

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Obsolete
Number of LABs/CLBs	2016
Number of Logic Elements/Cells	-
Total RAM Bits	18432
Number of I/O	138
Number of Gates	125000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/ax125-1fg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Microsemi

Axcelerator Family FPGAs

Ordering Information

		User I/Os (Includi	ng Clock Buffers)		
Package	AX125	AX250	AX500	AX1000	AX2000
PQ208	-	115	115	-	-
CQ208	-	115	115	-	-
CQ256	-	-	-	-	136
FG256	138	138	-	-	-
FG324	168	-	-	-	-
CQ352	-	198	198	198	198
FG484	-	248	317	317	-
CG624	-	-	-	418	418
FG676	-	-	336	418	-
BG729	-	-	-	516	-
FG896	-	-	-	516	586
FG1152	-	-	-	_	684

Device Resources

Note: The FG256, FG324, and FG484 are footprint compatible with one another. The FG676, FG896, and FG1152 are also footprint compatible with one another.

Figure 1-7 • I/O Cluster Arrangement

Routing

The AX hierarchical routing structure ties the logic modules, the embedded memory blocks, and the I/O modules together (Figure 1-8 on page 1-6). At the lowest level, in and between SuperClusters, there are three local routing structures: FastConnect, DirectConnect, and CarryConnect routing. DirectConnects provide the highest performance routing inside the SuperClusters by connecting a C-cell to the adjacent R-cell. DirectConnects do not require an antifuse to make the connection and achieve a signal propagation time of less than 0.1 ns.

FastConnects provide high-performance, horizontal routing inside the SuperCluster and vertical routing to the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering a maximum routing delay of 0.4 ns.

CarryConnects are used for routing carry logic between adjacent SuperClusters. They connect the FCO output of one two-bit, C-cell carry logic to the FCI input of the two-bit, C-cell carry logic of the SuperCluster below it. CarryConnects do not require an antifuse to make the connection and achieve a signal propagation time of less than 0.1 ns.

The next level contains the core tile routing. Over the SuperClusters within a core tile, both vertical and horizontal tracks run across rows or columns, respectively. At the chip level, vertical and horizontal tracks extend across the full length of the device, both north-to-south and east-to-west. These tracks are composed of highway routing that extend the entire length of the device (segmented at core tile boundaries) as well as segmented routing of varying lengths.

User I/Os²

Introduction

The Axcelerator family features a flexible I/O structure, supporting a range of mixed voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V) with its bank-selectable I/Os. Table 2-8 on page 2-12 contains the I/O standards supported by the Axcelerator family, and Table 2-10 on page 2-12 compares the features of the different I/O standards.

Each I/O provides programmable slew rates, drive strengths, and weak pull-up and weak pull-down circuits. The slew rate setting is effective for both rising and falling edges.

I/O standards, except 3.3 V PCI and 3.3 V PCI-X, are capable of hot insertion. 3.3 V PCI and 3.3 V PCI-X are 5 V tolerant with the aid of an external resistor.

The input buffer has an optional user-configurable delay element. The element can reduce or eliminate the hold time requirement for input signals registered within the I/O cell. The value for the delay is set on a bank-wide basis. Note that the delay WILL be a function of process variations as well as temperature and voltage changes.

Each I/O includes three registers: an input (InReg), an output (OutReg), and an enable register (EnReg). I/Os are organized into banks, and there are eight banks per device—two per side (Figure 2-6 on page 2-18). Each I/O bank has a common VCCI, the supply voltage for its I/Os.

For voltage-referenced I/Os, each bank also has a common reference-voltage bus, VREF. While VREF must have a common voltage for an entire I/O bank, its location is user-selectable. In other words, any user I/O in the bank can be selected to be a VREF.

The location of the VREF pin should be selected according to the following rules:

- Any pin that is assigned as a VREF can control a maximum of eight user I/O pad locations in each direction (16 total maximum) within the same I/O bank.
- I/O pad locations listed as no connects are counted as part of the 16 maximum. In many cases, this leads to fewer than eight user I/O package pins in each direction being controlled by a VREF pin.
- Dedicated I/O pins such as GND and VCCI are counted as part of the 16.
- The two user I/O pads immediately adjacent on each side of the VREF pin (four in total) may only be used as inputs. The exception is when there is a VCCI/GND pair separating the VREF pin and the user I/O pad location.
- The user does not need to assign VREF pins for OUTBUF and TRIBUF. VREF pins are needed only for input and bidirectional I/Os.

