

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	18144
Number of Logic Elements/Cells	-
Total RAM Bits	165888
Number of I/O	317
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax1000-fg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – General Description

Axcelerator devices offer high performance at densities of up to two million equivalent system gates. Based upon the Microsemi AX architecture, Axcelerator has several system-level features such as embedded SRAM (with complete FIFO control logic), PLLs, segmentable clocks, chip-wide highway routing, and carry logic.

Device Architecture

AX architecture, derived from the highly-successful SX-A sea-of-modules architecture, has been designed for high performance and total logic module utilization (Figure 1-1). Unlike in traditional FPGAs, the entire floor of the Axcelerator device is covered with a grid of logic modules, with virtually no chip area lost to interconnect elements or routing.

Programmable Interconnect Element

The Axcelerator family uses a patented metal-to-metal antifuse programmable interconnect element that resides between the upper two layers of metal (Figure 1-2 on page 1-2). This completely eliminates the channels of routing and interconnect resources between logic modules (as implemented on traditional FPGAs) and enables the efficient sea-of-modules architecture. The antifuses are normally open circuit and, when programmed, form a permanent, passive, low-impedance connection, leading to the fastest signal propagation in the industry. In addition, the extremely small size of these interconnect elements gives the Axcelerator family abundant routing resources.

The very nature of Microsemi's nonvolatile antifuse technology provides excellent protection against design pirating and cloning (FuseLock technology). Typical cloning attempts are impossible (even if the security fuse is left unprogrammed) as no bitstream or programming file is ever downloaded or stored in the device. Reverse engineering is virtually impossible due to the difficulty of trying to distinguish between programmed and unprogrammed antifuses and also due to the programming methodology of antifuse devices (see "Security" on page 2-108).

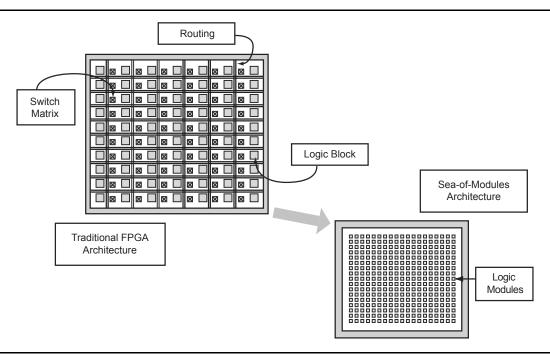


Figure 1-1 • Sea-of-Modules Comparison

Calculating Power Dissipation

Table 2-3 • Standby Current

		ICCA	ICCDA	ICCE	BANK	ICCPLL	IC	CCP ¹		
		Standby	Standby Current,			Standby	Standby Current, Charge Pump			
Device	Temperature	Current (Core)	Differential I/O	2.5 V VCCI	3.3 V VCCI	Current per PLL	Active	Bypassed Mode	IIH, IIL, IOZ ²	Units
AX125	Typical at 25°C	1.5	1.5	0.2	0.3	0.2	0.3	0.01	±0.01	mA
	70°C	15	6	0.5	0.75	1	0.4	0.01	±0.01	mA
	85°C	25	6	0.6	0.8	1	0.4	0.2	±0.01	mA
	125°C	50	8	1	1.5	2	0.4	0.5	±0.01	mA
AX250	Typical at 25°C	1.5	1.4	0.25	0.4	0.2	0.3	0.01	±0.01	mA
	70°C	30	7	0.8	0.9	1	0.4	0.01	±0.01	mA
	85°C	40	7	0.8	1	1	0.4	0.2	±0.01	mA
	125°C	70	9	1.3	1.8	2	0.4	0.5	±0.01	mA
AX500	Typical at 25°C	5	1.4	0.4	0.75	0.2	0.3	0.01	±0.01	mA
	70°C	60	7	1	1.5	1	0.4	0.01	±0.01	mA
	85°C	80	7	1	1.9	1	0.4	0.2	±0.01	mA
	125°C	180	9	1.75	2.5	1.5	0.4	0.5	±0.01	mA
AX1000	Typical at 25°C	7.5	1.5	0.5	1.25	0.2	0.3	0.01	±0.01	mA
	70°C	80	8	1.5	3	1	0.4	0.01	±0.01	mA
	85°C	120	8	1.5	3.4	1	0.4	0.2	±0.01	mA
	125°C	200	10	3	4	1.5	0.4	0.5	±0.01	mA
AX2000	Typical at 25°C	20	1.6	0.7	1.5	0.2	0.3	0.01	±0.01	mA
	70°C	160	10	2	7	1	0.4	0.01	±0.01	mA
	85°C	200	10	3	8	1	0.4	0.2	±0.01	mA
	125°C	500	15	4	10	1.5	0.4	0.5	±0.01	mA

Notes:

1. ICCCP Active is the ICCDA or the Internal Charge Pump current. ICCCP Bypassed mode is the External Charge Pump current IIH (VPUMP pin).

