
E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	2016
Number of Logic Elements/Cells	-
Total RAM Bits	18432
Number of I/O	168
Number of Gates	125000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	324-BGA
Supplier Device Package	324-FBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/ax125-2fg324

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The maximum power dissipation allowed for Military temperature and Mil-Std 883B devices is specified as a function of θ_{ic} .

Package Type	Pin Count	θ_{jc}	$\theta_{\textbf{ja}} \textbf{Still} \textbf{Air}$	θ_{ja} 1.0m/s	θ_{ja} 2.5m/s	Units
Chip Scale Package (CSP)	180	N/A	57.8	51.0	50	°C/W
Plastic Quad Flat Pack (PQFP)	208	8.0	26	23.5	20.9	°C/W
Plastic Ball Grid Array (PBGA)	729	2.2	13.7	10.6	9.6	°C/W
Fine Pitch Ball Grid Array (FBGA)	256	3.0	26.6	22.8	21.5	°C/W
Fine Pitch Ball Grid Array (FBGA)	324	3.0	25.8	22.1	20.9	°C/W
Fine Pitch Ball Grid Array (FBGA)	484	3.2	20.5	17.0	15.9	°C/W
Fine Pitch Ball Grid Array (FBGA)	676	3.2	16.4	13.0	12.0	°C/W
Fine Pitch Ball Grid Array (FBGA)	896	2.4	13.6	10.4	9.4	°C/W
Fine Pitch Ball Grid Array (FBGA)	1152	1.8	12.0	8.9	7.9	°C/W
Ceramic Quad Flat Pack (CQFP) ¹	208	2.0	22	19.8	18.0	°C/W
Ceramic Quad Flat Pack (CQFP) ¹	352	2.0	17.9	16.1	14.7	°C/W
Ceramic Column Grid Array (CCGA) ²	624	6.5	8.9	8.5	8	°C/W

 Table 2-6 • Package Thermal Characteristics

Notes:

1. θ_{jc} for the 208-pin and 352-pin CQFP refers to the thermal resistance between the junction and the bottom of the package.

2. θ_{jc} for the 624-pin CCGA refers to the thermal resistance between the junction and the top surface of the package. Thermal resistance from junction to board (θ_{ib}) for CCGA 624 package is 3.4°C/W.

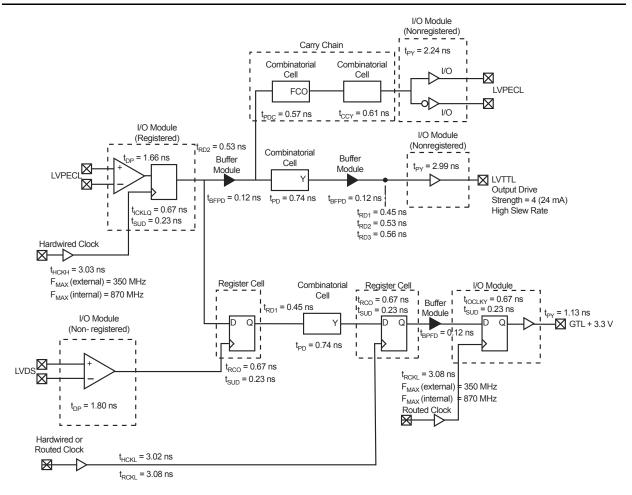
Timing Characteristics

Axcelerator devices are manufactured in a CMOS process, therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing. The derating factors shown in Table 2-7 should be applied to all timing data contained within this datasheet.

	Junction Temperature									
VCCA	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C			
1.4 V	0.83	0.86	0.91	0.96	1.02	1.05	1.15			
1.425 V	0.82	0.84	0.90	0.94	1.00	1.04	1.13			
1.5 V	0.78	0.80	0.85	0.89	0.95	0.98	1.07			
1.575 V	0.74	0.76	0.81	0.85	0.90	0.94	1.02			
1.6 V	0.73	0.75	0.80	0.84	0.89	0.92	1.01			

Table 2-7 • Temperature and Voltage Timing Derating Factors(Normalized to Worst-Case Commercial, T_J = 70°C, VCCA = 1.425V)

Notes:


1. The user can set the junction temperature in Designer software to be any integer value in the range of – 55°C to 175°C.

