E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

2014.10	
Product Status	Obsolete
Number of LABs/CLBs	2016
Number of Logic Elements/Cells	- ·
Total RAM Bits	18432
Number of I/O	168
Number of Gates	125000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	324-BGA
Supplier Device Package	324-FBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/ax125-1fg324

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

*Poutputs = PI/O * po * Fpo*

Cload	=	the output load (technology dependent)
VCCI	=	the output voltage (technology dependent)
ро	=	the number of outputs
F _{po}	=	the average output frequency

Pmemory = P11 * Nblock * FRCLK + P12 * Nblock * FWCLK

 N_{block} = the number of RAM/FIFO blocks (1 block = 4k)

- F_{RCLK} = the read-clock frequency of the memory
- F_{WCLK} = the write-clock frequency of the memory

PPLL = P13 * FCLK

 F_{RefCLK} = the clock frequency of the clock input of the PLL

 F_{CLK} = the clock frequency of the first clock output of the PLL

Power Estimation Example

This example employs an AX1000 shift-register design with 1,080 R-cells, one C-cell, one reset input, and one LVTTL 12 mA output, with high slew.

This design uses one HCLK at 100 MHz.

ms =	1,080 (in a shift register - 100% of R-cells are toggling at each clock cycle)
Fs =	100 MHz
s =	1080
=>	P _{HCLK} = (P1 + P2 * s + P3 * sqrt[s]) * Fs = 79 mW and Fs = 100 MHz
=>	P _{R-cells} = P7 * ms * Fs = 173 mW
mc =	1 (1 C-cell in this shift-register) and Fs = 100 MHz
=>	P _{C-cells} = P8 * mc * Fs = 0.14 mW
F _{pi} ~ 0 N	ЛНz
	and pi= 1 (1 reset input => this is why F _{pi} =0)
=>	P _{inputs} = P9 * pi * F _{pi} = 0 mW
F _{po} = 50	MHz
	and po = 1
=>	$P_{outputs} = P_{I/O} * po * F_{po} = 27.10 \text{ mW}$
No RAM	I/FIFO in this shift-register
=>	P _{memory} = 0 mW
No PLL	in this shift-register
=>	P _{PLL} = 0 mW
P _{ac} = P _F	$P_{HCLK} + P_{CLK} + P_{R-cells} + P_{C-cells} + P_{inputs} + P_{outputs} + P_{memory} + P_{PLL} = 276 \text{ mW}$ $P_{dc} = 7.5\text{mA} * 1.5\text{V} = 11.25 \text{ mW}$
	P _{total} = P _{dc} + P _{ac} = 11.25 mW + 276mW = 290.30 mW

I/O Banks and Compatibility

Since each I/O bank has its own user-assigned input reference voltage (VREF) and an input/output supply voltage (VCCI), only I/Os with compatible standards can be assigned to the same bank.

Table 2-11 shows the compatible I/O standards for a common VREF (for voltage-referenced standards). Similarly, Table 2-12 shows compatible standards for a common VCCI.

Table 2-11 • Compatible I/O Standards for Different VREF Values

VREF	Compatible Standards
1.5 V	SSTL 3 (Class I and II)
1.25 V	SSTL 2 (Class I and II)
1.0 V	GTL+ (2.5V and 3.3V Outputs)
0.75 V	HSTL (Class I)

Table 2-12 • Compatible I/O Standards for Different VCCI Values

VCCI ¹	Compatible Standards	VREF
3.3 V	LVTTL, PCI, PCI-X, LVPECL, GTL+ 3.3 V	1.0
3.3 V	SSTL 3 (Class I and II), LVTTL, PCI, LVPECL	1.5
2.5 V	LVCMOS 2.5 V, GTL+ 2.5 V, LVDS ²	1.0
2.5 V	LVCMOS 2.5 V, SSTL 2 (Classes I and II), LVDS ²	1.25
1.8 V	LVCMOS 1.8 V	N/A
1.5 V	LVCMOS 1.5 V, HSTL Class I	0.75