2. IIH, IIL, or IOZ values are measured with inputs at the same level as VCCI for IIH and GND for IIL and IOZ.

I/O Banks and Compatibility

Since each I/O bank has its own user-assigned input reference voltage (VREF) and an input/output supply voltage (VCCI), only I/Os with compatible standards can be assigned to the same bank.

Table 2-11 shows the compatible I/O standards for a common VREF (for voltage-referenced standards). Similarly, Table 2-12 shows compatible standards for a common VCCI.

Table 2-11 • Compatible I/O Standards for Different VREF Values

VREF	Compatible Standards
1.5 V	SSTL 3 (Class I and II)
1.25 V	SSTL 2 (Class I and II)
1.0 V	GTL+ (2.5V and 3.3V Outputs)
0.75 V	HSTL (Class I)

Table 2-12 • Compatible I/O Standards for Different VCCI Values

VCCI ¹	Compatible Standards	VREF
3.3 V	LVTTL, PCI, PCI-X, LVPECL, GTL+ 3.3 V	1.0
3.3 V	SSTL 3 (Class I and II), LVTTL, PCI, LVPECL	1.5
2.5 V	LVCMOS 2.5 V, GTL+ 2.5 V, LVDS ²	1.0
2.5 V	LVCMOS 2.5 V, SSTL 2 (Classes I and II), LVDS ²	1.25
1.8 V	LVCMOS 1.8 V	N/A
1.5 V	LVCMOS 1.5 V, HSTL Class I	0.75

Notes:

1. VCCI is used for both inputs and outputs

2. VCCI tolerance is ±5%

Using the Differential I/O Standards

Differential I/O macros should be instantiated in the netlist. The settings for these I/O standards cannot be changed inside Designer. Note that there are no tristated or bidirectional I/O buffers for differential standards.

Using the Voltage-Referenced I/O Standards

Using these I/O standards is similar to that of single-ended I/O standards. Their settings can be changed in Designer.

Using DDR (Double Data Rate)

In Double Data Rate mode, new data is present on every transition of the clock signal. Clock and data lines have identical bandwidth and signal integrity requirements, making it very efficient for implementing very high-speed systems.

To implement a DDR, users need to:

- 1. Instantiate an input buffer (with the required I/O standard)
- 2. Instantiate the DDR_REG macro (Figure 2-6)
- 3. Connect the output from the Input buffer to the input of the DDR macro

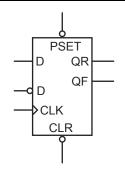


Figure 2-6 • DDR Register

Macros for Specific I/O Standards

There are different macro types for any I/O standard or feature that determine the required VCCI and VREF voltages for an I/O. The generic buffer macros require the LVTTL standard with slow slew rate and 24 mA-drive strength. LVTTL can support high slew rate but this should only be used for critical signals.

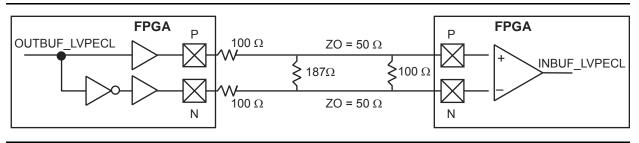
Most of the macro symbols represent variations of the six generic symbol types:

- CLKBUF: Clock Buffer
- HCLKBUF: Hardwired Clock Buffer
- INBUF: Input Buffer
- OUTBUF: Output Buffer
- TRIBUF: Tristate Buffer
- BIBUF: Bidirectional Buffer

Other macros include the following:

- Differential I/O standard macros: The LVDS and LVPECL macros either have a pair of differential inputs (e.g. INBUF_LVDS) or a pair of differential outputs (e.g. OUTBUF_LVPECL).
- Pull-up and pull-down variations of the INBUF, BIBUF, and TRIBUF macros. These are available only with TTL and LVCMOS thresholds. They can be used to model the behavior of the pull-up and pull-down resistors available in the architecture. Whenever an input pin is left unconnected, the output pin will either go high or low rather than unknown. This allows users to leave inputs unconnected without having the negative effect on simulation of propagating unknowns.
- DDR_REG macro. It can be connected to any I/O standard input buffers (i.e. INBUF) to implement a double data rate register. Designer software will map it to the I/O module in the same way it maps the other registers to the I/O module.

