

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	18144
Number of Logic Elements/Cells	-
Total RAM Bits	165888
Number of I/O	418
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax1000-2fg676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description

Up to four individual signals can be brought out to dedicated probe pins (PRA/B/C/D) on the device. The probe circuitry is accessed and controlled via Silicon Explorer II, Microsemi's integrated verification and logic analysis tool that attaches to the serial port of a PC and communicates with the FPGA via the JTAG port (See "Silicon Explorer II Probe Interface" on page 2-109).

Summary

Microsemi's Axcelerator family of FPGAs extends the successful SX-A architecture, adding embedded RAM/FIFOs, PLLs, and high-speed I/Os. With the support of a suite of robust software tools, design engineers can incorporate high gate counts and fixed pins into an Axcelerator design yet still achieve high performance and efficient device utilization.

Related Documents

Application Notes

Simultaneous Switching Noise and Signal Integrity http://www.microsemi.com/soc/documents/SSN_AN.pdf Axcelerator Family PLL and Clock Management http://www.microsemi.com/soc/documents/AX_PLL_AN.pdf Implementation of Security in Actel Antifuse FPGAs http://www.microsemi.com/soc/documents/Antifuse_Security_AN.pdf

User's Guides and Manuals

Antifuse Macro Library Guide http://www.microsemi.com/soc/documents/libguide_UG.pdf SmartGen, FlashROM, Analog System Builder, and Flash Memory System Builder http://www.microsemi.com/soc/documents/genguide_ug.pdf Silicon Sculptor II User's Guide http://www.microsemi.com/soc/documents/silisculptII_sculpt3_ug.pdf

White Paper

Design Security in Nonvolatile Flash and Antifuse FPGAs http://www.microsemi.com/soc/documents/DesignSecurity_WP.pdf Understanding Actel Antifuse Device Security http://www.microsemi.com/soc/documents/DesignSecurity_WP.pdf

Miscellaneous

Libero IDE flow diagram http://www.microsemi.com/soc/products/tools/libero/flow.html

*Poutputs = PI/O * po * Fpo*

Cload	=	the output load (technology dependent)
VCCI	=	the output voltage (technology dependent)
ро	=	the number of outputs
F _{po}	=	the average output frequency

Pmemory = P11 * Nblock * FRCLK + P12 * Nblock * FWCLK

 N_{block} = the number of RAM/FIFO blocks (1 block = 4k)

- F_{RCLK} = the read-clock frequency of the memory
- F_{WCLK} = the write-clock frequency of the memory

PPLL = P13 * FCLK

 F_{RefCLK} = the clock frequency of the clock input of the PLL

 F_{CLK} = the clock frequency of the first clock output of the PLL

Power Estimation Example

This example employs an AX1000 shift-register design with 1,080 R-cells, one C-cell, one reset input, and one LVTTL 12 mA output, with high slew.

This design uses one HCLK at 100 MHz.

ms =	1,080 (in a shift register - 100% of R-cells are toggling at each clock cycle)
Fs =	100 MHz
s =	1080
=>	P _{HCLK} = (P1 + P2 * s + P3 * sqrt[s]) * Fs = 79 mW and Fs = 100 MHz
=>	P _{R-cells} = P7 * ms * Fs = 173 mW
mc =	1 (1 C-cell in this shift-register) and Fs = 100 MHz
=>	P _{C-cells} = P8 * mc * Fs = 0.14 mW
F _{pi} ~ 0 N	ЛНz
	and pi= 1 (1 reset input => this is why F _{pi} =0)
=>	P _{inputs} = P9 * pi * F _{pi} = 0 mW
F _{po} = 50	MHz
	and po = 1
=>	$P_{outputs} = P_{I/O} * po * F_{po} = 27.10 \text{ mW}$
No RAM	I/FIFO in this shift-register
=>	P _{memory} = 0 mW
No PLL	in this shift-register
=>	P _{PLL} = 0 mW
P _{ac} = P _F	$P_{HCLK} + P_{CLK} + P_{R-cells} + P_{C-cells} + P_{inputs} + P_{outputs} + P_{memory} + P_{PLL} = 276 \text{ mW}$ $P_{dc} = 7.5\text{mA} * 1.5\text{V} = 11.25 \text{ mW}$
	P _{total} = P _{dc} + P _{ac} = 11.25 mW + 276mW = 290.30 mW

Detailed Specifications

Using the Differential I/O Standards

Differential I/O macros should be instantiated in the netlist. The settings for these I/O standards cannot be changed inside Designer. Note that there are no tristated or bidirectional I/O buffers for differential standards.

