E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	18144
Number of Logic Elements/Cells	-
Total RAM Bits	165888
Number of I/O	418
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TA)
Package / Case	624-BCLGA
Supplier Device Package	624-CLGA (32.5x32.5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax1000-lg624m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Thermal Characteristics

Introduction

The temperature variable in Microsemi's Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction temperature to be higher than the ambient temperature. EQ 1 can be used to calculate junction temperature.

$$T_J = Junction Temperature = \Delta T + T_a$$

Where:

 T_a = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient

 $\Delta T = \theta_{ia} * P$

Where:

- P = Power
- θ_{ia} = Junction to ambient of package. θ_{ia} numbers are located under Table 2-6 on page 2-7.

Package Thermal Characteristics

The device junction-to-case thermal characteristic is θ_{jc} , and the junction-to-ambient air characteristic is θ_{ja} . The thermal characteristics for θ_{ja} are shown with two different air flow rates. θ_{jc} values are provided for reference. The absolute maximum junction temperature is 125°C.

The maximum power dissipation allowed for commercial- and industrial-grade devices is a function of θ_{ja} . A sample calculation of the absolute maximum power dissipation allowed for an 896-pin FBGA package at commercial temperature and still air is as follows:

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. } (^{\circ}\text{C}) - \text{Max. ambient temp. } (^{\circ}\text{C})}{\theta_{ja}(^{\circ}\text{C/W})} = \frac{125^{\circ}\text{C} - 70^{\circ}\text{C}}{13.6^{\circ}\text{C/W}} = 4.04 \text{ W}$$

EQ 2

EQ 1

The maximum power dissipation allowed for Military temperature and Mil-Std 883B devices is specified as a function of θ_{ic} .

Package Type	Pin Count	θ_{jc}	$\theta_{\text{ja}}\text{Still}\text{Air}$	θ_{ja} 1.0m/s	θ_{ja} 2.5m/s	Units
Chip Scale Package (CSP)	180	N/A	57.8	51.0	50	°C/W
Plastic Quad Flat Pack (PQFP)	208	8.0	26	23.5	20.9	°C/W
Plastic Ball Grid Array (PBGA)	729	2.2	13.7	10.6	9.6	°C/W
Fine Pitch Ball Grid Array (FBGA)	256	3.0	26.6	22.8	21.5	°C/W
Fine Pitch Ball Grid Array (FBGA)	324	3.0	25.8	22.1	20.9	°C/W
Fine Pitch Ball Grid Array (FBGA)	484	3.2	20.5	17.0	15.9	°C/W
Fine Pitch Ball Grid Array (FBGA)	676	3.2	16.4	13.0	12.0	°C/W
Fine Pitch Ball Grid Array (FBGA)	896	2.4	13.6	10.4	9.4	°C/W
Fine Pitch Ball Grid Array (FBGA)	1152	1.8	12.0	8.9	7.9	°C/W
Ceramic Quad Flat Pack (CQFP) ¹	208	2.0	22	19.8	18.0	°C/W
Ceramic Quad Flat Pack (CQFP) ¹	352	2.0	17.9	16.1	14.7	°C/W
Ceramic Column Grid Array (CCGA) ²	624	6.5	8.9	8.5	8	°C/W

 Table 2-6 • Package Thermal Characteristics

Notes:

1. θ_{jc} for the 208-pin and 352-pin CQFP refers to the thermal resistance between the junction and the bottom of the package.

2. θ_{jc} for the 624-pin CCGA refers to the thermal resistance between the junction and the top surface of the package. Thermal resistance from junction to board (θ_{ib}) for CCGA 624 package is 3.4°C/W.

Timing Characteristics

Axcelerator devices are manufactured in a CMOS process, therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing. The derating factors shown in Table 2-7 should be applied to all timing data contained within this datasheet.

	Junction Temperature								
VCCA	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C		
1.4 V	0.83	0.86	0.91	0.96	1.02	1.05	1.15		
1.425 V	0.82	0.84	0.90	0.94	1.00	1.04	1.13		
1.5 V	0.78	0.80	0.85	0.89	0.95	0.98	1.07		
1.575 V	0.74	0.76	0.81	0.85	0.90	0.94	1.02		
1.6 V	0.73	0.75	0.80	0.84	0.89	0.92	1.01		

Table 2-7 • Temperature and Voltage Timing Derating Factors(Normalized to Worst-Case Commercial, T_J = 70°C, VCCA = 1.425V)

Notes:

1. The user can set the junction temperature in Designer software to be any integer value in the range of – 55°C to 175°C.