Table 2-22 • 3.3 V LVTTL I/O Module


Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C (continued)

	-2 Speed		peed	–1 S	peed	Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVTTL Outp	out Drive Strength = 4 (24 mA) / Low Slew Rate							
t _{DP}	Input Buffer		1.68		1.92		2.26	ns
t _{PY}	Output Buffer		10.45		11.90		13.99	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		10.61		12.08		14.21	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		10.47		11.93		14.02	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		1.92		1.94		1.94	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		2.57		2.58		2.59	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

LVPECL

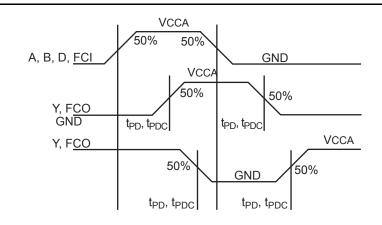
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit is carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination. The voltage swing between these two signal lines is approximately 850 mV.

Figure 2-26 • LVPECL Board-Level Implementation

The LVPECL circuit is similar to the LVDS scheme. It requires four external resistors, three for the driver and one for the receiver. The values for the three driver resistors are different from that of LVDS since the output voltage levels are different. Please note that the VOH levels are 200 mV below the standard LVPECL levels.

	Min.		Ту	Тур.		Max.		
DC Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units	
VCCI		3	3	.3	3	.6	V	
VOH	1.8	2.11	1.92	2.28	2.13	2.41	V	
VOL	0.96	1.27	1.06	1.43	1.3	1.57	V	
VIH	1.49	2.72	1.49	2.72	1.49	2.72	V	
VIL	0.86	2.125	0.86	2.125	0.86	2.125	V	
Differential Input Voltage	0.3		0.3		0.3		V	

Table 2-59 • DC Input and Output Levels


Table 2-60 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)
1.6 – 0.3	1.6 + 0.3	1.6

Note: * Measuring Point = VTRIP

Timing Model and Waveforms

Timing Characteristics

Table 2-62 • C-Cell

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		-2 Speed		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propagation Delays								
t _{PD}	Any input to output Y		0.74		0.84		0.99	ns
t _{PDC}	Any input to carry chain output (FCO)		0.57		0.64		0.76	ns
t _{PDB}	Any input through DB when one input is used		0.95		1.09		1.28	ns
t _{CCY}	Input to carry chain (FCI) to Y		0.61		0.69		0.82	ns
tcc	Input to carry chain (FCI) to carry chain output (FCO)		0.08		0.09		0.11	ns

Routed Clocks

The routed clock (CLK) is a low-skew network that can drive the clock inputs of all sequential modules in the device (logically equivalent to the HCLK), but has the added flexibility in that it can drive the S0 (Enable), S1, PSET, and CLR input of a register (R-cells and I/O registers) as well as any of the inputs of any C-cell in the device. This allows CLKs to be used not only as clocks, but also for other global signals or high fanout nets. All four CLKs are available everywhere on the chip.

Timing Characteristics

Table 2-75 • AX125 Routed Array Clock Networks Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		-2 Speed		-1 Speed		Std Speed			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units	
Routed Array Clock Networks									
t _{RCKL}	Input Low to High		3.08		3.50		4.12	ns	
t _{RCKH}	Input High to Low		3.13		3.56		4.19	ns	
t _{RPWH}	Minimum Pulse Width High	0.57		0.64		0.75		ns	
t _{RPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns	
t _{RCKSW}	Maximum Skew		0.35		0.39		0.46	ns	
t _{RP}	Minimum Period	1.15		1.31		1.54		ns	
t _{RMAX}	Maximum Frequency		870		763		649	MHz	

Table 2-76 • AX250 Routed Array Clock Networks

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		-2 Speed		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Routed Array Clock Networks								
t _{RCKL}	Input Low to High		2.52		2.87		3.37	ns
t _{RCKH}	Input High to Low		2.59		2.95		3.47	ns
t _{RPWH}	Minimum Pulse Width High	0.57		0.64		0.75		ns
t _{RPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{RCKSW}	Maximum Skew		0.35		0.39		0.46	ns
t _{RP}	Minimum Period	1.15		1.31		1.54		ns
t _{RMAX}	Maximum Frequency		870		763		649	MHz

throughout the fabric of the device and may be programmed by the user to thwart attempts to reverse engineer the device by attempting to exploit either the programming or probing interfaces. Both invasive and noninvasive attacks against an Axcelerator device that access or bypass these security fuses will destroy access to the rest of the device. (refer to the *Design Security in Nonvolatile Flash and Antifuse FPGAs* white paper).

Look for this symbol to ensure your valuable IP is protected with highest level of security in the industry.

Figure 2-69 • FuseLock Logo

To ensure maximum security in Axcelerator devices, it is recommended that the user program the device security fuse (SFUS). When programmed, the Silicon Explorer II testing probes are disabled to prevent internal probing, and the programming interface is also disabled. All JTAG public instructions are still accessible by the user.

For more information, refer to the Implementation of Security in Actel Antifuse FPGAs application note.

