

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	2016
Number of Logic Elements/Cells	-
Total RAM Bits	18432
Number of I/O	138
Number of Gates	125000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/ax125-1fgg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Two C-cells, a single R-cell, two Transmit (TX), and two Receive (RX) routing buffers form a Cluster, while two Clusters comprise a SuperCluster (Figure 1-4). Each SuperCluster also contains an independent Buffer (B) module, which supports buffer insertion on high-fanout nets by the place-and-route tool, minimizing system delays while improving logic utilization.

Figure 1-4 • AX SuperCluster

The logic modules within the SuperCluster are arranged so that two combinatorial modules are side-byside, giving a C–C–R – C–C–R pattern to the SuperCluster. This C–C–R pattern enables efficient implementation (minimum delay) of two-bit carry logic for improved arithmetic performance (Figure 1-5 on page 1-3).

Figure 1-5 • AX 2-Bit Carry Logic

The AX architecture is fully fracturable, meaning that if one or more of the logic modules in a SuperCluster are used by a particular signal path, the other logic modules are still available for use by other paths.

At the chip level, SuperClusters are organized into core tiles, which are arrayed to build up the full chip. For example, the AX1000 is composed of a 3x3 array of nine core tiles. Surrounding the array of core tiles are blocks of I/O Clusters and the I/O bank ring (Table 1-1). Each core tile consists of an array of 336 SuperClusters and four SRAM blocks (176 SuperClusters and three SRAM blocks for the AX250).

Table	1-1 •	Number	of	Core	Tiles	per	Device
-------	-------	--------	----	------	-------	-----	--------

Device	Number of Core Tiles
AX125	1 regular tile
AX250	4 smaller tiles
AX500	4 regular tiles
AX1000	9 regular tiles
AX2000	16 regular tiles

User-Defined Supply Pins

VREF

Supply Voltage

Reference voltage for I/O banks. VREF pins are configured by the user from regular I/O pins; VREF pins are not in fixed locations. There can be one or more VREF pins in an I/O bank.

Global Pins

HCLKA/B/C/D Dedicated (Hardwired) Clocks A, B, C and D

These pins are the clock inputs for sequential modules or north PLLs. Input levels are compatible with all supported I/O standards. There is a P/N pin pair for support of differential I/O standards. Single-ended clock I/Os can only be assigned to the P side of a paired I/O. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. When the HCLK pins are unused, it is recommended that they are tied to ground.

CLKE/F/G/H Routed Clocks E, F, G, and H

These pins are clock inputs for clock distribution networks or south PLLs. Input levels are compatible with all supported I/O standards. There is a P/N pin pair for support of differential I/O standards. Single-ended clock I/Os can only be assigned to the P side of a paired I/O. The clock input is buffered prior to clocking the R-cells. When the CLK pins are unused, Microsemi recommends that they are tied to ground.

JTAG/Probe Pins

PRA/B/C/D Probe A, B, C and D

The Probe pins are used to output data from any user-defined design node within the device (controlled with Silicon Explorer II). These independent diagnostic pins can be used to allow real-time diagnostic output of any signal path within the device. The pins' probe capabilities can be permanently disabled to protect programmed design confidentiality. The probe pins are of LVTTL output levels.

TCK Test Clock

Test clock input for JTAG boundary-scan testing and diagnostic probe (Silicon Explorer II).

TDI Test Data Input

Serial input for JTAG boundary-scan testing and diagnostic probe. TDI is equipped with an internal 10 k Ω pull-up resistor.

TDO Test Data Output

Serial output for JTAG boundary-scan testing.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1149.1 boundary-scan pins (TCK, TDI, TDO, TRST). TMS is equipped with an internal 10 k Ω pull-up resistor.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize or reset the boundary scan circuit. The TRST pin is equipped with a 10 k Ω pull-up resistor.

Special Functions

LP Low Power Pin

The LP pin controls the low power mode of Axcelerator devices. The device is placed in the low power mode by connecting the LP pin to logic high. To exit the low power mode, the LP pin must be set Low. Additionally, the LP pin must be set Low during chip powering-up or chip powering-down operations. See "Low Power Mode" on page 2-106 for more details.

NC No Connection

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

Using the Weak Pull-Up and Pull-Down Circuits

Each Axcelerator I/O comes with a weak pull-up/down circuit (on the order of 10 k Ω). These are weak transistors with the gates tied on, so the on resistance of the transistor emulates a resistor. The weak pull-up and pull-down is active only when the device is powered up, and they must be biased to be on. When the rails are coming up, they are not biased fully, so they do not behave as resistors until the voltage is at sufficient levels to bias the transistors. The key is they really are transistors; they are not traces of poly silicon, which is another way to do an on-chip resistor (those take much more room). I/O macros are provided for combinations of pull up/down for LVTTL, LVCMOS (2.5 V, 1.8 V, and 1.5 V) standards. These macros can be instantiated if a keeper circuit for any input buffer is required.

Customizing the I/O

- A five-bit programmable input delay element is associated with each I/O. The value of this delay is
 set on a bank-wide basis (Table 2-14). It is optional for each input buffer within the bank (i.e. the
 user can enable or disable the delay element for the I/O). When the input buffer drives a register
 within the I/O, the delay element is activated by default to ensure a zero hold-time. The default
 setting for this property can be set in Designer. When the input buffer does not drive a register, the
 delay element is deactivated to provide higher performance. Again, this can be overridden by
 changing the default setting for this property in Designer.
- The slew-rate value for the LVTTL output buffer can be programmed and can be set to either slow or fast.
- The drive strength value for LVTTL output buffers can be programmed as well. There are four different drive strength values – 8 mA, 12 mA, 16 mA, or 24 mA – that can be specified in Designer.⁵

Bits Setting	Delay (ns)]	Bits Setting	Delay (ns)
0	0.54]	16	2.01
1	0.65	1	17	2.13
2	0.71	1	18	2.19
3	0.83	1	19	2.3
4	0.9	1	20	2.38
5	1.01	1	21	2.49
6	1.08]	22	2.55
7	1.19	1	23	2.67
8	1.27	1	24	2.75
9	1.39]	25	2.87
10	1.45	1	26	2.93
11	1.56	1	27	3.04
12	1.64	1	28	3.12
13	1.75	1	29	3.23
14	1.81		30	3.29
15	1.93		31	3.41

Table 2-14 • Bank-Wide Delay Values

Note: Delay values are approximate and will vary with process, temperature, and voltage.

^{5.} These values are minimum drive strengths.

Detailed Specifications

Figure 2-10 • Output Buffer Delays

3.3 V LVTTL

Low-Voltage Transistor-Transistor Logic is a general purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer.