2. The user can set the core voltage in Designer software to be any value between 1.4V and 1.6V.

All timing numbers listed in this datasheet represent sample timing characteristics of Axcelerator devices. Actual timing delay values are design-specific and can be derived from the Timer tool in Microsemi's Designer software after place-and-route.

Timing Model

Note: Worst case timing data for the AX1000, -2 speed grade

Figure 2-1 • Worst Case Timing Data

Hardwired Clock – Using LVTTL 24 mA High Slew Clock I/O

External Setup

= $(t_{DP} + t_{RD2} + t_{SUD}) - t_{HCKL}$ = (1.72 + 0.53 + 0.23) - 3.02 = -0.54 ns Clock-to-Out (Pad-to-Pad)

= $t_{HCKL} + t_{RCO} + t_{RD1} + t_{PY}$ = 3.02 + 0.67 + 0.45 + 2.99 = 7.13 ns

Routed Clock – Using LVTTL 24 mA High Slew Clock I/O

External Setup

 $= (t_{DP} + t_{RD2} + t_{SUD}) - t_{RCKH}$ = (1.72 + 0.53 + 0.23) - 3.13 = -0.65 ns Clock-to-Out (Pad-to-Pad) = t_{RCKH} + t_{RCO} + t_{RD1} + t_{PY} = 3.13 + 0.67 + 0.45 + 3.03 = 7.24 ns

Table 2-8 • I/O Standards Supported by the Axcelerator Family

I/O Standard	Input/Output Supply Voltage (VCCI)	Input Reference Voltage (VREF)	Board Termination Voltage (VTT)
LVTTL	3.3	N/A	N/A
LVCMOS 2.5 V	2.5	N/A	N/A
LVCMOS 1.8 V	1.8	N/A	N/A
LVCMOS 1.5 V (JDEC8-11)	1.5	N/A	N/A
3.3V PCI/PCI-X	3.3	N/A	N/A
GTL+ 3.3 V	3.3	1.0	1.2
GTL+ 2.5 V [*]	2.5	1.0	1.2
HSTL Class 1	1.5	0.75	0.75
SSTL3 Class 1 and II	3.3	1.5	1.5
SSTL2 Class1 and II	2.5	1.25	1.25
LVDS	2.5	N/A	N/A
LVPECL	3.3	N/A	N/A

Note: *2.5 V GTL+ is not supported across the full military temperature range.

Table 2-9 • Supply Voltages

VCCA	VCCI	Input Tolerance	Output Drive Level
1.5 V	1.5 V	3.3 V	1.5 V
1.5 V	1.8 V	3.3 V	1.8 V
1.5 V	2.5 V	3.3 V	2.5 V
1.5 V	3.3 V	3.3 V	3.3 V

Table 2-10 • I/O Features Comparison

I/O Assignment	Clamp Diode	Hot Insertion	5 V Tolerance	Input Buffer	Output Buffer	
LVTTL	No	Yes	Yes ¹	Enabled/	Disabled	
3.3 V PCI, 3.3 V PCI-X	Yes	No	Yes ^{1, 2}	Enabled/	Disabled	
LVCMOS 2.5 V	No	Yes	No	Enabled/Disabled		
LVCMOS 1.8 V	No	Yes	No	Enabled/	Disabled	
LVCMOS 1.5 V (JESD8-11)	No	Yes	No	Enabled/	Disabled	
Voltage-Referenced Input Buffer	No	Yes	No	Enabled/	Disabled	
Differential, LVDS/LVPECL, Input	No	Yes	No	Enabled	Disabled ³	
Differential, LVDS/LVPECL, Output	No	Yes	No	Disabled	Enabled ⁴	

Notes:

1. Can be implemented with an IDT bus switch.

2. Can be implemented with an external resistor.

3. The OE input of the output buffer must be deasserted permanently (handled by software).

4. The OE input of the output buffer must be asserted permanently (handled by software).

Using the Weak Pull-Up and Pull-Down Circuits

Each Axcelerator I/O comes with a weak pull-up/down circuit (on the order of 10 k Ω). These are weak transistors with the gates tied on, so the on resistance of the transistor emulates a resistor. The weak pull-up and pull-down is active only when the device is powered up, and they must be biased to be on. When the rails are coming up, they are not biased fully, so they do not behave as resistors until the voltage is at sufficient levels to bias the transistors. The key is they really are transistors; they are not traces of poly silicon, which is another way to do an on-chip resistor (those take much more room). I/O macros are provided for combinations of pull up/down for LVTTL, LVCMOS (2.5 V, 1.8 V, and 1.5 V) standards. These macros can be instantiated if a keeper circuit for any input buffer is required.