Global Set Fuse

The Global Set Fuse determines if all R-cells and I/O registers (InReg, OutReg, and EnReg) are either cleared or preset by driving the GCLR and GPSET inputs of all R-cells and I/O Registers (Figure 2-31 on page 2-58). Default setting is to clear all registers (GCLR = 0 and GPSET =1) at device power-up. When the GBSETFUS option is checked during FUSE file generation, all registers are preset (GCLR = 1 and GPSET = 0). A local CLR or PRESET will take precedence over this setting. Both pins are pulled High during normal device operation. For use details, see the Libero IDE online help.

Silicon Explorer II Probe Interface

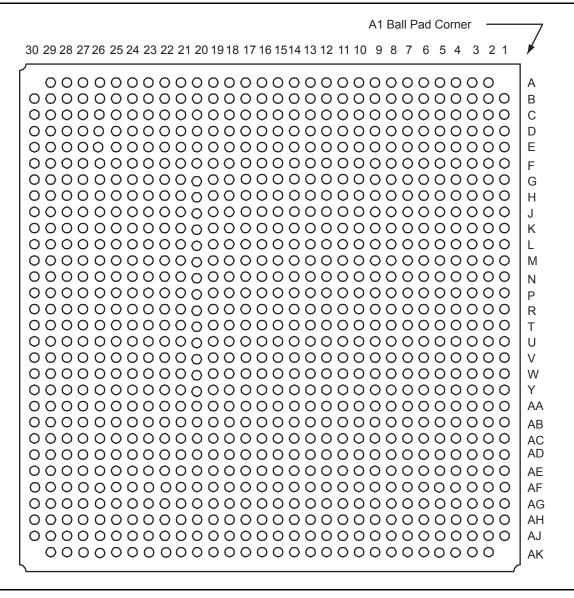
Silicon Explorer II is an integrated hardware and software solution that, in conjunction with the Designer tools, allows users to examine any of the internal nets (except I/O registers) of the device while it is operating in a prototype or a production system. The user can probe up to four nodes at a time without changing the placement and routing of the design and without using any additional device resources. Highlighted nets in Designer's ChipPlanner can be accessed using Silicon Explorer II in order to observe their real time values.

Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the debug cycle. In addition, Silicon Explorer II does not require relayout or additional MUXes to bring signals out to external pins, which is necessary when using programmable logic devices from other suppliers. By eliminating multiple place-and-route program cycles, the integrity of the design is maintained throughout the debug process.

Each member of the Axcelerator family has four external pads: PRA, PRB, PRC, and PRD. These can be used to bring out four probe signals from the Axcelerator device (note that the AX125 only has two probe signals that can be observed: PRA and PRB). Each core tile has up to two probe signals. To disallow probing, the SFUS security fuse in the silicon signature has to be programmed (see "Special Fuses" on page 2-108).

Silicon Explorer II connects to the host PC using a standard serial port connector. Connections to the circuit board are achieved using a nine-pin D-Sub connector (Figure 1-9 on page 1-7). Once the design has been placed-and-routed, and the Axcelerator device has been programmed, Silicon Explorer II can be connected and the Explorer software can be launched.

Silicon Explorer II comes with an additional optional PC hosted tool that emulates an 18-channel logic analyzer. Four channels are used to monitor four internal nodes, and 14 channels are available to probe external signals. The software included with the tool provides the user with an intuitive interface that allows for easy viewing and editing of signal waveforms.


FG324						
AX125 Function	Pin Number					
VCCIB5	N7					
VCCIB5	N8					
VCCIB5	N9					
VCCIB6	K6					
VCCIB6	L6					
VCCIB6	M6					
VCCIB7	G6					
VCCIB7	H6					
VCCIB7	J6					
VCOMPLA	B8					
VCOMPLB	E8					
VCOMPLC	C10					
VCOMPLD	E12					
VCOMPLE	U11					
VCOMPLF	P11					
VCOMPLG	Т9					
VCOMPLH	P7					
VPUMP	B15					

FG676							
AX1000 Function	Pin Number						
VCCIB4	W18						
VCCIB4	Y17						
VCCIB4	Y18						
VCCIB4	Y19						
VCCIB5	W10						
VCCIB5	W11						
VCCIB5	W12						
VCCIB5	W13						
VCCIB5	W9						
VCCIB5	Y10						
VCCIB5	Y8						
VCCIB5	Y9						
VCCIB6	P8						
VCCIB6	R8						
VCCIB6	Т8						
VCCIB6	U7						
VCCIB6	U8						
VCCIB6	V7						
VCCIB6	V8						
VCCIB6	W7						
VCCIB7	H7						
VCCIB7	J7						
VCCIB7	J8						
VCCIB7	K7						
VCCIB7	K8						
VCCIB7	L8						
VCCIB7	M8						
VCCIB7	N8						
VCOMPLA	D12						
VCOMPLB	G13						
VCOMPLC	D15						
VCOMPLD	F14						
VCOMPLE	AD15						
VCOMPLF	AB14						
VCOMPLG	AD12						