The differential amplifier supply voltage VCCDA should be connected to 3.3 V.

A user can gain access to the various I/O standards in three ways:

- Instantiate specific library macros that represent the desired specific standard.
- Use generic I/O macros and then use Designer's PinEditor to specify the desired I/O standards (please note that this is not applicable to differential standards).
- A combination of the first two methods.

Refer to the I/O Features in Axcelerator Family Devices application note and the Antifuse Macro Library Guide for more details.

^{2.} Do not use an external resister to pull the I/O above V_{CCI} for a higher logic "1" voltage level. The desired higher logic "1" voltage level will be degraded due to a small I/O current, which exists when the I/O is pulled up above V_{CCI} .

Figure 2-14 • Output Enable Register Timing Characteristics

Timing Characteristics

Table 2-28 • 1.8V LVCMOS I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 1.7 V, TJ = 70°C

		-2 S	peed	–1 S	peed	Std S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVCMOS18	Dutput Module Timing							
t _{DP}	Input Buffer		3.26		3.71		4.37	ns
t _{PY}	Output Buffer		4.55		5.18		6.09	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		2.82		2.83		2.84	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		3.43		3.45		3.46	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		6.01		6.85		8.05	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		6.73		7.67		9.01	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for both 33 MHz and 66 MHz PCI bus applications. It uses an LVTTL input buffer and a push-pull output buffer. The input and output buffers are 5 V tolerant with the aid of external components. Axcelerator 3.3 V PCI and 3.3 V PCI-X buffers are compliant with the PCI Local Bus Specification Rev. 2.1.

The PCI Compliance Specification requires the clamp diodes to be able to withstand for 11 ns, -3.5 V in undershoot, and 7.1 V in overshoot.

Table 2-33 • DC Input and Output Levels

		VIL	V	IH	VOL	VOH	IOL	IOH	
	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	
PCI	-0.3	0.3 VCCI	0.5 VCCI	VCCI + 0.5	(per PCI specification)				
PCI-X	-0.5	0.35 VCCI	0.5 VCCI	VCCI + 0.5		(per PCI specifi	cation)		

AC Loadings

Figure 2-18 • AC Test Loads

Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ) (V)	C _{load} (pF)
(Pe	r PCI Spec and PCI-X Sp	N/A	10	

Note: * *Measuring Point* = *VTRIP*

Buffer Module

Introduction

An additional resource inside each SuperCluster is the Buffer (B) module (Figure 1-4 on page 1-3). When a fanout constraint is applied to a design, the synthesis tool inserts buffers as needed. The buffer module has been added to the AX architecture to avoid logic duplication resulting from the hard fanout constraints. The router utilizes this logic resource to save area and reduce loading and delays on medium-to-high-fanout nets.

Timing Models and Waveforms

Figure 2-33 • Buffer Module Timing Model

Figure 2-34 • Buffer Module Waveform

Timing Characteristics

Table 2-64 • Buffer Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 Speed		–1 S	–1 Speed		Std Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Buffer Module Propagation Delays								
t _{BFPD}	Any input to output Y		0.12		0.14		0.16	ns

Vertical and Horizontal Routing

Vertical and Horizontal Tracks provide both local and long distance routing (Figure 2-37 on page 2-62). These tracks are composed of both short-distance, segmented routing and across-chip routing tracks (segmented at core tile boundaries). The short-distance, segmented routing resources can be concatenated through antifuse connections to build longer routing tracks.

These short-distance routing tracks can be used within and between SuperClusters or between modules of non-adjacent SuperClusters. They can be connected to the Output Tracks and to any logic module input (R-cell, C-cell, Buffer, and TX module).