Customizing the I/O

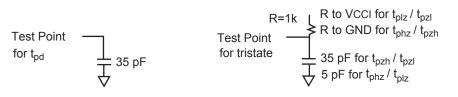
- A five-bit programmable input delay element is associated with each I/O. The value of this delay is
 set on a bank-wide basis (Table 2-14). It is optional for each input buffer within the bank (i.e. the
 user can enable or disable the delay element for the I/O). When the input buffer drives a register
 within the I/O, the delay element is activated by default to ensure a zero hold-time. The default
 setting for this property can be set in Designer. When the input buffer does not drive a register, the
 delay element is deactivated to provide higher performance. Again, this can be overridden by
 changing the default setting for this property in Designer.
- The slew-rate value for the LVTTL output buffer can be programmed and can be set to either slow or fast.
- The drive strength value for LVTTL output buffers can be programmed as well. There are four different drive strength values – 8 mA, 12 mA, 16 mA, or 24 mA – that can be specified in Designer.⁵

Bits Setting	Delay (ns)	Bits Setting	Delay (ns)
0	0.54	16	2.01
1	0.65	17	2.13
2	0.71	18	2.19
3	0.83	19	2.3
4	0.9	20	2.38
5	1.01	21	2.49
6	1.08	22	2.55
7	1.19	23	2.67
8	1.27	24	2.75
9	1.39	25	2.87
10	1.45	26	2.93
11	1.56	27	3.04
12	1.64	28	3.12
13	1.75	29	3.23
14	1.81	30	3.29
15	1.93	31	3.41

Table 2-14 • Bank-Wide Delay Values

Note: Delay values are approximate and will vary with process, temperature, and voltage.

^{5.} These values are minimum drive strengths.


1.8 V LVCMOS

Low-Voltage Complementary Metal-Oxide Semiconductor for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V applications. It uses a 3.3 V tolerant CMOS input buffer and a push-pull output buffer.

Table 2-26 • DC Input and Output Levels

	VIL	VIH		VIH VOL		IOL	IOH
Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA
-0.3	0.2 VCCI	0.7 VCCI	3.6	0.2	VCCI – 0.2	8 mA	–8 mA

AC Loadings

Figure 2-17 • AC Test Loads

Table 2-27 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ) (V)	C _{load} (pF)
0	1.8	0.5 VCCI	N/A	35

Note: * *Measuring Point* = *VTRIP*

Timing Characteristics

Table 2-28 • 1.8V LVCMOS I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 1.7 V, TJ = 70°C

		-2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVCMOS18	Output Module Timing							
t _{DP}	Input Buffer		3.26		3.71		4.37	ns
t _{PY}	Output Buffer		4.55		5.18		6.09	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		2.82		2.83		2.84	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		3.43		3.45		3.46	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		6.01		6.85		8.05	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		6.73		7.67		9.01	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

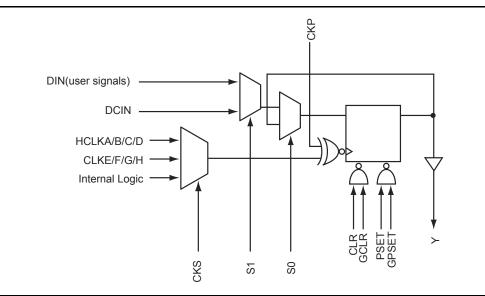
Timing Characteristics

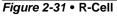
Table 2-32 • 1.5V LVCMOS I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 1.4 V, TJ = 70°C

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVCMOS15	(JESD8-11) I/O Module Timing							
t _{DP}	Input Buffer		3.59		4.09		4.81	ns
t _{PY}	Output Buffer		6.05		6.89		8.10	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		3.31		3.34		3.34	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		4.56		4.58		4.59	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		6.37		7.25		8.52	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		6.94		7.90		9.29	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

R-Cell


Introduction


The R-cell, the sequential logic resource of the Axcelerator devices, is the second logic module type in the AX family architecture. It includes clock inputs for all eight global resources of the Axcelerator architecture as well as global presets and clears (Figure 2-31).