2. The user can set the core voltage in Designer software to be any value between 1.4V and 1.6V.

All timing numbers listed in this datasheet represent sample timing characteristics of Axcelerator devices. Actual timing delay values are design-specific and can be derived from the Timer tool in Microsemi's Designer software after place-and-route.

Timing Characteristics

Table 2-25 • 2.5V LVCMOS I/O ModuleWorst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 2.3 V, $T_J = 70^{\circ}C$

			-2 Speed -1 Speed		peed	Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVCMOS25	I/O Module Timing							
t _{DP}	Input Buffer		1.95		2.22		2.61	ns
t _{PY}	Output Buffer		3.29		3.74		4.40	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		2.48		2.50		2.51	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		2.48		2.50		2.51	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		5.74		6.54		7.69	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		6.60		7.51		8.83	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Timing Characteristics

Table 2-61 • LVPECL I/O Module Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		–2 S	peed	-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVPECL Ou	tput Module Timing							
t _{DP}	Input Buffer		1.66		1.89		2.22	ns
t _{PY}	Output Buffer		2.24		2.55		3.00	ns
t _{ICLKQ}	Clock-to-Q for the I/O input register		0.67		0.77		0.90	ns
t _{oclkq}	Clock-to-Q for the IO output register and the I/O enable register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Note: The carry-chain sequence can end on either C-cell.

Figure 2-30 • Carry-Chain Sequencing of C-Cells

Timing Characteristics

Refer to Table 2-62 on page 2-55 for more information on carry-chain timing.

The ClockTileDist Cluster contains an HCLKMux (HM) module for each of the four HCLK trees and a CLKMux (CM) module for each of the CLK trees. The HCLK branches then propagate horizontally through the middle of the core tile to HCLKColDist (HD) modules in every SuperCluster column. The CLK branches propagate vertically through the center of the core tile to CLKRowDist (RD) modules in every SuperCluster row. Together, the HCLK and CLK branches provide for a low-skew global fanout within the core tile (Figure 2-40 and Figure 2-41).

Figure 2-40 • CTD, CD, and HD Module Layout

Figure 2-41 • HCLK and CLK Distribution within a Core Tile

PLLRCLK and PLLHCLK

PLLRCLK (PLLHCLK) is used to drive global resource CLK (HCLK) from a PLL (Figure 2-44).

Figure 2-44 • PLLRCLK and PLLHCLK

Using Global Resources with PLLs

Each global resource has an associated PLL at its root. For example, PLLA can drive HCLKA, PLLE can drive CLKE, etc. (Figure 2-45).

Figure 2-45 • Example of HCLKA Driven from a PLL with External Clock Source

In addition, each clock pin of the package can be used to drive either its associated global resource or PLL. For example, package pins CLKEP and CLKEN can drive either the RefCLK input of PLLE or CLKE.

There are two macros required when interfacing the embedded PLLs with the global resources: PLLINT and PLLOUT.

PLLINT

This macro is used to drive the RefCLK input of the PLL internally from user signals.

PLLOUT

This macro is used to connect either the CLK1 or CLK2 output of a PLL to the regular routing network (Figure 2-46).

Figure 2-46 • Example of PLLINT and PLLOUT Usage

Clock Skew Minimization

Figure 2-56 indicates how feedback from the clock network can be used to create minimal skew between the distributed clock network and the input clock. The input clock is fed to the reference clock input of the PLL. The output clock (CLK2) feeds a routed clock network. The feedback input to the PLL uses a clock input delayed by a routing network. The PLL then adjusts the phase of the input clock to match the delayed clock, thus providing nearly zero effective skew between the two clocks. Refer to the *Axcelerator Family PLL and Clock Management* application note for more information.