The across-chip horizontal and vertical routing provides long-distance routing resources. These resources interface with the rest of the routing structures through the RX and TX modules (Figure 2-37). The RX module is used to drive signals from the across-chip horizontal and vertical routing to the Output Tracks within the SuperCluster. The TX module is used to drive vertical and horizontal across-chip routing from either short-distance horizontal tracks or from Output Tracks. The TX module can also be used to drive signals from vertical across-chip tracks to horizontal across-chip tracks and vice versa.

Figure 2-36 • FastConnect Routing

Figure 2-37 • Horizontal and Vertical Tracks

Table 2-72 • AX500 Dedicated (Hardwired) Array Clock Networks Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		–2 S	peed	-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (Hardwired) Array Clock Networks								
t _{HCKL}	Input Low to High		2.35		2.68		3.15	ns
t _{нскн}	Input High to Low		2.44		2.79		3.27	ns
t _{HPWH}	Minimum Pulse Width High	0.58		0.65		0.77		ns
t _{HPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{HCKSW}	Maximum Skew		0.06		0.07		0.08	ns
t _{HP}	Minimum Period	1.15		1.31		1.54		ns
t _{HMAX}	Maximum Frequency		870		763		649	MHz

Table 2-73 • AX1000 Dedicated (Hardwired) Array Clock Networks

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	–2 Speed		–1 Speed		Std Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (Hardwired) Array Clock Networks								
t _{HCKL}	Input Low to High		3.02		3.44		4.05	ns
t _{HCKH}	Input High to Low		3.03		3.46		4.06	ns
t _{HPWH}	Minimum Pulse Width High	0.58		0.65		0.77		ns
t _{HPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{HCKSW}	Maximum Skew		0.06		0.07		0.08	ns
t _{HP}	Minimum Period	1.15		1.31		1.54		ns
t _{HMAX}	Maximum Frequency		870		763		649	MHz

Table 2-74 • AX2000 Dedicated (Hardwired) Array Clock Networks Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		–2 S	peed	-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (Hardwired) Array Clock Networks								
t _{HCKL}	Input Low to High		3.02		3.44		4.05	ns
t _{HCKH}	Input High to Low		3.03		3.46		4.06	ns
t _{HPWH}	Minimum Pulse Width High	0.58		0.65		0.77		ns
t _{HPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{HCKSW}	Maximum Skew		0.06		0.07		0.08	ns
t _{HP}	Minimum Period	1.15		1.31		1.54		ns
t _{HMAX}	Maximum Frequency		870		763		649	MHz

The ClockTileDist Cluster contains an HCLKMux (HM) module for each of the four HCLK trees and a CLKMux (CM) module for each of the CLK trees. The HCLK branches then propagate horizontally through the middle of the core tile to HCLKColDist (HD) modules in every SuperCluster column. The CLK branches propagate vertically through the center of the core tile to CLKRowDist (RD) modules in every SuperCluster row. Together, the HCLK and CLK branches provide for a low-skew global fanout within the core tile (Figure 2-40 and Figure 2-41).

Figure 2-40 • CTD, CD, and HD Module Layout

Figure 2-41 • HCLK and CLK Distribution within a Core Tile

Table 2-93 • Sixteen RAM Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		–2 S	peed	–1 S	peed	Std S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Write Mode								
t _{WDASU}	Write Data Setup vs. WCLK		16.54		18.84		22.15	ns
t _{WDAHD}	Write Data Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WADSU}	Write Address Setup vs. WCLK		16.54		18.84		22.15	ns
t _{WADHD}	Write Address Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WENSU}	Write Enable Setup vs. WCLK		16.54		18.84		22.15	ns
t _{WENHD}	Write Enable Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WCKH}	WCLK Minimum High Pulse Width	0.75		0.75		0.75		ns
t _{WCLK}	WCLK Minimum Low Pulse Width	13.40		13.40		13.40		ns
t _{WCKP}	WCLK Minimum Period	14.15		14.15		14.15		ns
Read Mode								
t _{RADSU}	Read Address Setup vs. RCLK		18.13		20.65		24.27	ns
t _{RADHD}	Read Address Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RENSU}	Read Enable Setup vs. RCLK		18.13		20.65		24.27	ns
t _{RENHD}	Read Enable Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		12.08		13.76		16.17	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		12.83		14.62		17.18	ns
t _{RCLKH}	RCLK Minimum High Pulse Width	0.73		0.73		0.73		ns
t _{RCLKL}	RCLK Minimum Low Pulse Width	14.41		14.41		14.41		ns
t _{RCKP}	RCLK Minimum Period	15.14		15.14		15.14		ns

Note: Timing data for these sixteen cascaded RAM blocks uses a depth of 65,536. For all other combinations, use Microsemi's timing software.