Notes:

1. VCCI is used for both inputs and outputs

2. VCCI tolerance is $\pm 5\%$

Detailed Specifications

Figure 2-10 • Output Buffer Delays

Microsemi

Detailed Specifications

Table 2-22 • 3.3 V LVTTL I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C (continued)

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVTTL Outp	out Drive Strength =3 (16 mA) / Low Slew Rate							
t _{DP}	Input Buffer		1.68		1.92		2.26	ns
t _{PY}	Output Buffer		11.03		12.56		14.77	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		11.42		13.01		15.29	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		11.04		12.58		14.79	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		1.86		1.88		1.88	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		2.50		2.51		2.52	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Table 2-22 • 3.3 V LVTTL I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C (continued)

		–2 S	peed	–1 S	peed	Std Speed			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units	
LVTTL Outp	out Drive Strength = 4 (24mA) / High Slew Rate								
t _{DP}	Input Buffer		1.68		1.92		2.26	ns	
t _{PY}	Output Buffer		2.99		3.41		4.01	ns	
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		2.49		2.51		2.51	ns	
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		2.59		2.95		3.46	ns	
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		1.91		1.93		1.93	ns	
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		3.56		4.06		4.77	ns	
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns	
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns	
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns	
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns	
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns	
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns	
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns	
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns	
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns	
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns	
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns	
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns	
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns	

Detailed Specifications

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for both 33 MHz and 66 MHz PCI bus applications. It uses an LVTTL input buffer and a push-pull output buffer. The input and output buffers are 5 V tolerant with the aid of external components. Axcelerator 3.3 V PCI and 3.3 V PCI-X buffers are compliant with the PCI Local Bus Specification Rev. 2.1.

The PCI Compliance Specification requires the clamp diodes to be able to withstand for 11 ns, -3.5 V in undershoot, and 7.1 V in overshoot.

Table 2-33 • DC Input and Output Levels

	VIL		VIH		VOL	VOH	IOL	IOH	
	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	
PCI	-0.3	0.3 VCCI	0.5 VCCI	VCCI + 0.5	(per PCI specification)				
PCI-X	-0.5	0.35 VCCI	0.5 VCCI	VCCI + 0.5	(per PCI specification)				

AC Loadings

Figure 2-18 • AC Test Loads

Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ) (V)	C _{load} (pF)
(Per PCI Spec and PCI-X Spec)			N/A	10

Note: * *Measuring Point* = *VTRIP*

Routing Specifications

Routing Resources

The routing structure found in Axcelerator devices enables any logic module to be connected to any other logic module while retaining high performance. There are multiple paths and routing resources that can be used to route one logic module to another, both within a SuperCluster and elsewhere on the chip.

There are four primary types of routing within the AX architecture: DirectConnect, CarryConnect, FastConnect, and Vertical and Horizontal Routing.

DirectConnect

DirectConnects provide a high-speed connection between an R-cell and its adjacent C-cell (Figure 2-35). This connection can be made from DCOUT of the C-cell to DCIN of the R-cell by configuring of the S1 line of the R-cell. This provides a connection that does not require an antifuse and has a delay of less than 0.1 ns.

Figure 2-35 • DirectConnect and CarryConnect

CarryConnect

CarryConnects are used to build carry chains for arithmetic functions (Figure 2-35). The FCO output of the right C-cell of a two-C-cell Cluster drives the FCI input of the left C-cell in the two-C-cell Cluster immediately below it. This pattern continues down both sides of each SuperCluster column.

Similar to the DirectConnects, CarryConnects can be built without an antifuse connection. This connection has a delay of less than 0.1 ns from the FCO of one two-C-cell cluster to the FCI of the two-C-cell cluster immediately below it (see the "Carry-Chain Logic" section on page 2-56 for more information).