The main features of the R-cell include the following:

- Direct connection to the adjacent logic module through the hardwired connection DCIN. DCIN is driven by the DCOUT of an adjacent C-cell via the Direct-Connect routing resource, providing a connection with less than 0.1 ns of routing delay.
- The R-cell can be used as a standalone flip-flop. It can be driven by any C-cell or I/O modules through the regular routing structure (using DIN as a routable data input). This gives the option of using the R-Cell as a 2:1 MUXed flip-flop as well.
- Provision of data enable-input (S0).
- Independent active-low asynchronous clear (CLR).
- Independent active-low asynchronous preset (PSET). If both CLR and PSET are low, CLR has higher priority.
- · Clock can be driven by any of the following (CKP selects clock polarity):
 - One of the four high performance hardwired fast clocks (HCLKs)
 - One of the four routed clocks (CLKs)
 - User signals
- Global power-on clear (GCLR) and preset (GPSET), which drive each flip-flop on a chip-wide basis.
 - When the Global Set Fuse option in the Designer software is unchecked (by default), GCLR = 0 and GPSET = 1 at device power-up. When the option is checked, GCLR = 1 and GPSET = 0. Both pins are pulled High when the device is in user mode. Refer to the "Simulation Support for GCLR/GPSET in Axcelerator" section of the *Antifuse Macro Library Guide* for information on simulation support for GCLR and GPSET.
- S0, S1, PSET, and CLR can be driven by routed clocks CLKE/F/G/H or user signals.
- DIN and S1 can be driven by user signals.

As with the C-cell, the configuration of the R-cell to perform various functions is handled automatically for the user through Microsemi's extensive macro library (see the *Antifuse Macro Library Guide* for a complete listing of available AX macros).

The HM and CM modules can select between:

- The HCLK or CLK source respectively
- · A local signal routed on generic routing resources

This allows each core tile to have eight clocks independent of the other core tiles in the device.

Both HCLK and CLK are segmentable, meaning that individual branches of the global resource can be used independently.

Like the HM and CM modules, the HD and RD modules can select between:

- The HCLK or CLK source from the HM or CM module respectively
- A local signal routed on generic routing resources

The AX architecture is capable of supporting a large number of local clocks—24 segments per HCLK driving north-south and 28 segments per CLK driving east-west per core tile.

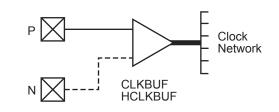
Microsemi's Designer software's place-and-route takes advantage of the segmented clock structure found in Axcelerator devices by turning off any unused clock segments. This results in not only better performance but also lower power consumption.

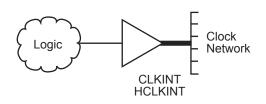
Global Resource Access Macros

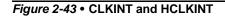
Global resources can be driven by one of three sources: external pad(s), an internal net, or the output of a PLL. These connections can be made by using one of three types of macros: CLKBUF, CLKINT, and PLLCLK.

CLKBUF and HCLKBUF

CLKBUF (HCLKBUF) is used to drive a CLK (HCLK) from external pads. These macros can be used either generically or with the specific I/O standard desired (e.g. CLKBUF_LVCMOS25, HCLKBUF_LVDS, etc.) (Figure 2-42).




Figure 2-42 • CLKBUF and HCLKBUF


Package pins CLKEP and CLKEN are associated with CLKE; package pins HCLKAP and HCLKAN are associated with HCLKA, etc.

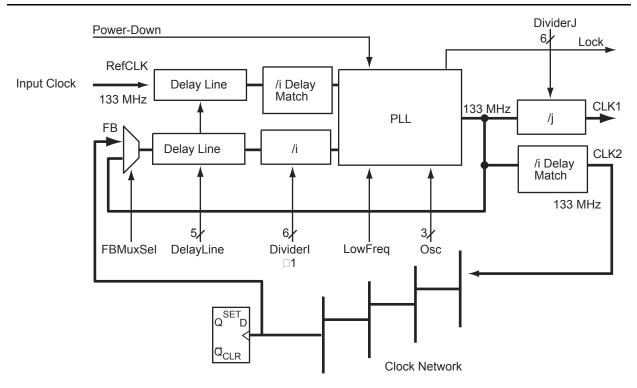
Note that when CLKBUF (HCLKBUF) is used with a single-ended I/O standard, it must be tied to the P-pad of the CLK (HCLK) package pin. In this case, the CLK (HCLK) N-pad can be used for user signals.