Table 2-20 • DC Input and Output Levels

,	VIL	V	IH	VOL	VOH IOL		ЮН
Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA
-0.3	0.8	2.0	3.6	0.4	2.4	24	-24

AC Loadings

Figure 2-15 • AC Test Loads

Table 2-21 • AC Waveforms, Measuring Points, and Capacitive Load
--

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ) (V)	C _{load} (pF)
0	3.0	1.40	N/A	35

Note: * *Measuring Point* = VTRIP

Table 2-22 • 3.3 V LVTTL I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C (continued)

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVTTL Outp	out Drive Strength = 2 (12 mA) / High Slew Rate							
t _{DP}	Input Buffer		1.68		1.92		2.26	ns
t _{PY}	Output Buffer		3.30		3.76		4.42	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		3.74		4.26		5.00	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		3.06		3.49		4.10	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		1.89		1.91		1.91	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		2.29		2.30		2.31	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Timing Model and Waveforms

Timing Characteristics

Table 2-62 • C-Cell

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		-2 Speed		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propagation Delays								
t _{PD}	Any input to output Y		0.74		0.84		0.99	ns
t _{PDC}	Any input to carry chain output (FCO)		0.57		0.64		0.76	ns
t _{PDB}	Any input through DB when one input is used		0.95		1.09		1.28	ns
t _{CCY}	Input to carry chain (FCI) to Y		0.61		0.69		0.82	ns
t _{CC}	Input to carry chain (FCI) to carry chain output (FCO)		0.08		0.09		0.11	ns

R-Cell

Introduction

The R-cell, the sequential logic resource of the Axcelerator devices, is the second logic module type in the AX family architecture. It includes clock inputs for all eight global resources of the Axcelerator architecture as well as global presets and clears (Figure 2-31).

The main features of the R-cell include the following:

- Direct connection to the adjacent logic module through the hardwired connection DCIN. DCIN is driven by the DCOUT of an adjacent C-cell via the Direct-Connect routing resource, providing a connection with less than 0.1 ns of routing delay.
- The R-cell can be used as a standalone flip-flop. It can be driven by any C-cell or I/O modules through the regular routing structure (using DIN as a routable data input). This gives the option of using the R-Cell as a 2:1 MUXed flip-flop as well.
- Provision of data enable-input (S0).
- Independent active-low asynchronous clear (CLR).
- Independent active-low asynchronous preset (PSET). If both CLR and PSET are low, CLR has higher priority.
- · Clock can be driven by any of the following (CKP selects clock polarity):
 - One of the four high performance hardwired fast clocks (HCLKs)
 - One of the four routed clocks (CLKs)
 - User signals
- Global power-on clear (GCLR) and preset (GPSET), which drive each flip-flop on a chip-wide basis.
 - When the Global Set Fuse option in the Designer software is unchecked (by default), GCLR = 0 and GPSET = 1 at device power-up. When the option is checked, GCLR = 1 and GPSET = 0. Both pins are pulled High when the device is in user mode. Refer to the "Simulation Support for GCLR/GPSET in Axcelerator" section of the *Antifuse Macro Library Guide* for information on simulation support for GCLR and GPSET.
- S0, S1, PSET, and CLR can be driven by routed clocks CLKE/F/G/H or user signals.
- DIN and S1 can be driven by user signals.

As with the C-cell, the configuration of the R-cell to perform various functions is handled automatically for the user through Microsemi's extensive macro library (see the *Antifuse Macro Library Guide* for a complete listing of available AX macros).

Detailed Specifications

Table 2-67 • AX500 Predicted Routing Delays Worst-Case Commercial Conditions VCCA = 1.425 V, T_J = 70°C

		-2 Speed	-1 Speed	Std Speed	
Parameter	Description	Typical	Typical	Typical	Units
Predicted Routing Delays					
t _{DC}	DirectConnect Routing Delay, FO1	0.11	0.12	0.15	ns
t _{FC}	FastConnect Routing Delay, FO1	0.35	0.39	0.46	ns
t _{RD1}	Routing delay for FO1	0.39	0.45	0.53	ns
t _{RD2}	Routing delay for FO2	0.41	0.46	0.54	ns
t _{RD3}	Routing delay for FO3	0.48	0.55	0.64	ns
t _{RD4}	Routing delay for FO4	0.56	0.63	0.75	ns
t _{RD5}	Routing delay for FO5	0.60	0.68	0.80	ns
t _{RD6}	Routing delay for FO6	0.84	0.96	1.13	ns
t _{RD7}	Routing delay for FO7	0.90	1.02	1.20	ns
t _{RD8}	Routing delay for FO8	1.00	1.13	1.33	ns
t _{RD16}	Routing delay for FO16	2.17	2.46	2.89	ns
t _{RD32}	Routing delay for FO32	3.55	4.03	4.74	ns

Table 2-68 • AX1000 Predicted Routing Delays Worst-Case Commercial Conditions VCCA = $1.425 \text{ V}, \text{ T}_{\text{J}} = 70^{\circ}\text{C}$

		-2 Speed	–1 Speed	Std Speed	
Parameter	Description	Typical	Typical	Typical	Units
Predicted F	Routing Delays				
t _{DC}	DirectConnect Routing Delay, FO1	0.12	0.13	0.15	ns
t _{FC}	FastConnect Routing Delay, FO1	0.35	0.39	0.46	ns
t _{RD1}	Routing delay for FO1	0.45	0.51	0.60	ns
t _{RD2}	Routing delay for FO2	0.53	0.60	0.71	ns
t _{RD3}	Routing delay for FO3	0.56	0.63	0.74	ns
t _{RD4}	Routing delay for FO4	0.63	0.71	0.84	ns
t _{RD5}	Routing delay for FO5	0.73	0.82	0.97	ns
t _{RD6}	Routing delay for FO6	0.99	1.13	1.32	ns
t _{RD7}	Routing delay for FO7	1.02	1.15	1.36	ns
t _{RD8}	Routing delay for FO8	1.48	1.68	1.97	ns
t _{RD16}	Routing delay for FO16	2.57	2.91	3.42	ns
t _{RD32}	Routing delay for FO32	4.24	4.81	5.65	ns

Detailed Specifications

Routed Clocks

The routed clock (CLK) is a low-skew network that can drive the clock inputs of all sequential modules in the device (logically equivalent to the HCLK), but has the added flexibility in that it can drive the S0 (Enable), S1, PSET, and CLR input of a register (R-cells and I/O registers) as well as any of the inputs of any C-cell in the device. This allows CLKs to be used not only as clocks, but also for other global signals or high fanout nets. All four CLKs are available everywhere on the chip.