FastConnect

For high-speed routing of logic signals, FastConnects can be used to build a short distance connection using a single antifuse (Figure 2-36 on page 2-62). FastConnects provide a maximum delay of 0.3 ns. The outputs of each logic module connect directly to the Output Tracks within a SuperCluster. Signals on the Output Tracks can then be routed through a single antifuse connection to drive the inputs of logic modules either within one SuperCluster or in the SuperCluster immediately below it.

single-ended, or voltage-referenced standard. The [H]CLKxN pad can only be used as a differential pair with [H]CLKxP.

The block marked "/i Delay Match" is a fixed delay equal to that of the i divider. The "/j Delay Match" block has the same function as its j divider counterpart.

Functional Description

Figure 2-48 on page 2-75 illustrates a block diagram of the PLL. The PLL contains two dividers, i and j, that allow frequency scaling of the clock signal:

- The i divider in the feedback path allows multiplication of the input clock by integer factors ranging from 1 to 64, and the resultant frequency is available at the output of the PLL block.
- The j divider divides the PLL output by integer factors ranging from 1 to 64, and the divided clock is available at CLK1.
- The two dividers together can implement any combination of multiplication and division up to a maximum frequency of 1 GHz on CLK1. Both the CLK1 and CLK2 outputs have a fixed 50/50 duty cycle.
- The output frequencies of the two clocks are given by the following formulas (f_{REF} is the reference clock frequency):

 $f_{CLK1} = f_{REF} * (DividerI) / (DividerJ)$

 $f_{CLK2} = f_{REF} * (DividerI)$

FQ 5

EQ 4

CLK2 provides the PLL output directly—without division

The input and output frequency ranges are selected by LowFreq and Osc(2:0), respectively. These functions and their possible values are detailed in Table 2-80 on page 2-77.

The delay lines shown in Figure 2-48 on page 2-75 are programmable. The feedback clock path can be delayed (using the five DelayLine bits) relative to the reference clock (or vice versa) by up to 3.75 ns in increments of 250 ps. Table 2-80 on page 2-77 describes the usage of these bits. The delay increments are independent of frequency, so this results in phase changes that vary with frequency. The delay value is highly dependent on V_{CC} and the speed grade.

Figure 2-49 is a logical diagram of the various control signals to the PLL and shows how the PLL interfaces with the global and routing networks of the FPGA. Note that not all signals are user-accessible. These non-user-accessible signals are used by the place-and-route tool to control the configuration of the PLL. The user gains access to these control signals either based upon the connections built in the user's design or through the special macros (Table 2-84 on page 2-81) inserted into the design. For example, connecting the macro PLLOUT to CLK2 will control the OUTSEL signal.

Note: Not all signals are available to the user.

Figure 2-49 • PLL Logical Interface

CLK1	CLK2
CLK1	Routed net
CLK1	Unused
CLK2	CLK1
CLK2	Routed net
CLK2	Both CLK1 and routed net
CLK2	Unused
Unused	CLK1
Unused	Routed net
Unused	Both CLK1 and routed net
Unused	Unused
Routed net	CLK1
Routed net	Unused
Both CLK1 and CLK2	Routed net
Both CLK1 and CLK2	Unused
Both CLK1 and routed net	Unusable
Both CLK2 and routed net	CLK1
Both CLK2 and routed net	Unused
CLK1, CLK2, and routed net	Unusable

Table 2-83 • South PLL Connections

Note: Designer software currently does not support all of these connections. Only exclusive connections where one output connects to a single net are supported at this time (e.g., CLK1 driving both CLK1 and CLK2 is not supported).

User Flow

There are two methods of including a PLL in a design:

- The recommended method of using a PLL is to create custom PLL blocks using Microsemi's macro generator, SmartGen, that can be instantiated in a design.
- The alternative method is to instantiate one of the generic library primitives (PLL or PLLFB) into either a schematic or HDL netlist, using inverters for polarity control and tying all unused address and data bits to ground.