Figure 2-56 • Using the PLL for Clock Deskewing

		-2 Speed		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Write Mode								
t _{WDASU}	Write Data Setup vs. WCLK		1.39		1.59		1.87	ns
t _{WDAHD}	Write Data Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WADSU}	Write Address Setup vs. WCLK		1.39		1.59		1.87	ns
t _{WADHD}	Write Address Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WENSU}	Write Enable Setup vs. WCLK		1.39		1.59		1.87	ns
t _{WENHD}	Write Enable Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WCKH}	WCLK Minimum High Pulse Width	0.75		0.75		0.75		ns
t _{WCLK}	WCLK Minimum Low Pulse Width	1.76		1.76		1.76		ns
t _{WCKP}	WCLK Minimum Period	2.51		2.51		2.51		ns
Read Mode								
t _{RADSU}	Read Address Setup vs. RCLK		1.71		1.94		2.28	ns
t _{RADHD}	Read Address Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RENSU}	Read Enable Setup vs. RCLK		1.71		1.94		2.28	ns
t _{RENHD}	Read Enable Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		1.43		1.63		1.92	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		2.26		2.58		3.03	ns
t _{RCLKH}	RCLK Minimum High Pulse Width	0.73		0.73		0.73		ns
t _{RCLKL}	RCLK Minimum Low Pulse Width	1.89		1.89		1.89		ns
t _{RCKP}	RCLK Minimum Period	2.62		2.62		2.62		ns

Table 2-90 • Two RAM Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

Note: Timing data for these two cascaded RAM blocks uses a depth of 8,192. For all other combinations, use Microsemi's timing software.

FIFO

Every memory block has its own embedded FIFO controller. Each FIFO block has one read port and one write port. This embedded FIFO controller uses no internal FPGA logic and features:

- Glitch-free FIFO Flags
- · Gray-code address counters/pointers to prevent metastability problems
- Overflow and underflow control

Both ports are configurable in various sizes from 4k x 1 to 128 x 36, similar to the RAM block size. Each port is fully synchronous.

Read and write operations can be completely independent. Data on the appropriate WD pins are written to the FIFO on every active WCLK edge as long as WEN is high. Data is read from the FIFO and output on the appropriate RD pins on every active RCLK edge as long as REN is asserted.

The FIFO block offers programmable almost-empty (AEMPTY) and almost-full (AFULL) flags as well as EMPTY and FULL flags (Figure 2-61):

- The FULL flag is synchronous to WCLK. It allows the FIFO to inhibit writing when full.
- The EMPTY flag is synchronous to RCLK. It allows the FIFO to inhibit reading at the empty condition.

Gray code counters are used to prevent metastability problems associated with flag logic. The depth of the FIFO is dependent on the data width and the number of memory blocks used to create the FIFO. The write operations to the FIFO are synchronous with respect to the WCLK, and the read operations are synchronous with respect to the RCLK.

The FIFO block may be reset to the empty state.

Figure 2-61 • Axcelerator RAM with Embedded FIFO Controller

Detailed Specifications

Table 2-98 • One FIFO Block

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		-2 Speed		–1 S	peed	Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
FIFO Module	Timing							
t _{WSU}	Write Setup		11.40		12.98		15.26	ns
t _{WHD}	Write Hold		0.22		0.25		0.30	ns
t _{WCKH}	WCLK High		0.75		0.75		0.75	ns
t _{WCKL}	WCLK Low		0.88		0.88		0.88	ns
t _{WCKP}	Minimum WCLK Period	1.63		1.63		1.63		ns
t _{RSU}	Read Setup		11.63		13.25		15.58	ns
t _{RHD}	Read Hold		0.00		0.00		0.00	ns
t _{RCKH}	RCLK High		0.77		0.77		0.77	ns
t _{RCKL}	RCLK Low		0.93		0.93		0.93	ns
t _{RCKP}	Minimum RCLK period	1.70		1.70		1.70		ns
t _{CLRHF}	Clear High		0.00		0.00		0.00	ns
t _{CLR2FF}	Clear-to-flag (EMPTY/FULL)		1.92		2.18		2.57	ns
t _{CLR2AF}	Clear-to-flag (AEMPTY/AFULL)		4.39		5.00		5.88	ns
t _{CK2FF}	Clock-to-flag (EMPTY/FULL)		2.13		2.42		2.85	ns
t _{CK2AF}	Clock-to-flag (AEMPTY/AFULL)		5.04		5.75		6.75	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		1.32		1.51		1.77	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		2.16		2.46		2.90	ns

Note: Timing data for this single block FIFO has a depth of 4,096. For all other combinations, use Microsemi's timing software.