Timing Characteristics

Table 2-75 • AX125 Routed Array Clock Networks Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		–2 S	peed	-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Routed Array Clock Networks								
t _{RCKL}	Input Low to High		3.08		3.50		4.12	ns
t _{RCKH}	Input High to Low		3.13		3.56		4.19	ns
t _{RPWH}	Minimum Pulse Width High	0.57		0.64		0.75		ns
t _{RPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{RCKSW}	Maximum Skew		0.35		0.39		0.46	ns
t _{RP}	Minimum Period	1.15		1.31		1.54		ns
t _{RMAX}	Maximum Frequency		870		763		649	MHz

Table 2-76 • AX250 Routed Array Clock Networks

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		-2 S	speed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Routed Array Clock Networks								
t _{RCKL}	Input Low to High		2.52		2.87		3.37	ns
t _{RCKH}	Input High to Low		2.59		2.95		3.47	ns
t _{RPWH}	Minimum Pulse Width High	0.57		0.64		0.75		ns
t _{RPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{RCKSW}	Maximum Skew		0.35		0.39		0.46	ns
t _{RP}	Minimum Period	1.15		1.31		1.54		ns
t _{RMAX}	Maximum Frequency		870		763		649	MHz

Axcelerator Clock Management System

Introduction

Each member of the Axcelerator family⁶ contains eight phase-locked loop (PLL) blocks which perform the following functions:

- Programmable Delay (32 steps of 250 ps)
- Clock Skew Minimization
- Clock Frequency Synthesis

Each PLL has the following key features:

- Input Frequency Range 14 to 200 MHz
- Output Frequency Range 20 MHz to 1 GHz
- Output Duty Cycle Range 45% to 55%
- Maximum Long-Term Jitter 1% or 100ps (whichever is greater)
- Maximum Short-Term Jitter 50ps + 1% of Output Frequency
- Maximum Acquisition Time (lock) 20µs

Physical Implementation

The eight PLL blocks are arranged in two groups of four. One group is located in the center of the northern edge of the chip, while the second group is centered on the southern edge. The northern group is associated with the four HCLK networks (e.g. PLLA can drive HCLKA), while the southern group is associated with the four CLK networks (e.g. PLLE can drive CLKE).

Each PLL cell is connected to two I/O pads and a PLL Cluster that interfaces with the FPGA core. Figure 2-48 illustrates a PLL block. The VCCPLL pin should be connected to a 1.5V power supply through a 250 Ω resistor. Furthermore, 0.1 μF and 10 μF decoupling capacitors should be connected across the VCCPLL and VCOMPPLL pins.

Note: The VCOMPPLL pin should never be grounded (Figure 2-2 on page 2-9)!

The I/O pads associated with the PLL can also be configured for regular I/O functions except when it is used as a clock buffer. The I/O pads can be configured in all the modes available to the regular I/O pads in the same I/O bank. In particular, the [H]CLKxP pad can be configured as a differential pair,

^{6.} AX2000-CQ256 does not support operation of the phase-locked loops. This is in order to support full pin compatibility with RTAX2000S/SL-CQ256.

Clock Skew Minimization

Figure 2-56 indicates how feedback from the clock network can be used to create minimal skew between the distributed clock network and the input clock. The input clock is fed to the reference clock input of the PLL. The output clock (CLK2) feeds a routed clock network. The feedback input to the PLL uses a clock input delayed by a routing network. The PLL then adjusts the phase of the input clock to match the delayed clock, thus providing nearly zero effective skew between the two clocks. Refer to the *Axcelerator Family PLL and Clock Management* application note for more information.

Figure 2-56 • Using the PLL for Clock Deskewing

FG324

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

FG676		FG676		FG676		
AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function	Pin Number	
Bank 0		IO17NB0F1	F12	IO34NB1F3	D20	
IO00NB0F0	F8	IO17PB0F1	G12	IO34PB1F3	C20	
IO00PB0F0	E8	IO18NB0F1	C12	IO35NB1F3	D21	
IO01NB0F0	A5	IO18PB0F1	C11	IO35PB1F3	C21	
IO01PB0F0	A4	IO19NB0F1/HCLKAN	A12	IO36NB1F3	D22	
IO02NB0F0	E7	IO19PB0F1/HCLKAP	B12	IO36PB1F3	C22	
IO02PB0F0	E6	IO20NB0F1/HCLKBN	C13	IO37NB1F3	F19	
IO03NB0F0	D6	IO20PB0F1/HCLKBP	B13	IO37PB1F3	E19	
IO03PB0F0	D5	Bank 1		IO38NB1F3	B23	
IO04NB0F0	B5	IO21NB1F2/HCLKCN	C15	IO38PB1F3	A23	
IO04PB0F0	C5	IO21PB1F2/HCLKCP	C14	IO39NB1F3	E21	
IO05NB0F0	B6	IO22NB1F2/HCLKDN	A15	IO39PB1F3	E20	
IO05PB0F0	C6	IO22PB1F2/HCLKDP	B15	IO40NB1F3	D23	
IO06NB0F0	C7	IO23NB1F2	F15	IO40PB1F3	C23	
IO06PB0F0	D7	IO23PB1F2	G15	IO41NB1F3	D25	
IO07NB0F0	A7	IO24NB1F2	B16	IO41PB1F3	C25	
IO07PB0F0	A6	IO24PB1F2	A16	Bank 2		
IO08NB0F0	C8	IO25NB1F2	A18	IO42NB2F4	G24	
IO08PB0F0	D8	IO25PB1F2	A17	IO42PB2F4	G23	
IO09NB0F0	F10	IO26NB1F2	D16	IO43NB2F4	G26	
IO09PB0F0	F9	IO26PB1F2	E16	IO43PB2F4	F26	
IO10NB0F0	B8	IO27NB1F2	F16	IO44NB2F4	F25	
IO10PB0F0	B7	IO27PB1F2	G16	IO44PB2F4	E25	
IO11NB0F0	D10	IO28NB1F2	C18	IO45NB2F4	J21	
IO11PB0F0	E10	IO28PB1F2	C17	IO45PB2F4	J22	
IO12NB0F1	B9	IO29NB1F2	B19	IO46NB2F4	H25	
IO12PB0F1	C9	IO29PB1F2	B18	IO46PB2F4	G25	
IO13NB0F1	F11	IO30NB1F2	D19	IO47NB2F4	K23	
IO13PB0F1	G11	IO30PB1F2	C19	IO47PB2F4	J23	
IO14NB0F1	D11	IO31NB1F2	F17	IO48NB2F4	J24	
IO14PB0F1	E11	IO31PB1F2	E17	IO48PB2F4	H24	
IO15NB0F1	B10	IO32NB1F3	B20	IO49NB2F4	K21	
IO15PB0F1	C10	IO32PB1F3	A20	IO49PB2F4	K22	
IO16NB0F1	A10	IO33NB1F3	B22	IO50NB2F4	K25	
IO16PB0F1	A9	IO33PB1F3	B21	IO50PB2F4	J25	