Timing Model

Note: t_{PCLK} is the delay in the clock signal Figure 2-52 • PLL Model

Detailed Specifications

Table 2-93 • Sixteen RAM Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		–2 S	peed	–1 S	peed	Std S		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Write Mode								
t _{WDASU}	Write Data Setup vs. WCLK		16.54		18.84		22.15	ns
t _{WDAHD}	Write Data Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WADSU}	Write Address Setup vs. WCLK		16.54		18.84		22.15	ns
t _{WADHD}	Write Address Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WENSU}	Write Enable Setup vs. WCLK		16.54		18.84		22.15	ns
t _{WENHD}	Write Enable Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WCKH}	WCLK Minimum High Pulse Width	0.75		0.75		0.75		ns
t _{WCLK}	WCLK Minimum Low Pulse Width	13.40		13.40		13.40		ns
t _{WCKP}	WCLK Minimum Period	14.15		14.15		14.15		ns
Read Mode								
t _{RADSU}	Read Address Setup vs. RCLK		18.13		20.65		24.27	ns
t _{RADHD}	Read Address Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RENSU}	Read Enable Setup vs. RCLK		18.13		20.65		24.27	ns
t _{RENHD}	Read Enable Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		12.08		13.76		16.17	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		12.83		14.62		17.18	ns
t _{RCLKH}	RCLK Minimum High Pulse Width	0.73		0.73		0.73		ns
t _{RCLKL}	RCLK Minimum Low Pulse Width	14.41		14.41		14.41		ns
t _{RCKP}	RCLK Minimum Period	15.14		15.14		15.14		ns

Note: Timing data for these sixteen cascaded RAM blocks uses a depth of 65,536. For all other combinations, use Microsemi's timing software.

FIFO Flag Logic

The FIFO is user configurable into various DEPTHs and WIDTHs. Figure 2-62 shows the FIFO address counter details.

- Bits 11 to 5 are active for all modes.
- As the data word size is reduced, more least-significant bits are added to the address.
- As the number of cascaded blocks increases, the number of significant bits in the address increases.

For example, if four blocks are cascaded as a 1kx16 FIFO with each block having a 1kx4 aspect ratio, bits 11 to 2 of the address will be used to specify locations within each RAM block, whereas bits 13 and 12 will be used to specify the RAM block.

Note: Inactive counter bits are set to zero.

Figure 2-62 • FIFO Address Counters

The AFULL and AEMPTY flag threshold values are programmable. The threshold values are AFVAL and AEVAL, respectively. Although the trigger threshold for each flag is defined with eight bits, the effective number of threshold bits in the comparison depends on the configuration. The effective number of threshold bits corresponds to the range of active bits in the FIFO address space (Table 2-94).

Mode	Inactive AEVAL/AFVAL Bits	Inactive DIFF Bits (set to 0)	DIFF Comparison to AFVAL/AEVAL
Non-cascade	[7:4]	[15:12]	DIFF[11:8] withAE/FVAL[3:0]
Cascade 2 blocks	[7:5]	[15:13]	DIFF[12:8] withAE/FVAL[4:0]
Cascade 4 blocks	[7:6]	[15:14]	DIFF[13:8] withAE/FVAL[5:0]
Cascade 8 blocks	[7]	[15]	DIFF[14:8] withAE/FVAL[6:0]
Cascade 16 blocks	None	None	DIFF[15:8] withAE/FVAL[7:0]