FG676					
AX1000 Function	Pin Number				
VCOMPLH	Y13				
VPUMP	E22				

FG896

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

FG896		FG896	FG896 FG896			
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number	
IO51PB1F4	E21	IO68PB2F6	K24	IO86NB2F8	N28	
IO52NB1F4	F22	IO69NB2F6	F27	IO86PB2F8	N27	
IO52PB1F4	E22	IO69PB2F6	E27	IO87NB2F8	P29	
IO53NB1F4	B25	IO70NB2F6	J26	IO87PB2F8	P30	
IO53PB1F4	B24	IO70PB2F6	J25	IO88NB2F8	P25	
IO54NB1F5	D24	IO71NB2F6	H27	IO88PB2F8	P24	
IO54PB1F5	D23	IO71PB2F6	G27	IO89NB2F8	P28	
IO55NB1F5	F23	IO72NB2F6	J28	IO89PB2F8	P27	
IO55PB1F5	E23	IO72PB2F6	H28	IO90NB2F8	P22	
IO56NB1F5	H21	IO73NB2F6	G28	IO90PB2F8	P23	
IO56PB1F5	G21	IO73PB2F6	F28	IO91NB2F8	R26	
IO57NB1F5	D25	IO74NB2F7	L23	IO91PB2F8	P26	
IO57PB1F5	C25	IO74PB2F7	L24	IO92NB2F8	R24	
IO58NB1F5	F24	IO75NB2F7	L26	IO92PB2F8	R25	
IO58PB1F5	E24	IO75PB2F7	K26	IO93NB2F8	R29	
IO59NB1F5	D26	IO76NB2F7	M25	IO93PB2F8	R30	
IO59PB1F5	C26	IO76PB2F7	L25	IO94NB2F8	R22	
IO60NB1F5	G23	IO77NB2F7	K27	IO94PB2F8	R23	
IO60PB1F5	G22	IO77PB2F7	J27	IO95NB2F8	T27	
IO61NB1F5	B27	IO78NB2F7	M27	IO95PB2F8	R27	
IO61PB1F5	A27	IO78PB2F7	L27	Bank 3		
IO62NB1F5	F25	IO79NB2F7	K30	IO96NB3F9	T29	
IO62PB1F5	E25	IO79PB2F7	K29	IO96PB3F9	T30	
IO63NB1F5	H23	IO80NB2F7	M23	IO97NB3F9	U29	
IO63PB1F5	H22	IO80PB2F7	M24	IO97PB3F9	U30	
Bank 2		IO81NB2F7	M28	IO98NB3F9	T22	
IO64NB2F6	K23	IO81PB2F7	L28	IO98PB3F9	T23	
IO64PB2F6	J23	IO82NB2F7	N26	IO99NB3F9	U26	
IO65NB2F6	J24	IO82PB2F7	M26	IO99PB3F9	T26	
IO65PB2F6	H24	IO83NB2F7	N25	IO100NB3F9	U24	
IO66NB2F6	H26	IO83PB2F7	N24	IO100PB3F9	T24	
IO66PB2F6	H25	IO84NB2F7	N22	IO101NB3F9	V28	
IO67NB2F6	G26	IO84PB2F7	N23	IO101PB3F9	U28	
IO67PB2F6	G25	IO85NB2F8	M29	IO102NB3F9	U23	
IO68NB2F6	K25	IO85PB2F8	L29	IO102PB3F9	U22	