Package Pin Assignments

BG729		BG729		BG729	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
Bank 0		IO18NB0F1	C10	IO36NB1F3	H15
IO00NB0F0	E6	IO18PB0F1	C9	IO36PB1F3	G15
IO00PB0F0	F6	IO19NB0F1	E11	IO37NB1F3	C17
IO01NB0F0	G8	IO19PB0F1	F11	IO37PB1F3	C16
IO01PB0F0	G7	IO20NB0F1	G12	IO38NB1F3	B18
IO02NB0F0	D7	IO20PB0F1	H12	IO38PB1F3	B17
IO02PB0F0	E7	IO21NB0F1	D11	IO39NB1F3	A18
IO03NB0F0	D5	IO21PB0F1	D10	IO39PB1F3	A17
IO03PB0F0	E5	IO22NB0F2	A10	IO40NB1F3	H16
IO04NB0F0	G9	IO22PB0F2	A9	IO40PB1F3	G16
IO04PB0F0	H9	IO23NB0F2	B11	IO41NB1F4	B19
IO05NB0F0	E8	IO23PB0F2	B10	IO41PB1F4	A19
IO05PB0F0	F8	IO24NB0F2	G13	IO42NB1F4	C19
IO06NB0F0	C6	IO24PB0F2	H13	IO42PB1F4	C18
IO06PB0F0	D6	IO25NB0F2	C12	IO43NB1F4	D18
IO07NB0F0	B5	IO25PB0F2	C11	IO43PB1F4	D17
IO07PB0F0	C5	IO26NB0F2	E12	IO44NB1F4	H17
IO08NB0F0	A6	IO26PB0F2	D12	IO44PB1F4	G17
IO08PB0F0	A5	IO27NB0F2	E13	IO45NB1F4	F17
IO09NB0F0	E9	IO27PB0F2	F13	IO45PB1F4	E17
IO09PB0F0	F9	IO28NB0F2	G14	IO46NB1F4	B20
IO10NB0F0	G10	IO28PB0F2	H14	IO46PB1F4	A20
IO10PB0F0	H10	IO29NB0F2	A12	IO47NB1F4	C21
IO11NB0F0	B7	IO29PB0F2	B12	IO47PB1F4	C20
IO11PB0F0	B6	IO30NB0F2/HCLKAN	C13	IO48NB1F4	H18
IO12NB0F1	C8	IO30PB0F2/HCLKAP	D13	IO48PB1F4	G18
IO12PB0F1	C7	IO31NB0F2/HCLKBN	F14	IO49NB1F4	F18
IO13NB0F1	E10	IO31PB0F2/HCLKBP	E14	IO49PB1F4	E18
IO13PB0F1	F10	Bank 1		IO50NB1F4	D20
IO14NB0F1	G11	IO32NB1F3/HCLKCN	C14	IO50PB1F4	D19
IO14PB0F1	H11	IO32PB1F3/HCLKCP	B14	IO51NB1F4	A22
IO15NB0F1	D9	IO33NB1F3/HCLKDN	D16	IO51PB1F4	A21
IO15PB0F1	D8	IO33PB1F3/HCLKDP	D15	IO52NB1F4	B22
IO16NB0F1	A8	IO34NB1F3	B16	IO52PB1F4	B21
IO16PB0F1	A7	IO34PB1F3	A16	IO53NB1F4	F19
IO17NB0F1	B9	IO35NB1F3	E15	IO53PB1F4	E19
IO17PB0F1	B8	IO35PB1F3	F15	IO54NB1F5	F20