Microsemi

FG676		FG676		FG676		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number	
NC	D13	VCCA	Т9	VCCIB0	G10	
NC	D14	VCCA	U18	VCCIB0	G8	
PRA	E13	VCCA	U9	VCCIB0	G9	
PRB	B14	VCCA	V10	VCCIB0	H10	
PRC	Y14	VCCA	V11	VCCIB0	H11	
PRD	AD14	VCCA	V12	VCCIB0	H12	
ТСК	E5	VCCA	V13	VCCIB0	H13	
TDI	B3	VCCA	V14	VCCIB0	H9	
TDO	G6	VCCA	V15	VCCIB1	G17	
TMS	D4	VCCA	V16	VCCIB1	G18	
TRST	A2	VCCA	V17	VCCIB1	G19	
VCCA	AB4	VCCPLA	E12	VCCIB1	H14	
VCCA	AF24	VCCPLB	F13	VCCIB1	H15	
VCCA	C1	VCCPLC	E15	VCCIB1	H16	
VCCA	C26	VCCPLD	G14	VCCIB1	H17	
VCCA	J10	VCCPLE	AF15	VCCIB1	H18	
VCCA	J11	VCCPLF	AA14	VCCIB2	H20	
VCCA	J12	VCCPLG	AF12	VCCIB2	J19	
VCCA	J13	VCCPLH	AB13	VCCIB2	J20	
VCCA	J14	VCCDA	A11	VCCIB2	K19	
VCCA	J15	VCCDA	A3	VCCIB2	K20	
VCCA	J16	VCCDA	AB22	VCCIB2	L19	
VCCA	J17	VCCDA	AB5	VCCIB2	M19	
VCCA	K18	VCCDA	AD10	VCCIB2	N19	
VCCA	K9	VCCDA	AD11	VCCIB3	P19	
VCCA	L18	VCCDA	AD13	VCCIB3	R19	
VCCA	L9	VCCDA	AD16	VCCIB3	T19	
VCCA	M18	VCCDA	AD17	VCCIB3	U19	
VCCA	M9	VCCDA	B1	VCCIB3	U20	
VCCA	N18	VCCDA	B11	VCCIB3	V19	
VCCA	N9	VCCDA	B17	VCCIB3	V20	
VCCA	P18	VCCDA	C16	VCCIB3	W20	
VCCA	P9	VCCDA	D24	VCCIB4	W14	
VCCA	R18	VCCDA	E14	VCCIB4	W15	
VCCA	R9	VCCDA	P2	VCCIB4	W16	
VCCA	T18	VCCDA	P23	VCCIB4	W17	

FG896		FG896		FG896		
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number	
GND	AK18	GND	M13	GND	T12	
GND	AK2	GND	M14	GND	T13	
GND	AK23	GND	M15	GND	T14	
GND	AK29	GND	M16	GND	T15	
GND	AK8	GND	M17	GND	T16	
GND	B1	GND	M18	GND	T17	
GND	B2	GND	M19	GND	T18	
GND	B22	GND	N1	GND	T19	
GND	B29	GND	N12	GND	T28	
GND	B30	GND	N13	GND	Т3	
GND	B9	GND	N14	GND	U12	
GND	C10	GND	N15	GND	U13	
GND	C15	GND	N16	GND	U14	
GND	C16	GND	N17	GND	U15	
GND	C21	GND	N18	GND	U16	
GND	C28	GND	N19	GND	U17	
GND	C3	GND	N30	GND	U18	
GND	D27	GND	P12	GND	U19	
GND	D28	GND	P13	GND	V1	
GND	D4	GND	P14	GND	V12	
GND	E26	GND	P15	GND	V13	
GND	E5	GND	P16	GND	V14	
GND	H1	GND	P17	GND	V15	
GND	H30	GND	P18	GND	V16	
GND	J2	GND	P19	GND	V17	
GND	J22	GND	R12	GND	V18	
GND	J29	GND	R13	GND	V19	
GND	J9	GND	R14	GND	V30	
GND	K10	GND	R15	GND	W12	
GND	K21	GND	R16	GND	W13	
GND	K28	GND	R17	GND	W14	
GND	K3	GND	R18	GND	W15	
GND	L11	GND	R19	GND	W16	
GND	L20	GND	R28	GND	W17	
GND	M12	GND	R3	GND	W18	

FG896		FG896			
AX2000 Function	Pin Number	AX2000 Function	Pin Number		
VCCIB3	AH30	VCCIB6	W9		
VCCIB3	T21	VCCIB6	Y10		
VCCIB3	U21	VCCIB6	Y9		
VCCIB3	V21	VCCIB7	C1		
VCCIB3	W21	VCCIB7	C2		
VCCIB3	W22	VCCIB7	K9		
VCCIB3	Y21	VCCIB7	L10		
VCCIB3	Y22	VCCIB7	L9		
VCCIB4	AA16	VCCIB7	M10		
VCCIB4	AA17	VCCIB7	M9		
VCCIB4	AA18	VCCIB7	N10		
VCCIB4	AA19	VCCIB7	P10		
VCCIB4	AA20	VCCIB7	R10		
VCCIB4	AB19	VCCPLA	G14		
VCCIB4	AB20	VCCPLB	H15		
VCCIB4	AB21	VCCPLC	G17		
VCCIB4	AJ28	VCCPLD	J16		
VCCIB4	AK28	VCCPLE	AH17		
VCCIB5	AA11	VCCPLF	AC16		
VCCIB5	AA12	VCCPLG	AH14		
VCCIB5	AA13	VCCPLH	AD15		
VCCIB5	AA14	VCOMPLA	F14		
VCCIB5	AA15	VCOMPLB	J15		
VCCIB5	AB10	VCOMPLC	F17		
VCCIB5	AB11	VCOMPLD	H16		
VCCIB5	AB12	VCOMPLE	AF17		
VCCIB5	AJ3	VCOMPLF	AD16		
VCCIB5	AK3	VCOMPLG	AF14		
VCCIB6	AA9	VCOMPLH	AB15		
VCCIB6	AH1	VPUMP	G24		
VCCIB6	AH2		•		
VCCIB6	T10				
VCCIB6	U10				
VCCIB6	V10				
VCCIB6	W10				