CLKINT and HCLKINT

CLKINT (HCLKINT) is used to access the CLK (HCLK) resource internally from the user signals (Figure 2-43).

Clock Skew Minimization

Figure 2-56 indicates how feedback from the clock network can be used to create minimal skew between the distributed clock network and the input clock. The input clock is fed to the reference clock input of the PLL. The output clock (CLK2) feeds a routed clock network. The feedback input to the PLL uses a clock input delayed by a routing network. The PLL then adjusts the phase of the input clock to match the delayed clock, thus providing nearly zero effective skew between the two clocks. Refer to the *Axcelerator Family PLL and Clock Management* application note for more information.



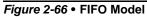
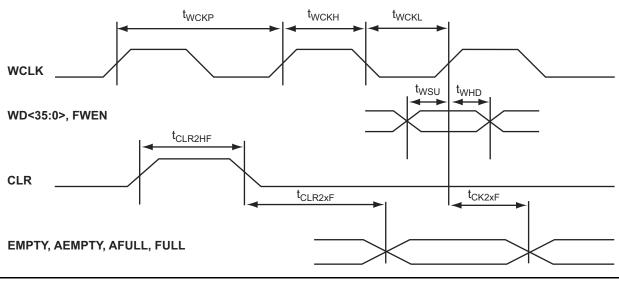



Figure 2-56 • Using the PLL for Clock Deskewing


```
Figure 2-67 • FIFO Write Timing
```

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
FIFO Module	e Timing							
t _{WSU}	Write Setup		13.75		15.66		18.41	ns
t _{WHD}	Write Hold		0.00		0.00		0.00	ns
t _{wcкн}	WCLK High		0.75		0.75		0.75	ns
t _{WCKL}	WCLK Low		1.76		1.76		1.76	ns
t _{WCKP}	Minimum WCLK Period	2.51		2.51		2.51		ns
t _{RSU}	Read Setup		14.33		16.32		19.19	ns
t _{RHD}	Read Hold		0.00		0.00		0.00	ns
t _{RCKH}	RCLK High		0.73		0.73		0.73	ns
t _{RCKL}	RCLK Low		1.89		1.89		1.89	ns
t _{RCKP}	Minimum RCLK period	2.62		2.62		2.62		ns
t _{CLRHF}	Clear High		0.00		0.00		0.00	ns
t _{CLR2FF}	Clear-to-flag (EMPTY/FULL)		1.92		2.18		2.57	ns
t _{CLR2AF}	Clear-to-flag (AEMPTY/AFULL)		4.39		5.00		5.88	ns
t _{CK2FF}	Clock-to-flag (EMPTY/FULL)		2.13		2.42		2.85	ns
t _{CK2AF}	Clock-to-flag (AEMPTY/AFULL)		5.04		5.75		6.75	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		1.43		1.63		1.92	ns
t _{RCK2RD2}	RCLK-To-OUT (Nonpipelined)		2.26		2.58		3.03	ns

Table 2-99 • Two FIFO Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

Note: Timing data for these two cascaded FIFO blocks uses a depth of 8,192. For all other combinations, use Microsemi's timing software.

Package Pin Assignments

FG324		
AX125 Function	Pin Number	
VCCIB5	N7	
VCCIB5	N8	
VCCIB5	N9	
VCCIB6	K6	
VCCIB6	L6	
VCCIB6	M6	
VCCIB7	G6	
VCCIB7	H6	
VCCIB7	J6	
VCOMPLA	B8	
VCOMPLB	E8	
VCOMPLC	C10	
VCOMPLD	E12	
VCOMPLE	U11	
VCOMPLF	P11	
VCOMPLG	Т9	
VCOMPLH	P7	
VPUMP	B15	