Microsemi

Package Pin Assignments

BG729		BG729		BG729	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
IO109NB3F10	V24	IO127PB3F11	AC27	IO145PB4F13	AD19
IO109PB3F10	V25	IO128NB3F11	Y20	IO146NB4F13	AC18
IO110NB3F10	T20	IO128PB3F11	W19	IO146PB4F13	AB18
IO110PB3F10	T21	Bank 4	•	IO147NB4F13	Y17
IO111NB3F10	W26	IO129NB4F12	AA20	IO147PB4F13	AA17
IO111PB3F10	W27	IO129PB4F12	Y21	IO148NB4F13	AF19
IO112NB3F10	U22	IO130NB4F12	AB22	IO148PB4F13	AF20
IO112PB3F10	U23	IO130PB4F12	AB23	IO149NB4F13	AC17
IO113NB3F10	Y26	IO131NB4F12	AC22	IO149PB4F13	AB17
IO113PB3F10	Y27	IO131PB4F12	AC23	IO150NB4F13	AE18
IO114NB3F10	U20	IO132NB4F12	AD23	IO150PB4F13	AE19
IO114PB3F10	U21	IO132PB4F12	AD24	IO151NB4F13	AA16
IO115NB3F10	W24	IO133NB4F12	AF23	IO151PB4F13	Y16
IO115PB3F10	W25	IO133PB4F12	AE23	IO152NB4F14	AG18
IO116NB3F10	V22	IO134NB4F12	AC21	IO152PB4F14	AG19
IO116PB3F10	V23	IO134PB4F12	AB21	IO153NB4F14	AC16
IO117NB3F10	Y24	IO135NB4F12	AC20	IO153PB4F14	AB16
IO117PB3F10	Y25	IO135PB4F12	AB20	IO154NB4F14	AF17
IO118NB3F11	V20	IO136NB4F12	AD21	IO154PB4F14	AF18
IO118PB3F11	V21	IO136PB4F12	AD22	IO155NB4F14	AB15
IO119NB3F11	AA26	IO137NB4F12	Y19	IO155PB4F14	AC15
IO119PB3F11	AA27	IO137PB4F12	AA19	IO156NB4F14	AE16
IO120NB3F11	W22	IO138NB4F12	AE21	IO156PB4F14	AE17
IO120PB3F11	W23	IO138PB4F12	AE22	IO157NB4F14	Y15
IO121NB3F11	AA24	IO139NB4F13	AF21	IO157PB4F14	AA15
IO121PB3F11	AA25	IO139PB4F13	AF22	IO158NB4F14	AG16
IO122NB3F11	W20	IO140NB4F13	AG22	IO158PB4F14	AG17
IO122PB3F11	W21	IO140PB4F13	AG23	IO159NB4F14/CLKEN	AF15
IO123NB3F11	AB26	IO141NB4F13	Y18	IO159PB4F14/CLKEP	AF16
IO123PB3F11	AB27	IO141PB4F13	AA18	IO160NB4F14/CLKFN	AD14
IO124NB3F11	Y22	IO142NB4F13	AE20	IO160PB4F14/CLKFP	AD15
IO124PB3F11	Y23	IO142PB4F13	AD20	Bank 5	
IO125NB3F11	AB24	IO143NB4F13	AG20	IO161NB5F15/CLKGN	AE14
IO125PB3F11	AB25	IO143PB4F13	AG21	IO161PB5F15/CLKGP	AE15
IO126NB3F11	AA22	IO144NB4F13	AC19	IO162NB5F15/CLKHN	AC13
IO126PB3F11	AA23	IO144PB4F13	AB19	IO162PB5F15/CLKHP	AD13
IO127NB3F11	AC26	IO145NB4F13	AD18	IO163NB5F15	Y14

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

Package Pin Assignments

FG484		FG484		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	
VCCPLA	F10	VCCIB2	C22	
VCCPLB	G9	VCCIB2	J15	
VCCPLC	D13	VCCIB2	K15	
VCCPLD	G13	VCCIB2	L15	
VCCPLE	U13	VCCIB3	M15	
VCCPLF	T14	VCCIB3	N15	
VCCPLG	W10	VCCIB3	P15	
VCCPLH	T10	VCCIB3	Y21	
VCCDA	AB16	VCCIB3	Y22	
VCCDA	AB8	VCCIB4	AA20	
VCCDA	C10	VCCIB4	AB20	
VCCDA	C11	VCCIB4	R12	
VCCDA	C14	VCCIB4	R13	
VCCDA	D14	VCCIB4	R14	
VCCDA	D5	VCCIB5	AA3	
VCCDA	F16	VCCIB5	AB3	
VCCDA	G12	VCCIB5	R10	
VCCDA	L4	VCCIB5	R11	
VCCDA	M18	VCCIB5	R9	
VCCDA	T11	VCCIB6	M8	
VCCDA	T17	VCCIB6	N8	
VCCDA	U7	VCCIB6	P8	
VCCDA	V14	VCCIB6	Y1	
VCCDA	V8	VCCIB6	Y2	
VCCIB0	A3	VCCIB7	C1	
VCCIB0	B3	VCCIB7	C2	
VCCIB0	H10	VCCIB7	J8	
VCCIB0	H11	VCCIB7	K8	
VCCIB0	H9	VCCIB7	L8	
VCCIB1	A20	VCOMPLA	D10	
VCCIB1	B20	VCOMPLB	G10	
VCCIB1	H12	VCOMPLC	E12	
VCCIB1	H13	VCOMPLD	G14	
VCCIB1	H14	VCOMPLE	W13	
VCCIB2	C21	VCOMPLF	T13	