AX500 Function Pin Number AX500 Function Number AX500 Function Number IO150PB7F14 19 GND 173 VCCIB0 200 IO152PB7F14 16 GND 194 VCCIB1 163 IO152PB7F15 12 GND 201 VCCIB2 135 IO161PB7F15 13 GND/LP 208 VCCIB3 112 IO163PB7F15 10 PRA 184 VCCIB3 112 IO163PB7F15 7 PRC 80 VCCIB4 88 IO166NB7F15 6 TCK 205 VCCIB5 58 IO166PB7F15 6 TCK 205 VCCIB6 45 VCCDA 1 TRST 207 VCCIB6 45 VCCDA 1 TRST 207 VCCIB6 45 VCCDA 1 VCCA 2 VCCIB7 20 GND 9 VCCA 14 VCCPLA 189 GND	CQ208		CQ208		CQ208		
IO150PB7F14 19 GND 173 VCCIB0 200 IO152NB7F14 16 GND 194 VCCIB1 173 IO161NB7F15 12 GND 201 VCCIB2 135 IO161NB7F15 13 GND/P 208 VCCIB2 149 IO163NB7F15 10 PRA 184 VCCIB3 112 IO166NB7F15 7 PRC 80 VCCIB4 89 IO166NB7F15 5 PRD 79 VCCIB4 89 IO166NB7F15 6 TCK 205 VCCIB4 89 IO166NB7F15 3 TDI 204 VCCIB4 89 IO166NB7F15 3 TDI 204 VCCIB5 68 IO167PB7F15 4 TDO 203 VCCIB6 45 VCCDA 1 TRST 206 VCCIB6 45 VCCDA 1 VCCA 2 VCCIB6 18 GND 39	AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function	Pin Numbe	
IO152NB7F14 16 GND 194 VCCIB1 163 IO152PB7F14 17 GND 196 VCCIB1 172 IO161NB7F15 12 GND 201 VCCIB1 172 IO161NB7F15 13 GND/LP 208 VCCIB2 149 IO163NB7F15 10 PRA 184 VCCIB3 112 IO166NB7F15 7 PRC 80 VCCIB4 89 IO166NB7F15 7 PRC 80 VCCIB4 89 IO166NB7F15 6 TCK 205 VCCIB5 68 IO167NB7F15 3 TDI 204 VCCIB5 68 IO167NB7F15 3 TDI 204 VCCIB5 68 VCCDA 1 TRST 207 VCCIB5 68 VCCDA 1 VCCA 38 VCCPLA 189 GND 39 VCCA 52 VCCIB 187 GND 59 <td< td=""><td>IO150PB7F14</td><td>19</td><td>GND</td><td>173</td><td>VCCIB0</td><td>200</td></td<>	IO150PB7F14	19	GND	173	VCCIB0	200	
IO152PB7F14 17 GND 196 VCCIB1 172 IO161NB7F15 12 GND 201 VCCIB2 135 IO161NB7F15 10 PRA 184 VCCIB2 135 IO163NB7F15 10 PRA 184 VCCIB2 112 IO163NB7F15 11 PRB 183 VCCIB4 89 IO166PB7F15 5 PRD 79 VCCIB4 89 IO166PB7F15 6 TCK 205 VCCIB4 98 IO167PB7F15 4 TDO 203 VCCIB5 68 IO167PB7F15 4 TDO 203 VCCIB5 68 IO167PB7F15 4 TDO 203 VCCIB5 68 VCCDA 1 TRST 207 VCCIB6 41 GND 15 VCCA 14 VCCPLA 189 GND 32 VCCA 52 VCCIB 187 GND 59 VCC	IO152NB7F14	16	GND	194	VCCIB1	163	
IO161NB7F15 12 GND 201 VCCIB2 135 IO161PB7F15 13 GNDLP 208 VCCIB2 149 IO163NB7F15 10 PRA 184 VCCIB3 112 IO163PB7F15 11 PRB 183 VCCIB3 124 IO166PB7F15 7 PRC 80 VCCIB4 98 IO166PB7F15 6 TCK 205 VCCIB4 98 IO166PB7F15 6 TCK 205 VCCIB4 98 IO166PB7F15 3 TDI 204 VCCIB5 58 IO167PB7F15 4 TDO 203 VCCIB6 45 VCCDA 1 TRST 207 VCCIB7 20 GND 9 VCCA 2 VCCIB7 20 GND 15 VCCA 14 VCCPLA 189 GND 32 VCCA 52 VCCPLD 176 GND 51 VCCA	IO152PB7F14	17	GND	196	VCCIB1	172	
IO161PB7F15 13 GND/LP 208 VCCIB2 149 IO163PB7F15 10 PRA 184 VCCIB3 112 IO163PB7F15 11 PRB 183 VCCIB3 112 IO166PB7F15 7 PRC 80 VCCIB4 89 IO166PB7F15 6 TCK 206 VCCIB4 89 IO166PB7F15 6 TCK 206 VCCIB4 89 IO166PB7F15 4 TDO 203 VCCIB5 68 IO167PB7F15 4 TDO 203 VCCIB6 31 Dedicated I/O TMS 206 VCCIB5 68 VCCDA 1 TRST 207 VCCIB6 31 GND 9 VCCA 2 VCCIB7 8 GND 15 VCCA 14 VCCIB7 187 GND 32 VCCA 52 VCCPLC 178 GND 51 VCCA 181 <td>IO161NB7F15</td> <td>12</td> <td>GND</td> <td>201</td> <td>VCCIB2</td> <td>135</td>	IO161NB7F15	12	GND	201	VCCIB2	135	
IO163NB7F15 10 PRA 184 VCCIB3 112 IO163NB7F15 11 PRB 183 VCCIB3 124 IO166NB7F15 7 PRC 80 VCCIB3 124 IO166NB7F15 5 PRD 79 VCCIB4 98 IO166NB7F15 6 TCK 205 VCCIB5 68 IO167NB7F15 3 TDI 204 VCCIB5 68 IO167NB7F15 4 TDO 203 VCCIB5 68 IO167NB7F15 4 TDO 203 VCCIB5 68 IO167NB7F15 1 TRST 207 VCCIB5 68 IO167NB7F15 1 TRST 207 VCCIB6 45 VCCDA 1 TRST 207 VCCIB6 18 GND 21 VCCA 14 VCCPLB 187 GND 32 VCCA 52 VCCPLB 187 GND 51 VCCA<	IO161PB7F15	13	GND/LP	208	VCCIB2	149	
IO163PB7F15 11 PRB 183 IO165PB7F15 7 PRC 80 IO166NB7F15 5 PRD 79 IO166PB7F15 6 TCK 205 IO166PB7F15 6 TCK 205 IO167NB7F15 3 TDI 204 IO167NB7F15 4 TDO 203 Dedicated I/O TMS 206 VCCIB5 68 VCCDA 1 TRST 207 VCCIB6 45 VCCDA 1 TRST 207 VCCIB7 8 GND 9 VCCA 2 VCCIB7 8 GND 21 VCCA 14 VCCPLA 189 GND 32 VCCA 52 VCCPLC 178 GND 51 VCCA 181 VCCPLC 178 GND 69 VCCA 168 VCCPLF 83 GND 99 VCCA 168 VCOMPLA	IO163NB7F15	10	PRA	184	VCCIB3	112	
IO165PB7F15 7 PRC 80 IO166NB7F15 5 PRD 79 IO166PB7F15 6 TCK 205 IO167PB7F15 3 TDI 204 IO167PB7F15 4 TDO 203 IO167PB7F15 4 TDO 203 IO167PB7F15 4 TDO 203 VCCDA 1 TRST 207 GND 9 VCCA 2 GND 15 VCCA 14 GND 21 VCCA 38 GND 32 VCCA 52 GND 39 VCCA 64 VCCPLD 176 GND 59 VCCA 188 GND 65 VCCA 188 GND 69 VCCA 188 GND 90 VCCA 168 GND 90 VCCA 168 GND 99 VCCDA 26	IO163PB7F15	11	PRB	183	VCCIB3	124	