Microsemi

BG729		BG729		BG729	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
IO218PB6F20	V2	IO236PB7F22	L1	IO255NB7F23	F5
IO219NB6F20	T1	IO237NB7F22	L4	IO255PB7F23	G5
IO219PB6F20	U1	IO237PB7F22	L3	IO256NB7F23	F3
IO220NB6F20	R5	IO238NB7F22	L6	IO256PB7F23	F4
IO220PB6F20	R6	IO238PB7F22	M6	IO257NB7F23	H7
IO221NB6F20	Т3	IO239NB7F22	M8	IO257PB7F23	J7
IO221PB6F20	T4	IO239PB7F22	M7	Dedicated I/	0
IO222NB6F20	R2	IO240NB7F22	K2	GND	A1
IO222PB6F20	T2	IO240PB7F22	K1	GND	A2
IO223NB6F20	P8	IO241NB7F22	K4	GND	A25
IO223PB6F20	P9	IO241PB7F22	K3	GND	A26
IO224NB6F20	R3	IO242NB7F22	K5	GND	A27
IO224PB6F20	R4	IO242PB7F22	L5	GND	A3
Bank 7		IO243NB7F22	J2	GND	AC24
IO225NB7F21	P1	IO243PB7F22	J1	GND	AE1
IO225PB7F21	R1	IO244NB7F22	J4	GND	AE2
IO226NB7F21	P3	IO244PB7F22	J3	GND	AE25
IO226PB7F21	P2	IO245NB7F22	H2	GND	AE26
IO227NB7F21	N7	IO245PB7F22	H1	GND	AE27
IO227PB7F21	P7	IO246NB7F22	H4	GND	AE3
IO228NB7F21	P5	IO246PB7F22	H3	GND	AE5
IO228PB7F21	P4	IO247NB7F23	L8	GND	AF1
IO229NB7F21	N2	IO247PB7F23	L7	GND	AF2
IO229PB7F21	N1	IO248NB7F23	J6	GND	AF25
IO230NB7F21	N6	IO248PB7F23	K6	GND	AF26
IO230PB7F21	P6	IO249NB7F23	H5	GND	AF27
IO231NB7F21	N9	IO249PB7F23	J5	GND	AF3
IO231PB7F21	N8	IO250NB7F23	G2	GND	AG1
IO232NB7F21	N4	IO250PB7F23	G1	GND	AG2
IO232PB7F21	N3	IO251NB7F23	K8	GND	AG25
IO233NB7F21	M2	IO251PB7F23	K7	GND	AG26
IO233PB7F21	M1	IO252NB7F23	G4	GND	AG27
IO234NB7F21	M4	IO252PB7F23	G3	GND	AG3
IO234PB7F21	M3	IO253NB7F23	F2	GND	B1
IO235NB7F21	M5	IO253PB7F23	F1	GND	B2
IO235PB7F21	N5	IO254NB7F23	G6	GND	B25
IO236NB7F22	L2	IO254PB7F23	H6	GND	B26

FG324				
AX125 Function	Pin Number			
VCCIB5	N7			
VCCIB5	N8			
VCCIB5	N9			
VCCIB6	K6			
VCCIB6	L6			
VCCIB6	M6			
VCCIB7	G6			
VCCIB7	H6			
VCCIB7	J6			
VCOMPLA	B8			
VCOMPLB	E8			
VCOMPLC	C10			
VCOMPLD	E12			
VCOMPLE	U11			
VCOMPLF	P11			
VCOMPLG	Т9			
VCOMPLH	P7			
VPUMP	B15			