FIFO

Every memory block has its own embedded FIFO controller. Each FIFO block has one read port and one write port. This embedded FIFO controller uses no internal FPGA logic and features:

- Glitch-free FIFO Flags
- · Gray-code address counters/pointers to prevent metastability problems
- Overflow and underflow control

Both ports are configurable in various sizes from 4k x 1 to 128 x 36, similar to the RAM block size. Each port is fully synchronous.

Read and write operations can be completely independent. Data on the appropriate WD pins are written to the FIFO on every active WCLK edge as long as WEN is high. Data is read from the FIFO and output on the appropriate RD pins on every active RCLK edge as long as REN is asserted.

The FIFO block offers programmable almost-empty (AEMPTY) and almost-full (AFULL) flags as well as EMPTY and FULL flags (Figure 2-61):

- The FULL flag is synchronous to WCLK. It allows the FIFO to inhibit writing when full.
- The EMPTY flag is synchronous to RCLK. It allows the FIFO to inhibit reading at the empty condition.

Gray code counters are used to prevent metastability problems associated with flag logic. The depth of the FIFO is dependent on the data width and the number of memory blocks used to create the FIFO. The write operations to the FIFO are synchronous with respect to the WCLK, and the read operations are synchronous with respect to the RCLK.

The FIFO block may be reset to the empty state.

Figure 2-61 • Axcelerator RAM with Embedded FIFO Controller


```
Figure 2-67 • FIFO Write Timing
```

3 – Package Pin Assignments

BG729

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

Microsemi

Package Pin Assignments

FG484		FG484		FG484	
AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Number
IO104PB6F6	N4	IO122NB7F7	G5	GND	J9
IO105NB6F6	M5	IO122PB7F7	G6	GND	K10
IO105PB6F6	N5	IO123NB7F7	F5	GND	K11
IO106NB6F6	M3	IO123PB7F7	E4	GND	K12
IO106PB6F6	N3	Dedicated I	/0	GND	K13
Bank 7		VCCDA	H7	GND	L1
IO107NB7F7	M2	GND	A1	GND	L10
IO107PB7F7	N1	GND	A11	GND	L11
IO108NB7F7	L3	GND	A12	GND	L12
IO108PB7F7	L2	GND	A2	GND	L13
IO109NB7F7	K2	GND	A21	GND	L22
IO109PB7F7	K1	GND	A22	GND	M1
IO110NB7F7	K5	GND	AA1	GND	M10
IO110PB7F7	L5	GND	AA2	GND	M11
IO111NB7F7	K6	GND	AA21	GND	M12
IO111PB7F7	L6	GND	AA22	GND	M13
IO112NB7F7	K4	GND	AB1	GND	M22
IO112PB7F7	K3	GND	AB11	GND	N10
IO113NB7F7	K7	GND	AB12	GND	N11
IO113PB7F7	L7	GND	AB2	GND	N12
IO114NB7F7	H1	GND	AB21	GND	N13
IO114PB7F7	J1	GND	AB22	GND	P14
IO115NB7F7	H2	GND	B1	GND	P9
IO115PB7F7	J2	GND	B2	GND	R15
IO116NB7F7	H4	GND	B21	GND	R8
IO116PB7F7	J4	GND	B22	GND	U16
IO117NB7F7	H5	GND	C20	GND	U6
IO117PB7F7	J5	GND	C3	GND	V18
IO118NB7F7	F2	GND	D19	GND	V5
IO118PB7F7	G2	GND	D4	GND	W19
IO119NB7F7	H6	GND	E18	GND	W4
IO119PB7F7	J6	GND	E5	GND	Y20
IO120NB7F7	F1	GND	G18	GND	Y3
IO120PB7F7	G1	GND	H15	GND/LP	G7
IO121NB7F7	F4	GND	H8	NC	A17
IO121PB7F7	G4	GND	J14	NC	A18