Axcelerator Family FPGAs

FG48	34	FG48	4	FG48	; 4
AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Number
NC	A19	NC	G22	PRA	G11
NC	A4	NC	G3	PRB	F11
NC	A5	NC	H3	PRC	T12
NC	AA11	NC	J3	PRD	U12
NC	AA12	NC	K21	ТСК	G8
NC	AA18	NC	K22	TDI	F9
NC	AA19	NC	N22	TDO	F7
NC	AA4	NC	P22	TMS	F6
NC	AB16	NC	R19	TRST	F8
NC	AB17	NC	R22	VCCA	G17
NC	AB4	NC	T1	VCCA	J10
NC	AB7	NC	T22	VCCA	J11
NC	AB8	NC	U1	VCCA	J12
NC	B11	NC	U2	VCCA	J13
NC	B12	NC	U21	VCCA	J7
NC	B17	NC	U22	VCCA	K14
NC	B18	NC	V1	VCCA	K9
NC	B19	NC	V2	VCCA	L14
NC	B4	NC	V21	VCCA	L9
NC	B5	NC	V22	VCCA	M14
NC	C10	NC	V3	VCCA	M9
NC	C11	NC	W1	VCCA	N14
NC	C14	NC	W2	VCCA	N9
NC	C15	NC	W21	VCCA	P10
NC	C18	NC	W22	VCCA	P11
NC	C19	NC	W3	VCCA	P12
NC	D1	NC	Y10	VCCA	P13
NC	D2	NC	Y11	VCCA	Т6
NC	D21	NC	Y12	VCCA	U17
NC	D3	NC	Y13	VCCPLA	F10
NC	E1	NC	Y15	VCCPLB	G9
NC	E2	NC	Y16	VCCPLC	D13
NC	E21	NC	Y17	VCCPLD	G13
NC	E3	NC	Y18	VCCPLE	U13
NC	F22	NC	Y8	VCCPLF	T14
NC	F3	NC	Y9	VCCPLG	W10

FG484		
AX1000 Function	Pin Number	A
IO87PB2F8	H20	
IO88NB2F8	L18	
IO88PB2F8	K18	
IO89NB2F8	K19	
IO89PB2F8	J19	
IO90NB2F8	J21	
IO90PB2F8	H21	
IO91NB2F8	J22	
IO91PB2F8	H22	
IO93NB2F8	K21	
IO93PB2F8	K22	
IO94NB2F8	L20	
IO94PB2F8	K20	
IO95NB2F8	M21	
IO95PB2F8	L21	
Bank 3		
IO96NB3F9	N16	
IO96PB3F9	M16	
IO97NB3F9	M19	
IO97PB3F9	L19	
IO98NB3F9	P22	
IO98PB3F9	N22	
IO99NB3F9	N20	
IO99PB3F9	M20	
IO100NB3F9	N17	
IO100PB3F9	M17	
IO101NB3F9	P21	
IO101PB3F9	N21	
IO103NB3F9	R20	
IO103PB3F9	P20	
IO104NB3F9	N18	
IO104PB3F9	N19	
IO105NB3F9	T22	
IO105PB3F9	R22	
IO106NB3F9	R17	

FG484	
AX1000 Function	Pin Number
IO106PB3F9	P17
IO107NB3F10	T21
IO107PB3F10	R21
IO110NB3F10	V22
IO110PB3F10	U22
IO113NB3F10	V21
IO113PB3F10	U21
IO114NB3F10	P18
IO114PB3F10	P19
IO116PB3F10	R19
IO117NB3F10	U20
IO117PB3F10	T20
IO118NB3F11	T18
IO118PB3F11	R18
IO121NB3F11	U19
IO121PB3F11	T19
IO124NB3F11	R16
IO124PB3F11	P16
IO127NB3F11	W21
IO127PB3F11	W22
Bank 4	
IO129PB4F12	AB17
IO132NB4F12	Y19
IO132PB4F12	W18
IO133NB4F12	W17
IO133PB4F12	V17
IO135NB4F12	T15
IO135PB4F12	T16
IO138NB4F12	Y17
IO138PB4F12	Y18
IO139NB4F13	V15
IO139PB4F13	V16
IO140NB4F13	U18
IO140PB4F13	V19
IO142NB4F13	W20