Microsemi

FG484		FG484		FG484	
AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Number
Bank 0	Bank 0		B14	IO34PB2F2	D22
IO00NB0F0	D7	IO17PB1F1	B13	IO35NB2F2	J18
IO00PB0F0	D6	IO18NB1F1	A14	IO35PB2F2	H18
IO01NB0F0	E7	IO18PB1F1	A13	IO36NB2F2	G21
IO01PB0F0	E6	IO19NB1F1	A16	IO36PB2F2	F21
IO02NB0F0	C5	IO19PB1F1	A15	IO37NB2F2	K19
IO02PB0F0	C4	IO20NB1F1	B16	IO37PB2F2	J19
IO03NB0F0	C7	IO20PB1F1	B15	IO38NB2F2	J20
IO03PB0F0	C6	IO21NB1F1	C17	IO38PB2F2	H20
IO04NB0F0	E9	IO21PB1F1	C16	IO39NB2F2	L16
IO04PB0F0	E8	IO22NB1F1	F15	IO39PB2F2	K16
IO05NB0F0	D9	IO22PB1F1	F14	IO40NB2F2	J21
IO05PB0F0	D8	IO23NB1F1	D16	IO40PB2F2	H21
IO06NB0F0	B7	IO23PB1F1	D15	IO41NB2F2	L17
IO06PB0F0	B6	IO24NB1F1	E16	IO41PB2F2	K17
IO07NB0F0	C9	IO24PB1F1	E15	IO42NB2F2	J22
IO07PB0F0	C8	IO25NB1F1	F18	IO42PB2F2	H22
IO08NB0F0	A7	IO25PB1F1	F17	IO43NB2F2	L18
IO08PB0F0	A6	IO26NB1F1	D18	IO43PB2F2	K18
IO09NB0F0	B9	IO26PB1F1	E17	IO44NB2F2	L20
IO09PB0F0	B8	IO27NB1F1	G16	IO44PB2F2	K20
IO10NB0F0	A9	IO27PB1F1	G15	Bank 3	•
IO10PB0F0	A8	Bank 2	•	IO45NB3F3	M19
IO11NB0F0	B10	IO28NB2F2	F19	IO45PB3F3	L19
IO11PB0F0	A10	IO28PB2F2	E19	IO46NB3F3	M21
IO12NB0F0/HCLKAN	E11	IO29NB2F2	J16	IO46PB3F3	L21
IO12PB0F0/HCLKAP	E10	IO29PB2F2	H16	IO47NB3F3	N17
IO13NB0F0/HCLKBN	D12	IO30NB2F2	E20	IO47PB3F3	M17
IO13PB0F0/HCLKBP	D11	IO30PB2F2	D20	IO48NB3F3	N18
Bank 1		IO31NB2F2	J17	IO48PB3F3	N19
IO14NB1F1/HCLKCN	F13	IO31PB2F2	H17	IO49NB3F3	N16
IO14PB1F1/HCLKCP	F12	IO32NB2F2	G20	IO49PB3F3	M16
IO15NB1F1/HCLKDN	E14	IO32PB2F2	F20	IO50NB3F3	N20
IO15PB1F1/HCLKDP	E13	IO33NB2F2	H19	IO50PB3F3	M20
IO16NB1F1	C13	IO33PB2F2	G19	IO51NB3F3	P21
IO16PB1F1	C12	IO34NB2F2	E22	IO51PB3F3	N21

FG676		FG676		FG676	
AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function	Pin Number
IO153PB7F14	M6	GND	A8	GND	L11
IO154NB7F14	K2	GND	AC23	GND	L12
IO154PB7F14	L2	GND	AC4	GND	L13
IO155NB7F14	K3	GND	AD24	GND	L14
IO155PB7F14	L3	GND	AD3	GND	L15
IO156NB7F14	L5	GND	AE2	GND	L16
IO156PB7F14	L4	GND	AE25	GND	L17
IO157NB7F14	L6	GND	AF1	GND	M10
IO157PB7F14	L7	GND	AF13	GND	M11
IO158NB7F15	J1	GND	AF14	GND	M12
IO158PB7F15	K1	GND	AF19	GND	M13
IO159NB7F15	J4	GND	AF26	GND	M14
IO159PB7F15	K4	GND	AF8	GND	M15
IO160NB7F15	H2	GND	B2	GND	M16
IO160PB7F15	J2	GND	B25	GND	M17
IO161NB7F15	K6	GND	B26	GND	N1
IO161PB7F15	K5	GND	C24	GND	N10
IO162NB7F15	H3	GND	C3	GND	N11
IO162PB7F15	J3	GND	G20	GND	N12
IO163NB7F15	G2	GND	G7	GND	N13
IO163PB7F15	G1	GND	H1	GND	N14
IO164NB7F15	G4	GND	H19	GND	N15
IO164PB7F15	H4	GND	H26	GND	N16
IO165NB7F15	F3	GND	H8	GND	N17
IO165PB7F15	G3	GND	J18	GND	N26
IO166NB7F15	E2	GND	J9	GND	P1
IO166PB7F15	F2	GND	K10	GND	P10
IO167NB7F15	F5	GND	K11	GND	P11
IO167PB7F15	G5	GND	K12	GND	P12
Dedicated I/O		GND	K13	GND	P13
GND	A1	GND	K14	GND	P14
GND	A13	GND	K15	GND	P15
GND	A14	GND	K16	GND	P16
GND	A19	GND	K17	GND	P17
GND	A26	GND	L10	GND	P26