Using the Voltage-Referenced I/O Standards

Using these I/O standards is similar to that of single-ended I/O standards. Their settings can be changed in Designer.

Using DDR (Double Data Rate)

In Double Data Rate mode, new data is present on every transition of the clock signal. Clock and data lines have identical bandwidth and signal integrity requirements, making it very efficient for implementing very high-speed systems.

To implement a DDR, users need to:

- 1. Instantiate an input buffer (with the required I/O standard)
- 2. Instantiate the DDR_REG macro (Figure 2-6)
- 3. Connect the output from the Input buffer to the input of the DDR macro

Figure 2-6 • DDR Register

Macros for Specific I/O Standards

There are different macro types for any I/O standard or feature that determine the required VCCI and VREF voltages for an I/O. The generic buffer macros require the LVTTL standard with slow slew rate and 24 mA-drive strength. LVTTL can support high slew rate but this should only be used for critical signals.

Most of the macro symbols represent variations of the six generic symbol types:

- CLKBUF: Clock Buffer
- HCLKBUF: Hardwired Clock Buffer
- INBUF: Input Buffer
- OUTBUF: Output Buffer
- TRIBUF: Tristate Buffer
- BIBUF: Bidirectional Buffer

Other macros include the following:

- Differential I/O standard macros: The LVDS and LVPECL macros either have a pair of differential inputs (e.g. INBUF_LVDS) or a pair of differential outputs (e.g. OUTBUF_LVPECL).
- Pull-up and pull-down variations of the INBUF, BIBUF, and TRIBUF macros. These are available only with TTL and LVCMOS thresholds. They can be used to model the behavior of the pull-up and pull-down resistors available in the architecture. Whenever an input pin is left unconnected, the output pin will either go high or low rather than unknown. This allows users to leave inputs unconnected without having the negative effect on simulation of propagating unknowns.
- DDR_REG macro. It can be connected to any I/O standard input buffers (i.e. INBUF) to implement a double data rate register. Designer software will map it to the I/O module in the same way it maps the other registers to the I/O module.

3.3 V LVTTL

Low-Voltage Transistor-Transistor Logic is a general purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer.

Table 2-20 • DC Input and Output Levels

VIL		VIH		VOL	VOH	IOL	ЮН
Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA
-0.3	0.8	2.0	3.6	0.4	2.4	24	-24

AC Loadings

Figure 2-15 • AC Test Loads

Table 2-21 • AC Waveforms, Measuring Points, and Capacitive Load
--

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ) (V)	C _{load} (pF)
0	3.0	1.40	N/A	35

Note: * *Measuring Point* = VTRIP

Timing Characteristics

Table 2-25 • 2.5V LVCMOS I/O ModuleWorst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 2.3 V, $T_J = 70^{\circ}C$

		-2 Speed -1 Speed Std Speed		Speed				
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVCMOS25	I/O Module Timing							
t _{DP}	Input Buffer		1.95		2.22		2.61	ns
t _{PY}	Output Buffer		3.29		3.74		4.40	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		2.48		2.50		2.51	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		2.48		2.50		2.51	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		5.74		6.54		7.69	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		6.60		7.51		8.83	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Detailed Specifications

Table 2-36 • 3.3 V PCI-X I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI-X	Output Module Timing							
t _{DP}	Input Buffer		1.57		1.79		2.10	ns
t _{PY}	Output Buffer		2.10		2.40		2.82	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		1.61		1.62		1.63	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		1.59		1.60		1.61	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		2.65		3.02		3.55	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		3.11		3.55		4.17	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{ioclky}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Class II