FG484						
AX1000 Function	Pin Number					
VCOMPLG	V11					
VCOMPLH	Т9					
VPUMP	D17					

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

FG896		FG896		FG896	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
IO303PB7F28	R1	IO324NB7F30	K5	GND	A13
IO304NB7F28	R7	IO324PB7F30	L5	GND	A18
IO304PB7F28	R6	IO326NB7F30	G1*	GND	A2
IO306NB7F28	N2	IO326PB7F30	K2*	GND	A23
IO306PB7F28	P2	IO327NB7F30	J4	GND	A29
IO307NB7F28	N3	IO327PB7F30	J3	GND	A8
IO307PB7F28	P3	IO328NB7F30	L8	GND	AA10
IO308NB7F28	P9	IO328PB7F30	L7	GND	AA21
IO308PB7F28	P8	IO329NB7F30	G2	GND	AA28
IO309NB7F28	P4	IO329PB7F30	H2	GND	AA3
IO309PB7F28	P5	IO330NB7F30	G3	GND	AB2
IO310NB7F29	P7	IO330PB7F30	H3	GND	AB22
IO310PB7F29	P6	IO331NB7F30	K8	GND	AB29
IO311NB7F29	L1	IO331PB7F30	K7	GND	AB9
IO311PB7F29	M1	IO332NB7F31	J6	GND	AC1
IO312NB7F29	M5	IO332PB7F31	K6	GND	AC30
IO312PB7F29	N5	IO333NB7F31	D1	GND	AE25
IO313NB7F29	M4	IO333PB7F31	D2	GND	AE6
IO313PB7F29	N4	IO334NB7F31	G4	GND	AF26
IO315NB7F29	L2	IO334PB7F31	H4	GND	AF5
IO315PB7F29	M2	IO335NB7F31	F2	GND	AG27
IO316NB7F29	N7	IO335PB7F31	F1	GND	AG4
IO316PB7F29	N6	IO336NB7F31	H5	GND	AH10
IO317NB7F29	L3	IO336PB7F31	J5	GND	AH15
IO317PB7F29	M3	IO337NB7F31	E2	GND	AH16
IO318NB7F29	N8	IO337PB7F31	E1	GND	AH21
IO318PB7F29	N9	IO338NB7F31	H7	GND	AH28
IO320NB7F29	L6	IO338PB7F31	J7	GND	AH3
IO320PB7F29	M6	IO339NB7F31	F4	GND	AJ1
IO321NB7F30	K4	IO339PB7F31	F3	GND	AJ2
IO321PB7F30	L4	IO340NB7F31	F5	GND	AJ22
IO322NB7F30	M8	IO340PB7F31	G5	GND	AJ29
IO322PB7F30	M7	IO341NB7F31	G6	GND	AJ30
IO323NB7F30	J1	IO341PB7F31	H6	GND	AJ9
IO323PB7F30	K1	Dedicated I	/0	GND	AK13