FG896		FG896		FG896	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
GND	AK18	GND	M13	GND	T12
GND	AK2	GND	M14	GND	T13
GND	AK23	GND	M15	GND	T14
GND	AK29	GND	M16	GND	T15
GND	AK8	GND	M17	GND	T16
GND	B1	GND	M18	GND	T17
GND	B2	GND	M19	GND	T18
GND	B22	GND	N1	GND	T19
GND	B29	GND	N12	GND	T28
GND	B30	GND	N13	GND	Т3
GND	B9	GND	N14	GND	U12
GND	C10	GND	N15	GND	U13
GND	C15	GND	N16	GND	U14
GND	C16	GND	N17	GND	U15
GND	C21	GND	N18	GND	U16
GND	C28	GND	N19	GND	U17
GND	C3	GND	N30	GND	U18
GND	D27	GND	P12	GND	U19
GND	D28	GND	P13	GND	V1
GND	D4	GND	P14	GND	V12
GND	E26	GND	P15	GND	V13
GND	E5	GND	P16	GND	V14
GND	H1	GND	P17	GND	V15
GND	H30	GND	P18	GND	V16
GND	J2	GND	P19	GND	V17
GND	J22	GND	R12	GND	V18
GND	J29	GND	R13	GND	V19
GND	J9	GND	R14	GND	V30
GND	K10	GND	R15	GND	W12
GND	K21	GND	R16	GND	W13
GND	K28	GND	R17	GND	W14
GND	K3	GND	R18	GND	W15
GND	L11	GND	R19	GND	W16
GND	L20	GND	R28	GND	W17
GND	M12	GND	R3	GND	W18

FG1152		FG1152		FG1152	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
NC	AP9	PRB	F18	VCCA	T22
NC	B17	PRC	AD18	VCCA	U13
NC	B22	PRD	AH18	VCCA	U22
NC	B27	ТСК	J9	VCCA	V13
NC	B8	TDI	F7	VCCA	V22
NC	D10	TDO	L10	VCCA	W13
NC	D20	TMS	H8	VCCA	W22
NC	D23	TRST	E6	VCCA	Y13
NC	D25	VCCA	AA13	VCCA	Y22
NC	F3	VCCA	AA22	VCCDA	AF26
NC	F32	VCCA	AB14	VCCDA	AF9
NC	F33	VCCA	AB15	VCCDA	AG17
NC	F34	VCCA	AB16	VCCDA	AG18
NC	F4	VCCA	AB17	VCCDA	AH14
NC	G1	VCCA	AB18	VCCDA	AH15
NC	G32	VCCA	AB19	VCCDA	AH17
NC	G33	VCCA	AB20	VCCDA	AH20
NC	G34	VCCA	AB21	VCCDA	AH21
NC	H31	VCCA	AF8	VCCDA	AK29
NC	H33	VCCA	AK28	VCCDA	AK6
NC	J1	VCCA	G30	VCCDA	E15
NC	J3	VCCA	G5	VCCDA	E29
NC	J34	VCCA	N14	VCCDA	E7
NC	M1	VCCA	N15	VCCDA	F15
NC	M4	VCCA	N16	VCCDA	F21
NC	P1	VCCA	N17	VCCDA	F5
NC	P2	VCCA	N18	VCCDA	G20
NC	R31	VCCA	N19	VCCDA	H17
NC	T1	VCCA	N20	VCCDA	H18
NC	T2	VCCA	N21	VCCDA	H28
NC	V3	VCCA	P13	VCCDA	J18
NC	V34	VCCA	P22	VCCDA	V27
NC	W3	VCCA	R13	VCCDA	V6
NC	W34	VCCA	R22	VCCIB0	A5
PRA	J17	VCCA	T13	VCCIB0	B5