Table 2-47 • DC Input and Output Levels

	VIL	VIH		VOL VOH		IOL	ЮН
Min., V	Max., V	Min., V	Max., V	Max., V	Min,. V	mA	mA
-0.3	VREF – 0.2	VREF + 0.2	3.6	VREF – 0.8	VREF + 0.8	15.2	-15.2

AC Loadings

Figure 2-22 • AC Test Loads

Table 2-48 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ) (V)	C _{load} (pF)
VREF – 0.75	VREF + 0.75	VREF	1.25	30

Note: * Measuring Point = V_{trip}

Timing Characteristics

Table 2-49 • 2.5 V SSTL2 Class II I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 2.3 V, T_J = 70°C

			-2 Speed		-1 Speed		Std Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V SSTL2 Class II I/O Module Timing								
t _{DP}	Input Buffer		1.89		2.16		2.53	ns
t _{PY}	Output Buffer		2.39		2.72		3.20	ns
t _{ICLKQ}	Clock-to-Q for the I/O input register		0.67		0.77		0.90	ns
t _{oclkq}	Clock-to-Q for the I/O output register and the I/O enable register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Buffer Module

Introduction

An additional resource inside each SuperCluster is the Buffer (B) module (Figure 1-4 on page 1-3). When a fanout constraint is applied to a design, the synthesis tool inserts buffers as needed. The buffer module has been added to the AX architecture to avoid logic duplication resulting from the hard fanout constraints. The router utilizes this logic resource to save area and reduce loading and delays on medium-to-high-fanout nets.

Timing Models and Waveforms

Figure 2-33 • Buffer Module Timing Model

Figure 2-34 • Buffer Module Waveform

Timing Characteristics

Table 2-64 • Buffer Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	–1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Buffer Module Propagation Delays								
t _{BFPD}	Any input to output Y		0.12		0.14		0.16	ns

single-ended, or voltage-referenced standard. The [H]CLKxN pad can only be used as a differential pair with [H]CLKxP.

The block marked "/i Delay Match" is a fixed delay equal to that of the i divider. The "/j Delay Match" block has the same function as its j divider counterpart.

Functional Description

Figure 2-48 on page 2-75 illustrates a block diagram of the PLL. The PLL contains two dividers, i and j, that allow frequency scaling of the clock signal:

- The i divider in the feedback path allows multiplication of the input clock by integer factors ranging from 1 to 64, and the resultant frequency is available at the output of the PLL block.
- The j divider divides the PLL output by integer factors ranging from 1 to 64, and the divided clock is available at CLK1.
- The two dividers together can implement any combination of multiplication and division up to a maximum frequency of 1 GHz on CLK1. Both the CLK1 and CLK2 outputs have a fixed 50/50 duty cycle.
- The output frequencies of the two clocks are given by the following formulas (f_{REF} is the reference clock frequency):

 $f_{CLK1} = f_{REF} * (DividerI) / (DividerJ)$

 $f_{CLK2} = f_{REF} * (DividerI)$

FQ 5

EQ 4

CLK2 provides the PLL output directly—without division

The input and output frequency ranges are selected by LowFreq and Osc(2:0), respectively. These functions and their possible values are detailed in Table 2-80 on page 2-77.

The delay lines shown in Figure 2-48 on page 2-75 are programmable. The feedback clock path can be delayed (using the five DelayLine bits) relative to the reference clock (or vice versa) by up to 3.75 ns in increments of 250 ps. Table 2-80 on page 2-77 describes the usage of these bits. The delay increments are independent of frequency, so this results in phase changes that vary with frequency. The delay value is highly dependent on V_{CC} and the speed grade.

Figure 2-49 is a logical diagram of the various control signals to the PLL and shows how the PLL interfaces with the global and routing networks of the FPGA. Note that not all signals are user-accessible. These non-user-accessible signals are used by the place-and-route tool to control the configuration of the PLL. The user gains access to these control signals either based upon the connections built in the user's design or through the special macros (Table 2-84 on page 2-81) inserted into the design. For example, connecting the macro PLLOUT to CLK2 will control the OUTSEL signal.