IO166NB7F15 5 PRD 79 IO166PB7F15 6 TCK 205 IO167NB7F15 3 TDI 204 IO167PB7F15 4 TDO 203 Dedicated I/O TMS 206 VCCDA 1 TRST 207 GND 9 VCCA 2 GND 15 VCCA 2 GND 21 VCCA 38 GND 32 VCCA 52 GND 32 VCCA 64 VCCPLB 188 GND 51 VCCA 142 GND 51 VCCA 142 GND 59 VCCA 142 GND 59 VCCA 142 GND 64 VCCPLE 85 GND 99 VCCA 182 GND 90 VCCA 184 GND 99 VCCDA 63	IO165PB7F15	7	PRC	80	VCCIB4	89	
IO166PB7F15 6 TCK 205 IO167NB7F15 3 TDI 204 IO167NB7F15 4 TDO 203 Dedicated I/O TMS 206 VCCDA 1 TRST 207 GND 9 VCCA 2 GND 15 VCCA 2 GND 21 VCCA 38 GND 32 VCCA 38 GND 32 VCCA 52 GND 39 VCCA 64 GND 59 VCCA 142 GND 59 VCCA 142 GND 59 VCCA 142 GND 59 VCCA 142 GND 90 VCCA 168 GND 99 VCCA 168 GND 94 VCCDA 168 GND 113 VCCDA 78 GND 113 VCCDA	IO166NB7F15	5	PRD	79	VCCIB4	98	
IO167NB7F15 3 TDI 204 IO167PB7F15 4 TDO 203 Dedicated I/O TMS 206 VCCDA 1 TRST 207 GND 9 VCCA 2 GND 15 VCCA 2 GND 21 VCCA 38 GND 32 VCCA 52 GND 39 VCCA 64 VCCPLD 176 GND 51 VCCA 93 VCCPLE 85 GND 59 VCCA 142 GND 59 VCCA 142 VCCPLE 85 VCCPLF 83 GND 65 VCCA 168 VCCDA 142 VCCPLF 83 GND 69 VCCA 168 VCOMPL 179 VCOMPLB 188 GND 90 VCCDA 63 VCOMPLE 86	IO166PB7F15	6	ТСК	205	VCCIB5	58	
IO167PB7F15 4 TDO 203 VCCIB6 31 Dedicated I/O TMS 206 VCCIB6 45 VCCDA 1 TRST 207 VCCIB6 45 GND 9 VCCA 2 VCCIB7 8 GND 21 VCCA 38 VCCPLA 189 GND 32 VCCA 52 VCCPLD 176 GND 39 VCCA 64 VCCPLD 176 GND 51 VCCA 142 VCCPLE 85 GND 59 VCCA 142 VCCPLE 83 GND 65 VCCA 142 VCCPLF 83 GND 69 VCCA 168 VCCPLF 83 GND 90 VCCA 168 VCCPLF 83 GND 90 VCCA 195 VCOMPLA 190 GND 90 VCCDA 26 VCOMPLB 88	IO167NB7F15	3	TDI	204	VCCIB5	68	
Dedicated I/O TMS 206 VCCIB6 45 VCCDA 1 TRST 207 VCCIB7 8 GND 9 VCCA 2 VCCIB7 8 GND 15 VCCA 14 VCCIB7 20 GND 21 VCCA 38 VCCPLA 189 GND 32 VCCA 52 VCCPLE 178 GND 39 VCCA 64 VCCPLE 176 GND 51 VCCA 18 VCCPLE 85 GND 59 VCCA 142 VCCPLF 83 GND 65 VCCA 168 VCCPLF 83 GND 69 VCCA 168 VCCPLF 190 GND 90 VCCA 168 VCOMPLA 190 GND 94 VCCDA 26 VCOMPLB 188 GND 104 VCCDA 75 VCOMPLE 86 </td <td>IO167PB7F15</td> <td>4</td> <td>TDO</td> <td>203</td> <td>VCCIB6</td> <td>31</td>	IO167PB7F15	4	TDO	203	VCCIB6	31	
VCCDA 1 TRST 207 VCCIB7 8 GND 9 VCCA 2 VCCIB7 20 GND 15 VCCA 2 VCCIB7 20 GND 15 VCCA 14 VCCIB7 20 GND 21 VCCA 38 VCCPLA 189 GND 32 VCCA 52 VCCPLB 187 GND 39 VCCA 64 VCCPLD 176 GND 51 VCCA 118 VCCPLE 85 GND 59 VCCA 142 VCCPLF 83 GND 65 VCCA 168 VCCPLF 83 GND 69 VCCA 168 VCCPLF 190 GND 90 VCCA 195 VCOMPLA 190 GND 94 VCCDA 26 VCOMPLB 188 GND 104 VCCDA 75 VCOMPLE 86<	Dedicated I/C)	TMS	206	VCCIB6	45	
GND 9 VCCA 2 GND 15 VCCA 14 GND 21 VCCA 38 GND 32 VCCA 52 GND 39 VCCA 64 GND 39 VCCA 64 GND 46 VCCA 93 GND 51 VCCA 118 GND 59 VCCA 142 GND 65 VCCA 142 VCCPLE 85 GND 69 VCCA 142 VCCPLF 83 GND 90 VCCA 168 VCOPL 176 QND 90 VCCA 168 GND 90 VCCA 195 VCOPLE 183 VCOMPLA 190 VCOPLE 177 VCOMPLB 188 GND 104 VCCDA 75 VCOMPLE 105 VCOMPLE 86 <td>VCCDA</td> <td>1</td> <td>TRST</td> <td>207</td> <td>VCCIB7</td> <td>8</td>	VCCDA	1	TRST	207	VCCIB7	8	
GND 15 VCCA 14 VCCPLA 189 GND 21 VCCA 38 VCCPLB 187 GND 32 VCCA 52 VCCPLB 187 GND 39 VCCA 64 VCCPLE 178 GND 46 VCCA 93 VCCPLE 85 GND 51 VCCA 118 VCCPLE 85 GND 59 VCCA 142 VCCPLF 83 GND 65 VCCA 168 VCCPLF 83 GND 69 VCCA 168 VCCPLF 190 GND 90 VCCA 168 VCOMPLA 190 GND 90 VCCA 168 VCOMPLA 190 GND 94 VCCDA 26 VCOMPLB 188 GND 104 VCCDA 63 VCOMPLE 86 GND 113 VCCDA 105 VCOMPLE	GND	9	VCCA	2	VCCIB7	20	
GND 21 VCCA 38 VCCPLB 187 GND 32 VCCA 52 VCCPLC 178 GND 39 VCCA 64 VCCPLD 176 GND 46 VCCA 93 VCCPLC 178 GND 51 VCCA 93 VCCPLE 85 GND 59 VCCA 118 VCCPLE 83 GND 65 VCCA 142 VCCPLF 83 GND 69 VCCA 168 VCCPLH 72 GND 69 VCCA 168 VCCPLH 72 GND 90 VCCA 168 VCOMPLA 190 GND 94 VCCDA 26 VCOMPLB 188 GND 104 VCCDA 53 VCOMPLB 177 GND 113 VCCDA 75 VCOMPLF 84 GND 125 VCCDA 105 VCOMPLH	GND	15	VCCA	14	VCCPLA	189	
GND 32 VCCA 52 GND 39 VCCA 64 GND 46 VCCA 93 GND 51 VCCA 118 GND 51 VCCA 118 GND 59 VCCA 142 GND 65 VCCA 168 GND 69 VCCA 168 GND 90 VCCA 195 GND 90 VCCA 195 GND 90 VCCA 168 GND 90 VCCA 168 GND 90 VCCA 168 GND 94 VCCDA 26 VCOMPLB 188 GND 104 VCCDA 53 VCOMPLE 86 GND 113 VCCDA 75 GND 125 VCCDA 105 VCOMPL 177 158 GND 150 VCCDA	GND	21	VCCA	38	VCCPLB	187	
GND 39 VCCA 64 VCCPLD 176 GND 46 VCCA 93 VCCPLE 85 GND 51 VCCA 118 VCCPLE 85 GND 59 VCCA 142 VCCPLF 83 GND 65 VCCA 142 VCCPLG 74 GND 65 VCCA 156 VCCPLF 83 GND 69 VCCA 168 VCCPLH 72 GND 90 VCCA 195 VCOMPLA 190 GND 94 VCCDA 26 VCOMPLB 188 GND 104 VCCDA 53 VCOMPLC 179 GND 104 VCCDA 63 VCOMPLE 86 GND 113 VCCDA 95 VCOMPLF 84 GND 125 VCCDA 105 VCOMPLH 73 GND 136 VCCDA 167 VPUMP	GND	32	VCCA	52	VCCPLC	178	