FG896		FG896	FG896		FG896	
AX2000 Function Number		AX2000 Function	Pin Number	AX2000 Function	Pin Number	
Bank 0	•	IO19NB0F1	D11	Bank 1		
IO00NB0F0	B4	IO19PB0F1	E11	IO43NB1F4/HCLKCN	E17	
IO00PB0F0	A4	IO20PB0F1	B8	IO43PB1F4/HCLKCP	E16	
IO01NB0F0	F8	IO21NB0F1	H12	IO44NB1F4/HCLKDN	C17	
IO01PB0F0	F7	IO21PB0F1	H11	IO44PB1F4/HCLKDP	D17	
IO02NB0F0	D6	IO23NB0F2	A10	IO45NB1F4	A16	
IO02PB0F0	E6	IO23PB0F2	A9	IO45PB1F4	B16	
IO04NB0F0	A5	IO25NB0F2	F12	IO47NB1F4	H17	
IO04PB0F0	B5	IO25PB0F2	G12	IO47PB1F4	J17	
IO05NB0F0	H8	IO26NB0F2	B11	IO48NB1F4	A17	
IO05PB0F0	G8	IO26PB0F2	B10	IO48PB1F4	B17	
IO06NB0F0	D7	IO27NB0F2	D12	IO49NB1F4	H18	
IO06PB0F0	E7	IO27PB0F2	E12	IO49PB1F4	J18	
IO07NB0F0	D8	IO28NB0F2	C12	IO51NB1F4	F18	
IO07PB0F0	E8	IO28PB0F2	C11	IO51PB1F4	G18	
IO08NB0F0	C7	IO30NB0F2	A12	IO52NB1F4	B18	
IO08PB0F0	C6	IO30PB0F2	A11	IO53NB1F4	D18	
IO09NB0F0	G9	IO31NB0F2	F13	IO53PB1F4	C18	
IO09PB0F0	H9	IO31PB0F2	G13	IO55NB1F5	H19	
IO10NB0F0	A6	IO33NB0F2	H13	IO55PB1F5	G19	
IO10PB0F0	B6	IO33PB0F2	J13	IO56NB1F5	B19	
IO11NB0F0	H10	IO34NB0F3	B13	IO56PB1F5	A19	
IO11PB0F0	G10	IO34PB0F3	B12	IO57NB1F5	E20	
IO12NB0F1	E9	IO37NB0F3	E14	IO57PB1F5	E19	
IO12PB0F1	F9	IO37PB0F3	E13	IO58NB1F5	C20	
IO13NB0F1	E10	IO38NB0F3	B14	IO58PB1F5	C19	
IO13PB0F1	F10	IO38PB0F3	A14	IO59NB1F5	B20	
IO15NB0F1	F11	IO39NB0F3	H14	IO59PB1F5	A20	
IO15PB0F1	G11	IO39PB0F3	J14	IO61NB1F5	F20	
IO16NB0F1	A7	IO40NB0F3	B15	IO61PB1F5	F19	
IO16PB0F1	B7	IO40PB0F3	A15	IO62NB1F5	A22	
IO17NB0F1	D10	IO41NB0F3/HCLKAN	C14	IO62PB1F5	A21	
IO17PB0F1	D9	IO41PB0F3/HCLKAP	D14	IO63NB1F5	D21	
IO18NB0F1	C9	IO42NB0F3/HCLKBN	E15	IO63PB1F5	D20	
IO18PB0F1	C8	IO42PB0F3/HCLKBP	D15	IO65NB1F6	G20	

FG896		FG896		
AX2000 Function	Pin Number	AX2000 Function	Pin Number	
VCCIB3	AH30	VCCIB6	W9	
VCCIB3	T21	VCCIB6	Y10	
VCCIB3	U21	VCCIB6	Y9	
VCCIB3	V21	VCCIB7	C1	
VCCIB3	W21	VCCIB7	C2	
VCCIB3	W22	VCCIB7	K9	
VCCIB3	Y21	VCCIB7	L10	
VCCIB3	Y22	VCCIB7	L9	
VCCIB4	AA16	VCCIB7	M10	
VCCIB4	AA17	VCCIB7	M9	
VCCIB4	AA18	VCCIB7	N10	
VCCIB4	AA19	VCCIB7	P10	
VCCIB4	AA20	VCCIB7	R10	
VCCIB4	AB19	VCCPLA	G14	
VCCIB4	AB20	VCCPLB	H15	
VCCIB4	AB21	VCCPLC	G17	
VCCIB4	AJ28	VCCPLD	J16	
VCCIB4	AK28	VCCPLE	AH17	
VCCIB5	AA11	VCCPLF	AC16	
VCCIB5	AA12	VCCPLG	AH14	
VCCIB5	AA13	VCCPLH	AD15	
VCCIB5	AA14	VCOMPLA	F14	
VCCIB5	AA15	VCOMPLB	J15	
VCCIB5	AB10	VCOMPLC	F17	
VCCIB5	AB11	VCOMPLD	H16	
VCCIB5	AB12	VCOMPLE	AF17	
VCCIB5	AJ3	VCOMPLF	AD16	
VCCIB5	AK3	VCOMPLG	AF14	
VCCIB6	AA9	VCOMPLH	AB15	
VCCIB6	AH1	VPUMP	G24	
VCCIB6	AH2			
VCCIB6	T10			
VCCIB6	U10			
VCCIB6	V10			
VCCIB6	W10			