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

FG1152		FG1152		FG1152	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
IO51PB1F4	J20	IO69NB1F6	C27	IO86NB2F8	J28
IO52NB1F4	B20	IO69PB1F6	C26	IO86PB2F8	J27
IO52PB1F4	A20	IO70NB1F6	H24	IO87NB2F8	M25
IO53NB1F4	F20	IO70PB1F6	G24	IO87PB2F8	L25
IO53PB1F4	E20	IO71NB1F6	H23	IO88NB2F8	L26
IO54NB1F5	B21	IO71PB1F6	G23	IO88PB2F8	K26
IO54PB1F5	A21	IO72NB1F6	B28	IO89NB2F8	G31
IO55NB1F5	K21	IO72PB1F6	A28	IO89PB2F8	F31
IO55PB1F5	J21	IO73NB1F6	E26	IO90NB2F8	H29
IO56NB1F5	D21	IO73PB1F6	E25	IO90PB2F8	G29
IO56PB1F5	C21	IO74NB1F6	F26	IO91NB2F8	K28
IO57NB1F5	G22	IO74PB1F6	F25	IO91PB2F8	K27
IO57PB1F5	G21	IO75NB1F6	K25	IO92NB2F8	J30
IO58NB1F5	E22	IO75PB1F6	K24	IO92PB2F8	H30
IO58PB1F5	E21	IO76NB1F7	D27	IO93NB2F8	L28
IO59NB1F5	D22	IO76PB1F7	D26	IO93PB2F8	L27
IO59PB1F5	C22	IO77NB1F7	B29	IO94NB2F8	K29
IO60NB1F5	B23	IO77PB1F7	A29	IO94PB2F8	J29
IO60PB1F5	A23	IO78NB1F7	D28	IO95NB2F8	K31
IO61NB1F5	H22	IO78PB1F7	C28	IO95PB2F8	J31
IO61PB1F5	H21	IO79NB1F7	H25	IO96NB2F9	J32
IO62NB1F5	C24	IO79PB1F7	G25	IO96PB2F9	H32
IO62PB1F5	C23	IO80NB1F7	F27	IO97NB2F9	M27
IO63NB1F5	F23	IO80PB1F7	E27	IO97PB2F9	M26
IO63PB1F5	F22	IO81NB1F7	J25	IO98NB2F9	L30
IO64NB1F6	B24	IO81PB1F7	J24	IO98PB2F9	K30
IO64PB1F6	A24	IO82NB1F7	D29	IO99NB2F9	N25
IO65NB1F6	J22	IO82PB1F7	C29	IO99PB2F9	N26
IO65PB1F6	K22	IO83NB1F7	H26	IO100NB2F9	M29
IO66NB1F6	B25	IO83PB1F7	G26	IO100PB2F9	L29
IO66PB1F6	A25	IO84NB1F7	F28	IO101NB2F9	L33
IO67NB1F6	K23	IO84PB1F7	E28	IO101PB2F9	L32
IO67PB1F6	J23	IO85NB1F7	H27	IO102NB2F9	K34
IO68NB1F6	F24	IO85PB1F7	G27	IO102PB2F9	K33
IO68PB1F6	E24	Bank 2		IO103NB2F9	N28