GND 46 VCCA 93 VCCPLE 85 GND 51 VCCA 118 VCCPLE 83 GND 59 VCCA 142 VCCPLE 83 GND 65 VCCA 142 VCCPLG 74 GND 65 VCCA 156 VCCPLH 72 GND 69 VCCA 168 VCOMPLA 190 GND 90 VCCA 195 VCOMPLA 190 GND 94 VCCDA 26 VCOMPLB 188 GND 99 VCCDA 53 VCOMPLD 177 GND 104 VCCDA 63 VCOMPLE 86 GND 113 VCCDA 95 VCOMPLE 84 GND 125 VCCDA 105 VCOMPLH 73 GND 136 VCCDA 157 VPUMP 158 GND 150 VCCDA 167 167	GND	39	VCCA	64	VCCPLD	176	
GND 51 VCCA 118 VCCPLF 83 GND 59 VCCA 142 VCCPLG 74 GND 65 VCCA 156 VCCPLH 72 GND 69 VCCA 168 VCCPLH 72 GND 90 VCCA 195 VCOMPLA 190 GND 90 VCCA 195 VCOMPLA 190 GND 94 VCCDA 26 VCOMPLC 179 GND 99 VCCDA 53 VCOMPLD 177 GND 104 VCCDA 63 VCOMPLE 86 GND 113 VCCDA 78 VCOMPLE 84 GND 125 VCCDA 105 VCOMPLH 73 GND 136 VCCDA 167 VPUMP 158 GND 150 VCCDA 182 VPUMP 158 GND 164 VCCDA 202 VPUMP </td <td>GND</td> <td>46</td> <td>VCCA</td> <td>93</td> <td>VCCPLE</td> <td>85</td>	GND	46	VCCA	93	VCCPLE	85	
GND 59 VCCA 142 VCCPLG 74 GND 65 VCCA 156 VCCPLH 72 GND 69 VCCA 168 VCCPLH 72 GND 90 VCCA 168 VCOMPLA 190 GND 90 VCCA 195 VCOMPLB 188 GND 94 VCCDA 26 VCOMPLD 177 GND 104 VCCDA 63 VCOMPLD 177 GND 104 VCCDA 78 VCOMPLE 86 GND 113 VCCDA 95 VCOMPLF 84 GND 125 VCCDA 105 VCOMPLF 75 GND 136 VCCDA 130 VPUMP 158 GND 143 VCCDA 167 VPUMP 158 GND 155 VCCDA 182 VPUMP 158 GND 164 VCCDA 202 VPUM	GND	51	VCCA	118	VCCPLF	83	
GND 65 VCCA 156 VCCPLH 72 GND 69 VCCA 168 VCOMPLA 190 GND 90 VCCA 195 VCOMPLB 188 GND 94 VCCDA 26 VCOMPLB 177 GND 99 VCCDA 53 VCOMPLC 179 GND 104 VCCDA 63 VCOMPLE 86 GND 113 VCCDA 78 VCOMPLF 84 GND 119 VCCDA 95 VCOMPLG 75 GND 125 VCCDA 130 VPUMP 158 GND 143 VCCDA 167 VPUMP 158 GND 150 VCCDA 182 VPUMP 158 GND 164 VCCDA 202 VPUMP 158	GND	59	VCCA	142	VCCPLG	74	
GND 69 VCCA 168 VCOMPLA 190 GND 90 VCCA 195 VCOMPLB 188 GND 94 VCCDA 26 VCOMPLC 179 GND 99 VCCDA 53 VCOMPLD 177 GND 104 VCCDA 63 VCOMPLE 86 GND 113 VCCDA 95 VCOMPLG 75 GND 125 VCCDA 105 VCOMPLH 73 GND 136 VCCDA 157 VCOMPLH 73 GND 150 VCCDA 167 VPUMP 158 GND 155 VCCDA 182 VPUMP 158	GND	65	VCCA	156	VCCPLH	72	
GND 90 VCCA 195 VCOMPLB 188 GND 94 VCCDA 26 VCOMPLC 179 GND 99 VCCDA 53 VCOMPLD 177 GND 104 VCCDA 63 VCOMPLE 86 GND 113 VCCDA 78 VCOMPLE 86 GND 119 VCCDA 95 VCOMPLG 75 GND 125 VCCDA 105 VCOMPLH 73 GND 136 VCCDA 157 VCOMPLH 73 GND 150 VCCDA 167 VPUMP 158 GND 155 VCCDA 182 VPUMP 158	GND	69	VCCA	168	VCOMPLA	190	
GND 94 VCCDA 26 VCOMPLC 179 GND 99 VCCDA 53 VCOMPLD 177 GND 104 VCCDA 63 VCOMPLD 177 GND 104 VCCDA 63 VCOMPLD 177 GND 113 VCCDA 63 VCOMPLE 86 GND 119 VCCDA 78 VCOMPLF 84 GND 125 VCCDA 95 VCOMPLG 75 GND 136 VCCDA 130 VPUMP 158 GND 143 VCCDA 167 VPUMP 158 GND 150 VCCDA 182 VPUMP 158 GND 164 VCCDA 202 VPUMP 150	GND	90	VCCA	195	VCOMPLB	188	
GND 99 VCCDA 53 VCOMPLD 177 GND 104 VCCDA 63 VCOMPLE 86 GND 113 VCCDA 78 VCOMPLE 84 GND 119 VCCDA 95 VCOMPLG 75 GND 125 VCCDA 105 VCOMPLH 73 GND 136 VCCDA 130 VPUMP 158 GND 143 VCCDA 167 VPUMP 158 GND 155 VCCDA 182 02 164 167	GND	94	VCCDA	26	VCOMPLC	179	
GND 104 VCCDA 63 VCOMPLE 86 GND 113 VCCDA 78 VCOMPLE 84 GND 119 VCCDA 95 VCOMPLG 75 GND 125 VCCDA 105 VCOMPLH 73 GND 136 VCCDA 130 VPUMP 158 GND 143 VCCDA 167 VPUMP 158 GND 155 VCCDA 182 VCOM 202	GND	99	VCCDA	53	VCOMPLD	177	
GND 113 VCCDA 78 VCOMPLF 84 GND 119 VCCDA 95 VCOMPLG 75 GND 125 VCCDA 105 VCOMPLH 73 GND 136 VCCDA 130 VPUMP 158 GND 143 VCCDA 167 VPUMP 158 GND 155 VCCDA 182 VCCDA 202	GND	104	VCCDA	63	VCOMPLE	86	
GND 119 VCCDA 95 VCOMPLG 75 GND 125 VCCDA 105 VCOMPLH 73 GND 136 VCCDA 130 VPUMP 158 GND 143 VCCDA 167 VPUMP 158 GND 155 VCCDA 182 VCCDA 202	GND	113	VCCDA	78	VCOMPLF	84	
GND 125 VCCDA 105 VCOMPLH 73 GND 136 VCCDA 130 VPUMP 158 GND 143 VCCDA 157 VPUMP 158 GND 150 VCCDA 167 VPUMP 158 GND 155 VCCDA 182 VCCDA 202	GND	119	VCCDA	95	VCOMPLG	75	
GND 136 VCCDA 130 VPUMP 158 GND 143 VCCDA 157 GND 150 VCCDA 167 GND 155 VCCDA 182 GND 164 VCCDA 202	GND	125	VCCDA	105	VCOMPLH	73	
GND 143 VCCDA 157 GND 150 VCCDA 167 GND 155 VCCDA 182 GND 164 VCCDA 202	GND	136	VCCDA	130	VPUMP	158	
GND 150 VCCDA 167 GND 155 VCCDA 182 GND 164 VCCDA 202	GND	143	VCCDA	157			
GND 155 VCCDA 182 GND 164 VCCDA 202	GND	150	VCCDA	167			
GND 164 VCCDA 202	GND	155	VCCDA	182			
	GND	164	VCCDA	202			
GND 169 VCCIB0 193	GND	169	VCCIB0	193			