FG1152		FG1152		FG1152	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
GND	AK12	GND	AN34	GND	D1
GND	AK17	GND	AN4	GND	D11
GND	AK18	GND	AN9	GND	D2
GND	AK23	GND	AP13	GND	D24
GND	AK30	GND	AP2	GND	D3
GND	AK5	GND	AP22	GND	D31
GND	AL1	GND	AP27	GND	D32
GND	AL11	GND	AP3	GND	D33
GND	AL2	GND	AP31	GND	D34
GND	AL24	GND	AP32	GND	D4
GND	AL3	GND	AP33	GND	E12
GND	AL31	GND	AP4	GND	E17
GND	AL32	GND	AP8	GND	E18
GND	AL33	GND	B1	GND	E23
GND	AL34	GND	B2	GND	E30
GND	AL4	GND	B26	GND	E5
GND	AM1	GND	B3	GND	F29
GND	AM10	GND	B31	GND	F30
GND	AM15	GND	B32	GND	F6
GND	AM2	GND	B33	GND	G28
GND	AM20	GND	B34	GND	G7
GND	AM25	GND	B4	GND	H1
GND	AM3	GND	B9	GND	H34
GND	AM31	GND	C1	GND	J2
GND	AM32	GND	C10	GND	J33
GND	AM33	GND	C15	GND	K3
GND	AM34	GND	C2	GND	K32
GND	AM4	GND	C20	GND	L11
GND	AN1	GND	C25	GND	L24
GND	AN2	GND	C3	GND	L31
GND	AN26	GND	C31	GND	L4
GND	AN3	GND	C32	GND	M12
GND	AN31	GND	C33	GND	M23
GND	AN32	GND	C34	GND	M30
GND	AN33	GND	C4	GND	M5

CQ352		CQ352	2 CQ352			
AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Number	
IO64PB4F4	167	IO85PB5F5	105	IO106NB6F6	46	
IO65NB4F4	170	IO86NB5F5	98	IO106PB6F6	47	
IO65PB4F4	171	IO86PB5F5	99	Bank 7		
IO66NB4F4	164	IO87NB5F5	94	IO107NB7F7	40	
IO66PB4F4	165	IO87PB5F5	95	IO107PB7F7	41	
IO67NB4F4	160	IO89NB5F5	92	IO108NB7F7	42	
IO67PB4F4	161	IO89PB5F5	93	IO108PB7F7	43	
IO68NB4F4	158	Bank 6		IO109NB7F7	36	
IO68PB4F4	159	IO90PB6F6	86	IO109PB7F7	37	
IO70NB4F4	154	IO91NB6F6	84	IO110NB7F7	34	
IO70PB4F4	155	IO91PB6F6	85	IO110PB7F7	35	
IO72NB4F4	152	IO92NB6F6	78	IO111NB7F7	30	
IO72PB4F4	153	IO92PB6F6	79	IO111PB7F7	31	
IO73NB4F4	146	IO93NB6F6	82	IO113NB7F7	28	
IO73PB4F4	147	IO93PB6F6	83	IO113PB7F7	29	
IO74NB4F4/CLKEN	142	IO95NB6F6	76	IO114NB7F7	24	
IO74PB4F4/CLKEP	143	IO95PB6F6	77	IO114PB7F7	25	
IO75NB4F4/CLKFN	136	IO96NB6F6	72	IO115NB7F7	22	
IO75PB4F4/CLKFP	137	IO96PB6F6	73	IO115PB7F7	23	
Bank 5		IO97NB6F6	70	IO116NB7F7	18	
IO76NB5F5/CLKGN	128	IO97PB6F6	71	IO116PB7F7	19	
IO76PB5F5/CLKGP	129	IO98NB6F6	66	IO117NB7F7	16	
IO77NB5F5/CLKHN	122	IO98PB6F6	67	IO117PB7F7	17	
IO77PB5F5/CLKHP	123	IO99NB6F6	64	IO118NB7F7	12	
IO78NB5F5	112	IO99PB6F6	65	IO118PB7F7	13	
IO78PB5F5	113	IO100NB6F6	60	IO119NB7F7	10	
IO79NB5F5	118	IO100PB6F6	61	IO119PB7F7	11	
IO79PB5F5	119	IO101NB6F6	58	IO121NB7F7	6	
IO80NB5F5	110	IO101PB6F6	59	IO121PB7F7	7	
IO80PB5F5	111	IO103NB6F6	54	IO123NB7F7	4	
IO82NB5F5	106	IO103PB6F6	55	IO123PB7F7	5	
IO82PB5F5	107	IO104NB6F6	52	Dedicated I/C)	
IO84NB5F5	100	IO104PB6F6	53	GND	1	
IO84PB5F5	101	IO105NB6F6	48	GND	9	
IO85NB5F5	104	IO105PB6F6	49	GND	15	