Note: Not all signals are available to the user.

Figure 2-49 • PLL Logical Interface

Detailed Specifications

Table 2-91 • Four RAM Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Write Mode								
t _{WDASU}	Write Data Setup vs. WCLK		2.37		2.70		3.17	ns
t _{WDAHD}	Write Data Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WADSU}	Write Address Setup vs. WCLK		2.37		2.70		3.17	ns
t _{WADHD}	Write Address Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WENSU}	Write Enable Setup vs. WCLK		2.37		2.70		3.17	ns
t _{WENHD}	Write Enable Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WCKH}	WCLK Minimum High Pulse Width	0.75		0.75		0.75		ns
t _{WCLK}	WCLK Minimum Low Pulse Width	2.51		2.51		2.51		ns
t _{WCKP}	WCLK Minimum Period	3.26		3.26		3.26		ns
Read Mode								
t _{RADSU}	Read Address Setup vs. RCLK		3.08		3.51		4.13	ns
t _{RADHD}	Read Address Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RENSU}	Read Enable Setup vs. RCLK		3.08		3.51		4.13	ns
t _{RENHD}	Read Enable Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		2.36		2.69		3.16	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		2.83		3.23		3.79	ns
t _{RCLKH}	RCLK Minimum High Pulse Width	0.73		0.73		0.73		ns
t _{RCLKL}	RCLK Minimum Low Pulse Width	2.96		2.96		2.96		ns
t _{RCKP}	RCLK Minimum Period	3.69		3.69		3.69		ns

Note: Timing data for these four cascaded RAM blocks uses a depth of 16,384. For all other combinations, use Microsemi's timing software.

		-2 Speed		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Write Mode								
t _{WDASU}	Write Data Setup vs. WCLK		5.78		6.58		7.74	ns
t _{WDAHD}	Write Data Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WADSU}	Write Address Setup vs. WCLK		5.78		6.58		7.74	ns
t _{WADHD}	Write Address Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WENSU}	Write Enable Setup vs. WCLK		5.78		6.58		7.74	ns
t _{WENHD}	Write Enable Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WCKH}	WCLK Minimum High Pulse Width	0.75		0.75		0.75		ns
t _{WCLK}	WCLK Minimum Low Pulse Width	5.13		5.13		5.13		ns
t _{WCKP}	WCLK Minimum Period	5.88		5.88		5.88		ns
Read Mode								
t _{RADSU}	Read Address Setup vs. RCLK		6.75		7.69		9.04	ns
t _{RADHD}	Read Address Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RENSU}	Read Enable Setup vs. RCLK		6.75		7.69		9.04	ns
t _{RENHD}	Read Enable Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		3.39		3.86		4.54	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		4.93		5.62		6.61	ns
t _{RCLKH}	RCLK Minimum High Pulse Width	0.73		0.73		0.73		ns
t _{RCLKL}	RCLK Minimum Low Pulse Width	5.77		5.77		5.77		ns
t _{RCKP}	RCLK Minimum Period	6.50		6.50		6.50		ns

Table 2-92 • Eight RAM Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

Note: Timing data for these eight cascaded RAM blocks uses a depth of 32,768. For all other combinations, use Microsemi's timing software.

Glitch Elimination

An analog filter is added to each FIFO controller to guarantee glitch-free FIFO-flag logic.

Overflow and Underflow Control

The counter MSB keeps track of the difference between the read address (RA) and the write address (WA). The EMPTY flag is set when the read and write addresses are equal. To prevent underflow, the write address is double-sampled by the read clock prior to comparison with the read address (part A in Figure 2-64). To prevent overflow, the read address is double-sampled by the write clock prior to comparison to the write address (part B in Figure 2-64).

Figure 2-64 • Overflow and Underflow Control

FIFO Configurations

Unlike the RAM, the FIFO's write width and read width cannot be specified independently. For the FIFO, the write and read widths must be the same. The WIDTH pins are used to specify one of six allowable word widths, as shown in Table 2-96.