Package Pin Assignments

FG1152		FG1152		FG1152		
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number	
IO207PB4F19	AL20	IO224PB5F21	AP14	IO242NB5F22	AG11	
IO208NB4F19	AG19	IO225NB5F21	AK13	IO242PB5F22	AG12	
IO208PB4F19	AF19	IO225PB5F21	AK14	IO243NB5F22	AL9	
IO209NB4F19	AN18	IO226NB5F21	AE15	IO243PB5F22	AL10	
IO209PB4F19	AP18	IO226PB5F21	AF15	IO244NB5F22	AM8	
IO210NB4F19	AE19	IO227NB5F21	AG14	IO244PB5F22	AM9	
IO210PB4F19	AD19	IO227PB5F21	AG15	IO245NB5F23	AH10	
IO211NB4F19	AL18	IO228NB5F21	AJ13	IO245PB5F23	AJ10	
IO211PB4F19	AM18	IO228PB5F21	AJ14	IO246NB5F23	AF10	
IO212NB4F19/CLKEN	AJ20	IO229NB5F21	AM13	IO246PB5F23	AF11	
IO212PB4F19/CLKEP	AK20	IO229PB5F21	AM14	IO247NB5F23	AJ9	
IO213NB4F19/CLKFN	AJ18	IO230NB5F21	AE14	IO247PB5F23	AK9	
IO213PB4F19/CLKFP	AJ19	IO230PB5F21	AF14	IO248NB5F23	AN7	
Bank 5		IO231NB5F21	AN12	IO248PB5F23	AP7	
IO214NB5F20/CLKGN	AJ16	IO231PB5F21	AP12	IO249NB5F23	AL7	
IO214PB5F20/CLKGP	AJ17	IO232NB5F21	AG13	IO249PB5F23	AL8	
IO215NB5F20/CLKHN	AJ15	IO232PB5F21	AH13	IO250NB5F23	AE10	
IO215PB5F20/CLKHP	AK15	IO233NB5F21	AL12	IO250PB5F23	AE11	
IO216NB5F20	AD16	IO233PB5F21	AL13	IO251NB5F23	AK8	
IO216PB5F20	AE17	IO234NB5F21	AE13	IO251PB5F23	AJ8	
IO217NB5F20	AM17	IO234PB5F21	AF13	IO252NB5F23	AH8	
IO217PB5F20	AL17	IO235NB5F22	AN11	IO252PB5F23	AH9	
IO218NB5F20	AG16	IO235PB5F22	AP11	IO253NB5F23	AN6	
IO218PB5F20	AF16	IO236NB5F22	AM11	IO253PB5F23	AP6	
IO219NB5F20	AM16	IO236PB5F22	AM12	IO254NB5F23	AG9	
IO219PB5F20	AL16	IO237NB5F22	AJ11	IO254PB5F23	AG10	
IO220NB5F20	AP16	IO237PB5F22	AJ12	IO255NB5F23	AJ7	
IO220PB5F20	AN16	IO238NB5F22	AH11	IO255PB5F23	AK7	
IO221NB5F20	AN15	IO238PB5F22	AH12	IO256NB5F23	AL6	
IO221PB5F20	AP15	IO239NB5F22	AK10	IO256PB5F23	AM6	
IO222NB5F20	AD15	IO239PB5F22	AK11	Bank 6	Bank 6	
IO222PB5F20	AE16	IO240NB5F22	AE12	IO257NB6F24	AG6	
IO223NB5F21	AL14	IO240PB5F22	AF12	IO257PB6F24	AH6	
IO223PB5F21	AL15	IO241NB5F22	AN10	IO258NB6F24	AD9	
IO224NB5F21	AN14	IO241PB5F22	AP10	IO258PB6F24	AE9	