CQ352				
AX1000 Function	Pin Number			
VCCDA	346			
VCCIB0	321			
VCCIB0	333			
VCCIB0	344			
VCCIB1	273			
VCCIB1	285			
VCCIB1	297			
VCCIB2	227			
VCCIB2	239			
VCCIB2	245			
VCCIB2	257			
VCCIB3	185			
VCCIB3	197			
VCCIB3	203			
VCCIB3	215			
VCCIB4	144			
VCCIB4	156			
VCCIB4	168			
VCCIB5	96			
VCCIB5	108			
VCCIB5	120			
VCCIB6	50			
VCCIB6	62			
VCCIB6	68			
VCCIB6	80			
VCCIB7	8			
VCCIB7	20			
VCCIB7	26			
VCCIB7	38			
VCCPLA	317			
VCCPLB	315			
VCCPLC	303			
VCCPLD	301			
VCCPLE	140			
VCCPLF	138			

CQ352	
AX1000 Function	Pin Number
VCCPLG	126
VCCPLH	124
VCOMPLA	318
VCOMPLB	316
VCOMPLC	304
VCOMPLD	302
VCOMPLE	141
VCOMPLF	139
VCOMPLG	127
VCOMPLH	125
VPUMP	267

Revision	Changes	Page		
Revision 8 (continued)	$\begin{array}{c c} \mbox{The following changes were made in the "FG676"(AX500) section:} \\ AE2, AE25 & Change from NC to GND. \\ AF2, AF25 & Changed from GND to NC \\ AB4, AF24, C1, C26 & Changed from V_{CCDA} to V_{CCA} \\ AD15 & Change from V_{CCDA} to V_{COMPLE} \\ AD17 & Changed from V_{COMPLE} to V_{CCDA} \\ \end{array}$	3-37		
	In the "FG896" (AX2000) section, the AK28 changed from VCCIB5 to VCCIB4.	3-52		
	The "CQ352" and "CG624" sections are new.	3-98, 3-115		
Revision 7	All I/O FIFO capability was removed.			
(Advance v1.6)	Table 1 was updated.	i		
	Figure 1-9 was updated.	1-7		
	Figure 2-5 was updated.	2-16		
	The "Using an I/O Register" section was updated.	2-16		
	The AX250 and AX1000 descriptions were added to the "FG484"section.	3-21		
Revision 6	Table 2-3 was updated.	2-2		
(Advance v1.5)	Figure 2-1 was updated.	2-8		
	Figure 2-48 was updated.			
	Figure 2-52 was updated.	2-82		
Revision 5 (Advance v1.4)	In the "PQ208" table, pin 196 was missing, but it has been added in this version with a function of GND.	3-84		
	The following pins in the "FG484" table for AX500 were changed: Pin G7 is GND/LP	3-21		
	Pins AB8, C10, C11, C14, AB16 are NC.	0.07		
Devision 4	The "FG6/6" table was updated.	3-37		
(Advance v1.3)				
· · · ·	The "Programmable Interconnect Element" and Figure 1-2 are new.	1-1 and 1-2		
	The "CS180" table is new.	3-1		
	GND 21 GND 136 GND 136 GND 136 GND 136 GND 136 GND 136 GND 136 GND 136 GND 136 GND 136	3-84		
Revision 3 (Advance v1.2)	Table 1, "Ordering Information", "Device Resources", and the Product Plan table were updated.	i, ii		
	The following figures and tables were updated: Figure 1-3 Figure 1-8 (new) Table 2-3 Figure 2-2 Table 2-8 Figure 2-11 The "Design Environment" section was updated. The "Package Thermal Characteristics" was updated.	1-2 1-6 2-2 2-9 2-12 2-23 1-7 2-6		
		20		