WIDTH(2:0)	W x D
000	1 x 4k
001	2 x 2k
010	4 x 1k
011	9 x 512
100	18 x 256
101	36 x 128
11x	reserved

Table 2-96 • FIFO Width Configurations

The DEPTH pins allow RAM cells to be cascaded to create larger FIFOs. The four pins allow depths of 2, 4, 8, and 16 to be specified. Table 2-86 on page 2-87 describes the FIFO depth options for various data width and memory blocks.

Interface

Figure 2-65 on page 2-99 shows a logic block diagram of the Axcelerator FIFO module.

Cascading FIFO Blocks

FIFO blocks can be cascaded to create deeper FIFO functions. When building larger FIFO blocks, if the word width can be fractured in a multi-bit FIFO, the fractured word configuration is recommended over a cascaded configuration. For example, 256x36 can be configured as two blocks of 256x18. This should be taken into account when building the FIFO blocks manually. However, when using SmartGen, the user only needs to specify the depth and width of the necessary FIFO blocks. SmartGen automatically configures these blocks to optimize performance.

Microsemi

BG729		BG729		BG729		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number	
IO218PB6F20	V2	IO236PB7F22	L1	IO255NB7F23	F5	
IO219NB6F20	T1	IO237NB7F22	L4	IO255PB7F23	G5	
IO219PB6F20	U1	IO237PB7F22	L3	IO256NB7F23	F3	
IO220NB6F20	R5	IO238NB7F22	L6	IO256PB7F23	F4	
IO220PB6F20	R6	IO238PB7F22	M6	IO257NB7F23	H7	
IO221NB6F20	Т3	IO239NB7F22	M8	IO257PB7F23	J7	
IO221PB6F20	T4	IO239PB7F22	M7	Dedicated I/	0	
IO222NB6F20	R2	IO240NB7F22	K2	GND	A1	
IO222PB6F20	T2	IO240PB7F22	K1	GND	A2	
IO223NB6F20	P8	IO241NB7F22	K4	GND	A25	
IO223PB6F20	P9	IO241PB7F22	K3	GND	A26	
IO224NB6F20	R3	IO242NB7F22	K5	GND	A27	
IO224PB6F20	R4	IO242PB7F22	L5	GND	A3	
Bank 7		IO243NB7F22	J2	GND	AC24	
IO225NB7F21	P1	IO243PB7F22	J1	GND	AE1	
IO225PB7F21	R1	IO244NB7F22	J4	GND	AE2	
IO226NB7F21	P3	IO244PB7F22	J3	GND	AE25	
IO226PB7F21	P2	IO245NB7F22	H2	GND	AE26	
IO227NB7F21	N7	IO245PB7F22	H1	GND	AE27	
IO227PB7F21	P7	IO246NB7F22	H4	GND	AE3	
IO228NB7F21	P5	IO246PB7F22	H3	GND	AE5	
IO228PB7F21	P4	IO247NB7F23	L8	GND	AF1	
IO229NB7F21	N2	IO247PB7F23	L7	GND	AF2	
IO229PB7F21	N1	IO248NB7F23	J6	GND	AF25	
IO230NB7F21	N6	IO248PB7F23	K6	GND	AF26	
IO230PB7F21	P6	IO249NB7F23	H5	GND	AF27	
IO231NB7F21	N9	IO249PB7F23	J5	GND	AF3	
IO231PB7F21	N8	IO250NB7F23	G2	GND	AG1	
IO232NB7F21	N4	IO250PB7F23	G1	GND	AG2	
IO232PB7F21	N3	IO251NB7F23	K8	GND	AG25	
IO233NB7F21	M2	IO251PB7F23	K7	GND	AG26	
IO233PB7F21	M1	IO252NB7F23	G4	GND	AG27	
IO234NB7F21	M4	IO252PB7F23	G3	GND	AG3	
IO234PB7F21	M3	IO253NB7F23	F2	GND	B1	
IO235NB7F21	M5	IO253PB7F23	F1	GND	B2	
IO235PB7F21	N5	IO254NB7F23	G6	GND	B25	
IO236NB7F22	L2	IO254PB7F23	H6	GND	B26	