FG1152		FG1152		FG1152	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
IO155PB3F14	AC29	IO172PB4F16	AH27	IO190NB4F17	AH22
IO156NB3F14	AE30	IO173NB4F16	AJ27	IO190PB4F17	AH23
IO156PB3F14	AD30	IO173PB4F16	AJ28	IO191NB4F17	AJ23
IO157NB3F14	AC26	IO174NB4F16	AL27	IO191PB4F17	AJ24
IO157PB3F14	AB26	IO174PB4F16	AL28	IO192NB4F17	AG21
IO158NB3F14	AH33	IO175NB4F16	AM28	IO192PB4F17	AG22
IO158PB3F14	AG33	IO175PB4F16	AM29	IO193NB4F18	AP23
IO159NB3F14	AD27	IO176NB4F16	AG25	IO193PB4F18	AP24
IO159PB3F14	AC27	IO176PB4F16	AG26	IO194NB4F18	AN22
IO160NB3F14	AG32	IO177NB4F16	AK26	IO194PB4F18	AN23
IO160PB3F14	AF32	IO177PB4F16	AK27	IO195NB4F18	AM23
IO161NB3F15	AG31	IO178NB4F16	AF25	IO195PB4F18	AL23
IO161PB3F15	AF31	IO178PB4F16	AE25	IO196NB4F18	AF21
IO162NB3F15	AF29	IO179NB4F16	AP28	IO196PB4F18	AF22
IO162PB3F15	AE29	IO179PB4F16	AN28	IO197NB4F18	AL22
IO163NB3F15	AE28	IO180NB4F16	AJ25	IO197PB4F18	AM22
IO163PB3F15	AD28	IO180PB4F16	AJ26	IO198NB4F18	AE21
IO164NB3F15	AG30	IO181NB4F17	AM26	IO198PB4F18	AE22
IO164PB3F15	AF30	IO181PB4F17	AM27	IO199NB4F18	AJ21
IO165NB3F15	AE26	IO182NB4F17	AF24	IO199PB4F18	AJ22
IO165PB3F15	AD26	IO182PB4F17	AE24	IO200NB4F18	AK21
IO166NB3F15	AJ30	IO183NB4F17	AH24	IO200PB4F18	AK22
IO166PB3F15	AH30	IO183PB4F17	AH25	IO201NB4F18	AM21
IO167NB3F15	AG28	IO184NB4F17	AG23	IO201PB4F18	AL21
IO167PB3F15	AF28	IO184PB4F17	AG24	IO202NB4F18	AE20
IO168NB3F15	AF27	IO185NB4F17	AL25	IO202PB4F18	AD20
IO168PB3F15	AE27	IO185PB4F17	AL26	IO203NB4F19	AN21
IO169NB3F15	AH29	IO186NB4F17	AP25	IO203PB4F19	AP21
IO169PB3F15	AG29	IO186PB4F17	AP26	IO204NB4F19	AP20
IO170NB3F15	AD25	IO187NB4F17	AK24	IO204PB4F19	AN20
IO170PB3F15	AC25	IO187PB4F17	AK25	IO205NB4F19	AN19
Bank 4		IO188NB4F17	AF23	IO205PB4F19	AP19
IO171NB4F16	AP29	IO188PB4F17	AE23	IO206NB4F19	AG20
IO171PB4F16	AN29	IO189NB4F17	AN24	IO206PB4F19	AF20
IO172NB4F16	AH26	IO189PB4F17	AM24	IO207NB4F19	AL19