Datasheet Information

Revision	Changes	Page
Revision 17 (continued)	The C180 package was removed from product tables and the "Package Pin Assignments" section (PDN 0909).	3-1
	Package names used in the "Axcelerator Family Product Profile" and "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	i, 3-1
	The "Introduction" section for "User I/Os" was updated as follows:	2-11
	"The user does not need to assign VREF pins for OUTBUF and TRIBUF. VREF pins are needed only for input and bidirectional I/Os" (SARs 24181, 24309).	
	Power values in Table 2-4 • Default CLOAD/VCCI were updated to reflect those of SmartPower (SAR 33945).	2-3
	Two parameter names were corrected in Figure 2-10 • Output Buffer Delays. One occurrence of t_{ENLZ} was changed to t_{ENZL} and one occurrence of t_{ENHZ} was changed to t_{ENZH} (SAR 33890).	2-22
	The "Timing Model" section was updated with new timing values. Timing tables in the "I/O Specifications" section were updated to include enable paths. Values in the timing tables in the "Voltage-Referenced I/O Standards" section and "Differential Standards" section were updated. Table 2-63 • R-Cell was updated (SAR 33945).	2-8, 2-26 to 2-53
	Figure 2-11 • Timing Model was replaced (SAR 33043).	2-23
	The timing tables for "RAM" and "FIFO" were updated (SAR 33945).	2-90 to 2-106
	"Data Registers (DRs)" values were modified for IDCODE and USERCODE (SARs 18257, 26406).	2-108
	The package diagram for the "CQ208" package was incorrect and has been replaced with the correct diagram (SARs 23865, 26345).	3-89
Revision 16 (v2.8, Oct. 2009)	The datasheet was updated to include AX2000-CQ2526 information.	N/A
	MIL-STD-883 Class B is no longer supported by Axcelerator FPGAs and as a result was removed.	N/A
	A footnote was added to the "Introduction" in the "Axcelerator Clock Management System" section.	2-75
Revision 15	RoHS-compliant information was added to the "Ordering Information".	ii
(v2.7, Nov. 2008)	ACTgen was changed to SmartGen because ACTgen is obsolete.	N/A
Revision 14 (v2.6)	In Table 2-4, the units for the $P_{\text{LOAD}},P_{10},\text{and}P_{\text{I/O}}$ were updated from mW/MHz to mW/MHz.	2-3
	In the "Pin Descriptions"section, the HCLK and CLK descriptions were updated to include tie-off information.	2-9
	The "Global Resource Distribution" section was updated.	2-70
	The " CG624" table was updated.	3-116
Revision 13 (v2.5)	A note was added to Table 2-2.	2-1
	In the "Package Thermal Characteristics", the temperature was changed from 150°C to 125°C.	2-6

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "Axcelerator Family Device Status" table on page iii, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.