FG324		FG324		FG324		
AX125 Function	Pin Number	AX125 Function	Pin Number	AX125 Function	Pin Number	
IO50NB4F4/CLKFN	U9	IO66PB6F6	N3	IO83PB7F7	C1	
IO50PB4F4/CLKFP	U10	IO67NB6F6	M2	Dedicated	I/O	
Bank 5		IO67PB6F6	N2	VCCDA	F5	
IO51NB5F5/CLKGN	R8	IO68NB6F6	M1	GND	A1	
IO51PB5F5/CLKGP	R9	IO68PB6F6	N1	GND	A18	
IO52NB5F5/CLKHN	T7	IO69NB6F6	K4	GND	B17	
IO52PB5F5/CLKHP	Т8	IO69PB6F6	L4	GND	B2	
IO53NB5F5	U6	IO70NB6F6	K1	GND	C16	
IO53PB5F5	U7	IO70PB6F6	L1	GND	C3	
IO54NB5F5	V8	IO71NB6F6	K3	GND	E16	
IO54PB5F5	V9	IO71PB6F6	L3	GND	F13	
IO55NB5F5	V6	Bank 7		GND	F6	
IO55PB5F5	V7	IO72NB7F7	H4	GND	G12	
IO56NB5F5	U4	IO72PB7F7	J4	GND	G7	
IO56PB5F5	U5	IO73NB7F7	K2	GND	H10	
IO57NB5F5	T4	IO73PB7F7	L2	GND	H11	
IO57PB5F5	T5	IO74NB7F7	H2	GND	H8	
IO58NB5F5	V4	IO74PB7F7	H1	GND	H9	
IO58PB5F5	V5	IO75NB7F7	H3	GND	J10	
IO59NB5F5	V2	IO75PB7F7	J3	GND	J11	
IO59PB5F5	V3	IO76NB7F7	F2	GND	J8	
Bank 6		IO76PB7F7	G2	GND	J9	
IO60NB6F6	P5	IO77NB7F7	F1	GND	K10	
IO60PB6F6	P6	IO77PB7F7	G1	GND	K11	
IO61NB6F6	T2	IO78NB7F7	D2	GND	K8	
IO61PB6F6	U3	IO78PB7F7	E2	GND	K9	
IO62NB6F6	T1	IO79NB7F7	F3	GND	L10	
IO62PB6F6	U1	IO79PB7F7	G3	GND	L11	
IO63NB6F6	P1	IO80NB7F7	E3	GND	L8	
IO63PB6F6	R1	IO80PB7F7	E4	GND	L9	
IO64NB6F6	R3	IO81NB7F7	D1	GND	M12	
IO64PB6F6	P3	IO81PB7F7	E1	GND	M7	
IO65NB6F6	P2	IO82NB7F7	D3	GND	N13	
IO65PB6F6	R2	IO82PB7F7	C2	GND	N6	
IO66NB6F6	M3	IO83NB7F7	B1	GND	R14	

