCCIB3	185		
VCCIB3	197		
VCCIB3	203		
VCCIB3	215		
VCCIB4	144		
VCCIB4	156		
VCCIB4	168		
VCCIB5	96		
VCCIB5	108		
VCCIB5	120		
VCCIB6	50		
VCCIB6	62		
VCCIB6	68		
VCCIB6	80		
VCCIB7	8		
VCCIB7	20		
VCCIB7	26		
VCCIB7	38		
VCCPLA	317		
VCCPLB	315		
VCCPLC	303		
VCCPLD	301		
VCCPLE	140		
VCCPLF	138		

CQ352	
AX250 Function	Pin Number
VCCPLG	126
VCCPLH	124
VCOMPLA	318
VCOMPLB	316
VCOMPLC	304
VCOMPLD	302
VCOMPLE	141
VCOMPLF	139
VCOMPLG	127
VCOMPLH	125
VPUMP	267

3-102

CG624		CG624		CG624	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
Bank 0		IO27NB0F2	H10	IO51NB1F4	E15
IO00NB0F0	D7*	IO27PB0F2	H9	IO51PB1F4	F15
IO00PB0F0	E7*	IO28NB0F2	A9	IO52NB1F4	A17
IO01NB0F0	G7	IO28PB0F2	B9	IO55NB1F5	G16
IO01PB0F0	G6	IO30NB0F2	B11	IO55PB1F5	H16
IO02NB0F0	B5	IO30PB0F2	B10	IO56NB1F5	A20
IO02PB0F0	B4	IO31NB0F2	E11	IO56PB1F5	A19
IO04PB0F0	C7	IO31PB0F2	F11	IO57NB1F5	D16
IO05NB0F0	F8	IO33NB0F2	D12	IO57PB1F5	D15
IO05PB0F0	F7	IO33PB0F2	D11	IO58NB1F5	A22
IO06NB0F0	H8	IO34NB0F3	A11	IO58PB1F5	A21
IO06PB0F0	H7	IO34PB0F3	A10	IO59NB1F5	F16
IO11NB0F0	J8	IO37NB0F3	J13	IO61NB1F5	G17
IO11PB0F0	J7	IO37PB0F3	K13	IO61PB1F5	H17
IO12PB0F1	B6	IO38NB0F3	H11	IO62NB1F5	B17
IO13NB0F1	E9*	IO38PB0F3	G11	IO62PB1F5	B16
IO13PB0F1	D8*	IO40PB0F3	B12	IO63NB1F5	H18
IO15NB0F1	C9	IO41NB0F3/HCLKAN	G13	IO65NB1F6	C17
IO15PB0F1	C8	IO41PB0F3/HCLKAP	G12	IO66PB1F6	B18
IO16NB0F1	A5	IO42NB0F3/HCLKBN	C13	IO67NB1F6	J18
IO16PB0F1	A4	IO42PB0F3/HCLKBP	C12	IO67PB1F6	J19
IO17NB0F1	D10	Bank 1		IO68NB1F6	B20
IO17PB0F1	D9	IO43NB1F4/HCLKCN	G15	IO68PB1F6	B19
IO18NB0F1	A7	IO43PB1F4/HCLKCP	G14	IO69NB1F6	E17
IO18PB0F1	A6	IO44NB1F4/HCLKDN	B14	IO69PB1F6	F17
IO19NB0F1	G9	IO44PB1F4/HCLKDP	B13	IO70NB1F6	B22
IO19PB0F1	G8	IO45NB1F4	H13	IO70PB1F6	B21
IO20PB0F1	B7	IO47NB1F4	D14	IO71PB1F6	G18
IO23NB0F2	F10	IO47PB1F4	C14	IO73NB1F6	G19
IO23PB0F2	F9	IO48NB1F4	A16	IO74NB1F6	C19
IO26NB0F2	C11*	IO48PB1F4	A15	IO74PB1F6	C18
IO26PB0F2	B8*	IO49PB1F4	H15	IO75NB1F6	D18

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O. Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

Revision	Changes	Page
Revision 8 (continued)	The following changes were made in the "FG676"(AX500) section: AE2, AE25 Change from NC to GND. AF2, AF25 Changed from GND to NC AB4, AF24, C1, C26 Changed from V _{CCDA} to V _{CCA} AD15 Change from V _{CCDA} to V _{COMPLE} AD17 Changed from V _{COMPLE} to V _{CCDA}	3-37
	In the "FG896" (AX2000) section, the AK28 changed from VCCIB5 to VCCIB4.	3-52
	The "CQ352" and "CG624" sections are new.	3-98, 3-115
Revision 7	All I/O FIFO capability was removed.	n/a
(Advance v1.6)	Table 1 was updated.	i
	Figure 1-9 was updated.	1-7
	Figure 2-5 was updated.	2-16
	The "Using an I/O Register" section was updated.	2-16
	The AX250 and AX1000 descriptions were added to the "FG484"section.	3-21
Revision 6	Table 2-3 was updated.	2-2
(Advance v1.5)	Figure 2-1 was updated.	2-8
	Figure 2-48 was updated.	2-75
	Figure 2-52 was updated.	2-82
Revision 5 (Advance v1.4)	In the "PQ208" table, pin 196 was missing, but it has been added in this version with a function of GND.	3-84
	The following pins in the "FG484" table for AX500 were changed: Pin G7 is GND/LP Pins AB8, C10, C11, C14, AB16 are NC.	3-21
	The "FG676" table was updated.	3-37
Revision 4	The "Device Resources" section was updated for the CS180.	ii
(Advance v1.3)	The "Programmable Interconnect Element" and Figure 1-2 are new.	" 1-1 and 1-2
	The "CS180" table is new.	3-1
	The "PQ208" tables for the AX500 were updated. The following pins were not defined in the previous version: GND 21 IO106PB5F10/CLKHP 71 GND 136	3-84
Revision 3 (Advance v1.2)	Table 1, "Ordering Information", "Device Resources", and the Product Plan table were updated.	i, ii
	The following figures and tables were updated: Figure 1-3 Figure 1-8 (new) Table 2-3 Figure 2-2 Table 2-8 Figure 2-11	1-2 1-6 2-2 2-9 2-12 2-23
	The "Design Environment" section was updated.	1-7
	The "Package Thermal Characteristics" was updated.	2-6