CG624		CG624	CG624			
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number	
Bank 0		IO27NB0F2	H10	IO51NB1F4	E15	
IO00NB0F0	D7*	IO27PB0F2	H9	IO51PB1F4	F15	
IO00PB0F0	E7*	IO28NB0F2	A9	IO52NB1F4	A17	
IO01NB0F0	G7	IO28PB0F2	B9	IO55NB1F5	G16	
IO01PB0F0	G6	IO30NB0F2	B11	IO55PB1F5	H16	
IO02NB0F0	B5	IO30PB0F2	B10	IO56NB1F5	A20	
IO02PB0F0	B4	IO31NB0F2	E11	IO56PB1F5	A19	
IO04PB0F0	C7	IO31PB0F2	F11	IO57NB1F5	D16	
IO05NB0F0	F8	IO33NB0F2	D12	IO57PB1F5	D15	
IO05PB0F0	F7	IO33PB0F2	D11	IO58NB1F5	A22	
IO06NB0F0	H8	IO34NB0F3	A11	IO58PB1F5	A21	
IO06PB0F0	H7	IO34PB0F3	A10	IO59NB1F5	F16	
IO11NB0F0	J8	IO37NB0F3	J13	IO61NB1F5	G17	
IO11PB0F0	J7	IO37PB0F3	K13	IO61PB1F5	H17	
IO12PB0F1	B6	IO38NB0F3	H11	IO62NB1F5	B17	
IO13NB0F1	E9*	IO38PB0F3	G11	IO62PB1F5	B16	
IO13PB0F1	D8*	IO40PB0F3	B12	IO63NB1F5	H18	
IO15NB0F1	C9	IO41NB0F3/HCLKAN	G13	IO65NB1F6	C17	
IO15PB0F1	C8	IO41PB0F3/HCLKAP	G12	IO66PB1F6	B18	
IO16NB0F1	A5	IO42NB0F3/HCLKBN	C13	IO67NB1F6	J18	
IO16PB0F1	A4	IO42PB0F3/HCLKBP	C12	IO67PB1F6	J19	
IO17NB0F1	D10	Bank 1		IO68NB1F6	B20	
IO17PB0F1	D9	IO43NB1F4/HCLKCN	G15	IO68PB1F6	B19	
IO18NB0F1	A7	IO43PB1F4/HCLKCP	G14	IO69NB1F6	E17	
IO18PB0F1	A6	IO44NB1F4/HCLKDN	B14	IO69PB1F6	F17	
IO19NB0F1	G9	IO44PB1F4/HCLKDP	B13	IO70NB1F6	B22	
IO19PB0F1	G8	IO45NB1F4	H13	IO70PB1F6	B21	
IO20PB0F1	B7	IO47NB1F4	D14	IO71PB1F6	G18	
IO23NB0F2	F10	IO47PB1F4	C14	IO73NB1F6	G19	
IO23PB0F2	F9	IO48NB1F4	A16	IO74NB1F6	C19	
IO26NB0F2	C11*	IO48PB1F4	A15	IO74PB1F6	C18	
IO26PB0F2	B8*	IO49PB1F4	H15	IO75NB1F6	D18	

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O. Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

Revision	Changes	Page
Revision 8 (continued)	The following changes were made in the "FG676"(AX500) section: AE2, AE25 Change from NC to GND. AF2, AF25 Changed from GND to NC AB4, AF24, C1, C26 Changed from V _{CCDA} to V _{CCA} AD15 Change from V _{CCDA} to V _{COMPLE} AD17 Changed from V _{COMPLE} to V _{CCDA}	3-37
	In the "FG896" (AX2000) section, the AK28 changed from VCCIB5 to VCCIB4.	3-52
	The "CQ352" and "CG624" sections are new.	3-98, 3-115
Revision 7	All I/O FIFO capability was removed.	n/a
(Advance v1.6)	Table 1 was updated.	i
	Figure 1-9 was updated.	1-7
	Figure 2-5 was updated.	2-16
	The "Using an I/O Register" section was updated.	2-16
	The AX250 and AX1000 descriptions were added to the "FG484"section.	3-21
Revision 6	Table 2-3 was updated.	2-2
(Advance v1.5)	Figure 2-1 was updated.	2-8
	Figure 2-48 was updated.	2-75
	Figure 2-52 was updated.	2-82
Revision 5 (Advance v1.4)	In the "PQ208" table, pin 196 was missing, but it has been added in this version with a function of GND.	3-84
	The following pins in the "FG484" table for AX500 were changed: Pin G7 is GND/LP Pins AB8, C10, C11, C14, AB16 are NC.	3-21
	The "FG676" table was updated.	3-37
Revision 4	The "Device Resources" section was updated for the CS180.	ii
(Advance v1.3)	The "Programmable Interconnect Element" and Figure 1-2 are new.	" 1-1 and 1-2
	The "CS180" table is new.	3-1
	The "PQ208" tables for the AX500 were updated. The following pins were not defined in the previous version: GND 21 IO106PB5F10/CLKHP 71 GND 136	3-84
Revision 3 (Advance v1.2)	Table 1, "Ordering Information", "Device Resources", and the Product Plan table were updated.	i, ii
	The following figures and tables were updated: Figure 1-3 Figure 1-8 (new) Table 2-3 Figure 2-2 Table 2-8 Figure 2-11	1-2 1-6 2-2 2-9 2-12 2-23
	The "Design Environment" section was updated.	1-7
	The "Package Thermal Characteristics" was updated.	2-6