FG484		FG484		FG484		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number	
IO167PB5F15	AA12	IO194NB6F18	V2	IO223NB6F20	M7	
IO169NB5F15	AA9	IO194PB6F18	W2	IO223PB6F20	N7	
IO169PB5F15	AA10	IO195NB6F18	U5	IO224NB6F20	M4	
IO170NB5F15	AB9	IO195PB6F18	T5	IO224PB6F20	N4	
IO170PB5F15	AB10	IO200NB6F18	T4	Bank 7		
IO171NB5F16	W8	IO200PB6F18	U4	IO225NB7F21	M2	
IO171PB5F16	W9	IO201NB6F18	P6	IO225PB7F21	N1	
IO172NB5F16	Y8	IO201PB6F18	R6	IO226NB7F21	K2	
IO172PB5F16	Y9	IO203NB6F19	U2	IO226PB7F21	K1	
IO173NB5F16	U8	IO204NB6F19	Т3	IO228NB7F21	L3	
IO173PB5F16	U9	IO204PB6F19	U3	IO228PB7F21	L2	
IO174NB5F16	AA7	IO205NB6F19	P5	IO229NB7F21	K5	
IO174PB5F16	AA8	IO205PB6F19	R5	IO229PB7F21	L5	
IO175NB5F16	AB5	IO208NB6F19	V1	IO230NB7F21	H1	
IO175PB5F16	AB6	IO208PB6F19	W1	IO230PB7F21	J1	
IO176NB5F16	AA5	IO209NB6F19	P7	IO231NB7F21	H2	
IO176PB5F16	AA6	IO209PB6F19	R7	IO231PB7F21	J2	
IO177NB5F16	AA4	IO212NB6F19	P4	IO232NB7F21	K4	
IO177PB5F16	AB4	IO212PB6F19	R4	IO232PB7F21	K3	
IO178NB5F16	Y6	IO214NB6F20	P3	IO233NB7F21	K6	
IO178PB5F16	Y7	IO214PB6F20	R3	IO233PB7F21	L6	
IO179NB5F16	T7	IO215NB6F20	M6	IO234NB7F21	F1	
IO179PB5F16	Т8	IO215PB6F20	N6	IO234PB7F21	G1	
IO180NB5F16	W6	IO216NB6F20	R2	IO235NB7F21	F2	
IO180PB5F16	W7	IO216PB6F20	T2	IO235PB7F21	G2	
IO181NB5F17	Y4	IO217NB6F20	T1	IO236NB7F22	H3	
IO181PB5F17	Y5	IO217PB6F20	U1	IO236PB7F22	J3	
IO184NB5F17	AB7	IO219NB6F20	M5	IO237NB7F22	K7	
IO187NB5F17	V3	IO219PB6F20	N5	IO237PB7F22	L7	
IO187PB5F17	W3	IO220NB6F20	P1	IO241NB7F22	H6	
IO188NB5F17	V4	IO220PB6F20	R1	IO241PB7F22	J6	
IO188PB5F17	W5	IO221NB6F20	N2	IO242NB7F22	H4	
IO192NB5F17	V6	IO221PB6F20	P2	IO242PB7F22	J4	
IO192PB5F17	V7	IO222NB6F20	M3	IO243NB7F22	H5	
Bank 6		IO222PB6F20	N3	IO243PB7F22	J5	

FG676		FG676			
AX500 Function	Pin Number	AX500 Function	Pin Number		
VCCIB3	T19	VCCIB7	L8		
VCCIB3	U19	VCCIB7	M8		
VCCIB3	U20	VCCIB7	N8		
VCCIB3	V19	VCCPLA	E12		
VCCIB3	V20	VCCPLB	F13		
VCCIB3	W20	VCCPLC	E15		
VCCIB4	W14	VCCPLD	G14		
VCCIB4	W15	VCCPLE	AF15		
VCCIB4	W16	VCCPLF	AA14		
VCCIB4	W17	VCCPLG	AF12		
VCCIB4	W18	VCCPLH	AB13		
VCCIB4	Y17	VCOMPLA	D12		
VCCIB4	Y18	VCOMPLB	G13		
VCCIB4	Y19	VCOMPLC	D15		
VCCIB5	W10	VCOMPLD	F14		
VCCIB5	W11	VCOMPLE	AD15		
VCCIB5	W12	VCOMPLF	AB14		
VCCIB5	W13	VCOMPLG	AD12		
VCCIB5	W9	VCOMPLH	Y13		
VCCIB5	Y10	VPUMP	E22		
VCCIB5	Y8				
VCCIB5	Y9				
VCCIB6	P8				
VCCIB6	R8				
VCCIB6	T8				
VCCIB6	U7				
VCCIB6	U8				
VCCIB6	V7				
VCCIB6	V8				
VCCIB6	W7				
VCCIB7	H7				
VCCIB7	J7				
VCCIB7	J8				
VCCIB7	K7				
VCCIB7	К8				