Package Pin Assignments

CG624		CG624		CG624	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
Bank 0		IO27NB0F2	H10	IO51NB1F4	E15
IO00NB0F0	D7*	IO27PB0F2	H9	IO51PB1F4	F15
IO00PB0F0	E7*	IO28NB0F2	A9	IO52NB1F4	A17
IO01NB0F0	G7	IO28PB0F2	B9	IO55NB1F5	G16
IO01PB0F0	G6	IO30NB0F2	B11	IO55PB1F5	H16
IO02NB0F0	B5	IO30PB0F2	B10	IO56NB1F5	A20
IO02PB0F0	B4	IO31NB0F2	E11	IO56PB1F5	A19
IO04PB0F0	C7	IO31PB0F2	F11	IO57NB1F5	D16
IO05NB0F0	F8	IO33NB0F2	D12	IO57PB1F5	D15
IO05PB0F0	F7	IO33PB0F2	D11	IO58NB1F5	A22
IO06NB0F0	H8	IO34NB0F3	A11	IO58PB1F5	A21
IO06PB0F0	H7	IO34PB0F3	A10	IO59NB1F5	F16
IO11NB0F0	J8	IO37NB0F3	J13	IO61NB1F5	G17
IO11PB0F0	J7	IO37PB0F3	K13	IO61PB1F5	H17
IO12PB0F1	B6	IO38NB0F3	H11	IO62NB1F5	B17
IO13NB0F1	E9*	IO38PB0F3	G11	IO62PB1F5	B16
IO13PB0F1	D8*	IO40PB0F3	B12	IO63NB1F5	H18
IO15NB0F1	C9	IO41NB0F3/HCLKAN	G13	IO65NB1F6	C17
IO15PB0F1	C8	IO41PB0F3/HCLKAP	G12	IO66PB1F6	B18
IO16NB0F1	A5	IO42NB0F3/HCLKBN	C13	IO67NB1F6	J18
IO16PB0F1	A4	IO42PB0F3/HCLKBP	C12	IO67PB1F6	J19
IO17NB0F1	D10	Bank 1		IO68NB1F6	B20
IO17PB0F1	D9	IO43NB1F4/HCLKCN	G15	IO68PB1F6	B19
IO18NB0F1	A7	IO43PB1F4/HCLKCP	G14	IO69NB1F6	E17
IO18PB0F1	A6	IO44NB1F4/HCLKDN	B14	IO69PB1F6	F17
IO19NB0F1	G9	IO44PB1F4/HCLKDP	B13	IO70NB1F6	B22
IO19PB0F1	G8	IO45NB1F4	H13	IO70PB1F6	B21
IO20PB0F1	B7	IO47NB1F4	D14	IO71PB1F6	G18
IO23NB0F2	F10	IO47PB1F4	C14	IO73NB1F6	G19
IO23PB0F2	F9	IO48NB1F4	A16	IO74NB1F6	C19
IO26NB0F2	C11*	IO48PB1F4	A15	IO74PB1F6	C18
IO26PB0F2	B8*	IO49PB1F4	H15	IO75NB1F6	D18

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O. Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

4 – Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Revision	Changes		
Revision 18 (March 2012)	Table 2-1 • Absolute Maximum Ratings was updated to correct the maximum DC core supply voltage (VCCA) from 1.6 V to 1.7 V (SAR 36786). The maximum input voltage (VI) was corrected from 3.75 V to 4.1 V (SAR 35419).	2-1	
	Values for tristate leakage current IOZ, and IIH and IIL were added to Table 2-3 • Standby Current (SARs 35774, 32021).		
	Figure 2-2 • VCCPLX and VCOMPLX Power Supply Connect was updated to correct the units for the resistance from "W" to Ω (SAR 36415).		
	In the Introduction to the "User I/Os" section, the following sentence was added to clarify the slew rate setting (SAR 34943):	2-11	
	The slew rate setting is effective for both rising and falling edges.		
	Figure 2-3 • Use of an External Resistor for 5 V Tolerance was revised to show the VCCI and GND clamp diodes. The explanatory text above the figure was revised as well (SAR 34942).	2-13	
	EQ 3 for 5 V tolerance was corrected to change Vdiode from 0.6 V to 0.7 V (SAR 36786).	2-13	
	Additional information was added to the "Using the Weak Pull-Up and Pull-Down Circuits" section to clarify how the weak pull-up and pull-down resistors are physically implemented (SAR 34945).	2-17	
	The description for the C _{INCLK} parameter in Table 2-18 • Input Capacitance was changed from "Input capacitance on clock pin" to "Input capacitance on HCLK and RCLK pin" (SAR 34944).	2-21	
	Table 2-19 • I/O Input Rise Time and Fall Time* is new (SAR 34942).	2-21	
	The minimum VIL for 1.5 V LVCMOS and PCI was corrected from –0.5 to –0.3 in Table 2-29 • DC Input and Output Levels and Table 2-33 • DC Input and Output Levels (SAR 34358).	2-38, 2-40	
	Support for simulating the GCLR/ GPSET feature in the Axcelerator Family was added in Libero software v9.0 SPI1. Reference to the section explaining this in the <i>Antifuse Macro Library Guide</i> was added to the "R-Cell" section (SAR 26413).	2-58	
	The enable signal in Figure 2-32 • R-Cell Delays was corrected to show it is active low rather than active high (SAR 34946).	2-59	
Revision 17 (September 2011)	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "Axcelerator Family Device Status" table indicates the status for each device in the device family.	iii	
	The "Features" section, "Programmable Interconnect Element" section, and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 32865).	i, 1-1, 2-108	