CQ352		CQ352		CQ352	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
Bank 0		IO60NB1F5	275	Bank 3	
IO02NB0F0	341	IO60PB1F5	276	IO96NB3F9	217
IO02PB0F0	342	IO61NB1F5	271	IO96PB3F9	218
IO03PB0F0	343	IO61PB1F5	272	IO97NB3F9	219
IO04NB0F0	337	IO63NB1F5	269	IO97PB3F9	220
IO04PB0F0	338	IO63PB1F5	270	IO99NB3F9	213
IO08NB0F0	331	Bank 2	-	IO99PB3F9	214
IO08PB0F0	332	IO64NB2F6	259	IO108NB3F10	211
IO09NB0F0	335	IO64PB2F6	260	IO108PB3F10	212
IO09PB0F0	336	IO67NB2F6	261	IO109NB3F10	207
IO24NB0F2	325	IO67PB2F6	262	IO109PB3F10	208
IO24PB0F2	326	IO68NB2F6	255	IO111NB3F10	205
IO25NB0F2	323	IO68PB2F6	256	IO111PB3F10	206
IO25PB0F2	324	IO69NB2F6	253	IO112NB3F10	199
IO30NB0F2/HCLKAN	319	IO69PB2F6	254	IO112PB3F10	200
IO30PB0F2/HCLKAP	320	IO74NB2F7	249	IO113NB3F10	201
IO31NB0F2/HCLKBN	313	IO74PB2F7	250	IO113PB3F10	202
IO31PB0F2/HCLKBP	314	IO75NB2F7	247	IO115NB3F10	195
Bank 1		IO75PB2F7	248	IO115PB3F10	196
IO32NB1F3/HCLKCN	305	IO76NB2F7	243	IO116NB3F10	193
IO32PB1F3/HCLKCP	306	IO76PB2F7	244	IO116PB3F10	194
IO33NB1F3/HCLKDN	299	IO77NB2F7	241	IO117NB3F10	189
IO33PB1F3/HCLKDP	300	IO77PB2F7	242	IO117PB3F10	190
IO38NB1F3	295	IO78NB2F7	237	IO124NB3F11	183
IO38PB1F3	296	IO78PB2F7	238	IO124PB3F11	184
IO54NB1F5	287	IO79NB2F7	235	IO125NB3F11	187
IO54PB1F5	288	IO79PB2F7	236	IO125PB3F11	188
IO55NB1F5	289	IO82NB2F7	231	IO127NB3F11	181
IO55PB1F5	290	IO82PB2F7	232	IO127PB3F11	182
IO56NB1F5	281	IO83NB2F7	229	IO128NB3F11	179
IO56PB1F5	282	IO83PB2F7	230	IO128PB3F11	180
IO57NB1F5	283	IO94NB2F8	225	Bank 4	
IO57PB1F5	284	IO94PB2F8	226	IO130NB4F12	172
IO59NB1F5	277	IO95NB2F8	223	IO130PB4F12	173
IO59PB1F5	278	IO95PB2F8	224	IO131NB4F12	170

Revision	Changes	Page
Revision 12 (v2.4)	Revised ordering information and timing data to reflect phase out of -3 speed grade options.	
	Table 2-3 was updated.	2
Revision 11 (v2.3)	The "Packaging Data" section is new.	iv
	Table 2-2 was updated.	2-1
	"VCCDA Supply Voltage" was updated.	2-9
	"PRA/B/C/D Probe A, B, C and D" was updated.	
	The "User I/Os" was updated.	2-11
Revision 10 (v2.2)	Figure 1-3 was updated.	1-2
	Table 2-2 was updated.	2-1
	The "Power-Up/Down Sequence" section was updated.	2-1
	Table 2-4 was updated.	2-3
	Table 2-5 was updated.	2-4
	The "Timing Characteristics" section was added.	2-7
	Table 2-7 was updated.	2-7
	Figure 2-1 was updated.	2-8
	The External Setup and Clock-to-Out (Pad-to-Pad) equations in the "Hardwired Clock – Using LVTTL 24 mA High Slew Clock I/O" section were updated.	2-8
	The External Setup and Clock-to-Out (Pad-to-Pad) in the "Routed Clock – Using LVTTL 24 mA High Slew Clock I/O" section were updated.	2-8
	The "Global Pins" section was updated.	2-10
	The "User I/Os" section was updated.	2-11
	Table 2-17 was updated.	2-19
	Figure 2-8 was updated.	2-20
	Figure 2-13 and Figure 2-14 were updated.	2-24
	The following timing parameters were renamed in I/O timing characteristic tables from Table 2-22 to Table 2-60:	2-26 to 2-52
	t _{IOCLKQ} > t _{ICLKQ}	
	tioclky > toclkq	
	Timing numbers were updated from Table 2-22 to Table 2-78.	2-26 to 2-69
	The "R-Cell" section was updated.	2-58
	Figure 2-59 was updated.	2-89
	Figure 2-60 was updated.	2-89
	Figure 2-67 was updated.	2-100
	Figure 2-68 was updated.	2-101
	Table 2-89 to Table 2-93 were updated.	2-90 to 2-94
	Table 2-98 to Table 2-102 were updated.	2-102 to 2-106