PQ208		PQ208		PQ208		
AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Number	
IO110PB7F7	19	GND	94	VCCPLB	187	
IO112NB7F7	16	GND	99	VCCPLC	178	
IO112PB7F7	17	GND	113	VCCPLD	176	
IO117NB7F7	12	GND	119	VCCPLE	85	
IO117PB7F7	13	GND	125	VCCPLF	83	
IO119NB7F7	10	GND	136	VCCPLG	74	
IO119PB7F7	11	GND	143	VCCPLH	72	
IO121PB7F7	7	GND	150	VCCIB0	193	
IO122NB7F7	5	GND	155	VCCIB0	200	
IO122PB7F7	6	GND	164	VCCIB1	163	
IO123NB7F7	3	GND	169	VCCIB1	172	
IO123PB7F7	4	GND	173	VCCIB2	135	
Dedicated	I/O	GND	194	VCCIB2	149	
VCCDA	1	GND	196	VCCIB3	112	
VCCDA	26	GND	201	VCCIB3	124	
VCCDA	53	GND/LP	208	VCCIB4	89	
VCCDA	63	PRA	184	VCCIB4	98	
VCCDA	78	PRB	183	VCCIB5	58	
VCCDA	95	PRC	80	VCCIB5	68	
VCCDA	105	PRD	79	VCCIB6	31	
VCCDA	130	ТСК	205	VCCIB6	45	
VCCDA	157	TDI	204	VCCIB7	8	
VCCDA	167	TDO	203	VCCIB7	20	
VCCDA	182	TMS	206	VCOMPLA	190	
VCCDA	202	TRST	207	VCOMPLB	188	
GND	104	VCCA	2	VCOMPLC	179	
GND	9	VCCA	52	VCOMPLD	177	
GND	15	VCCA	156	VCOMPLE	86	
GND	21	VCCA	14	VCOMPLF	84	
GND	32	VCCA	38	VCOMPLG	75	
GND	39	VCCA	64	VCOMPLH	73	
GND	46	VCCA	93	VPUMP	158	
GND	51	VCCA	118			
GND	59	VCCA	142			
GND	65	VCCA	168			
GND	69	VCCA	195			
GND	90	VCCPLA	189			

CG624		CG624				
AX2000 Function	Pin Number	AX2000 Function	Pin Number			
VCCIB2	D23	VCCIB6	Т9			
VCCIB2	E22	VCCIB7	C1			
VCCIB2	K17	VCCIB7	C2			
VCCIB2	L17	VCCIB7	D3			
VCCIB2	M16	VCCIB7	E4			
VCCIB3	AA22	VCCIB7	K9			
VCCIB3	AB23	VCCIB7	L9			
VCCIB3	AC24	VCCIB7	M10			
VCCIB3	AC25	VCCPLA	E12			
VCCIB3	P16	VCCPLB	J12			
VCCIB3	R17	VCCPLC	E14			
VCCIB3	T17	VCCPLD	H14			
VCCIB4	AB21	VCCPLE	Y14			
VCCIB4	AC22	VCCPLF	U14			
VCCIB4	AD23	VCCPLG	Y12			
VCCIB4	AE23	VCCPLH	U12			
VCCIB4	T14	VCOMPLA	F12			
VCCIB4	U15	VCOMPLB	H12			
VCCIB4	U16	VCOMPLC	F14			
VCCIB5	AB5	VCOMPLD	J14			
VCCIB5	AC4	VCOMPLE	AA14			
VCCIB5	AD3	VCOMPLF	V14			
VCCIB5	AE3	VCOMPLG	AA12			
VCCIB5	T12	VCOMPLH	V12			
VCCIB5	U10	VPUMP	E20			
VCCIB5	U11	Note: *Not routed on t	the same			
VCCIB6	AA4	package layer a LGA pads as its	na to adjacent s differential			
VCCIB6	AB3	pair complement.				
VCCIB6	AC1	Recommended to be used a a single-ended I/O.				
VCCIB6	AC2					
VCCIB6	P10					

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

R9

VCCIB6