FG484				
AX1000 Function	Pin Number			
IO142PB4F13	V20			
IO143NB4F13	W15			
IO143PB4F13	W16			
IO144NB4F13	AA18			
IO144PB4F13	AA19			
IO145NB4F13	U14			
IO145PB4F13	U15			
IO146NB4F13	Y15			
IO146PB4F13	Y16			
IO147NB4F13	AB18			
IO147PB4F13	AB19			
IO149NB4F13	Y14			
IO149PB4F13	W14			
IO150NB4F13	AA16			
IO150PB4F13	AA17			
IO152NB4F14	AA14			
IO152PB4F14	AA15			
IO154NB4F14	AB14			
IO154PB4F14	AB15			
IO155NB4F14	AA13			
IO155PB4F14	AB13			
IO158NB4F14	Y12			
IO158PB4F14	Y13			
IO159NB4F14/CLKEN	V12			
IO159PB4F14/CLKEP	V13			
IO160NB4F14/CLKFN	W11			
IO160PB4F14/CLKFP	W12			
Bank 5				
IO161NB5F15/CLKGN	U10			
IO161PB5F15/CLKGP	U11			
IO162NB5F15/CLKHN	V9			
IO162PB5F15/CLKHP	V10			
IO163NB5F15	Y10			
IO163PB5F15	Y11			
IO167NB5F15	AA11			

Package Pin Assignments

FG676		FG676	
X500 Function	Pin Number	AX500 Function	Pin Number
VCCIB3	T19	VCCIB7	L8
VCCIB3	U19	VCCIB7	M8
VCCIB3	U20	VCCIB7	N8
VCCIB3	V19	VCCPLA	E12
VCCIB3	V20	VCCPLB	F13
VCCIB3	W20	VCCPLC	E15
VCCIB4	W14	VCCPLD	G14
VCCIB4	W15	VCCPLE	AF15
VCCIB4	W16	VCCPLF	AA14
VCCIB4	W17	VCCPLG	AF12
VCCIB4	W18	VCCPLH	AB13
VCCIB4	Y17	VCOMPLA	D12
VCCIB4	Y18	VCOMPLB	G13
VCCIB4	Y19	VCOMPLC	D15
VCCIB5	W10	VCOMPLD	F14
VCCIB5	W11	VCOMPLE	AD15
VCCIB5	W12	VCOMPLF	AB14
VCCIB5	W13	VCOMPLG	AD12
VCCIB5	W9	VCOMPLH	Y13
VCCIB5	Y10	VPUMP	E22
VCCIB5	Y8		
VCCIB5	Y9		
VCCIB6	P8		
VCCIB6	R8		
VCCIB6	Т8		
VCCIB6	U7		
VCCIB6	U8		
VCCIB6	V7		
VCCIB6	V8		
VCCIB6	W7		
VCCIB7	H7		
VCCIB7	J7		
VCCIB7	J8		
VCCIB7	K7		
VCCIB7	K8		

FG676		FG676		FG676	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
GND	A8	GND	L12	GND	R12
GND	AC23	GND	L13	GND	R13
GND	AC4	GND	L14	GND	R14
GND	AD24	GND	L15	GND	R15
GND	AD3	GND	L16	GND	R16
GND	AE2	GND	L17	GND	R17
GND	AE25	GND	M10	GND	T10
GND	AF1	GND	M11	GND	T11
GND	AF13	GND	M12	GND	T12
GND	AF14	GND	M13	GND	T13
GND	AF19	GND	M14	GND	T14
GND	AF26	GND	M15	GND	T15
GND	AF8	GND	M16	GND	T16
GND	B2	GND	M17	GND	T17
GND	B25	GND	N1	GND	U10
GND	B26	GND	N10	GND	U11
GND	C24	GND	N11	GND	U12
GND	C3	GND	N12	GND	U13
GND	G20	GND	N13	GND	U14
GND	G7	GND	N14	GND	U15
GND	H1	GND	N15	GND	U16
GND	H19	GND	N16	GND	U17
GND	H26	GND	N17	GND	V18
GND	H8	GND	N26	GND	V9
GND	J18	GND	P1	GND	W1
GND	J9	GND	P10	GND	W19
GND	K10	GND	P11	GND	W26
GND	K11	GND	P12	GND	W8
GND	K12	GND	P13	GND	Y20
GND	K13	GND	P14	GND	Y7
GND	K14	GND	P15	GND/LP	C2
GND	K15	GND	P16	NC	A25
GND	K16	GND	P17	NC	AC13
GND	K17	GND	P26	NC	AC14
GND	L10	GND	R10	NC	AF2
GND	L11	GND	R11	NC	AF25

Package Pin Assignments

FG896		FG896	
AX2000 Function	Pin Number	AX2000 Function	Pin Number
VCCIB3	AH30	VCCIB6	W9
VCCIB3	T21	VCCIB6	Y10
VCCIB3	U21	VCCIB6	Y9
VCCIB3	V21	VCCIB7	C1
VCCIB3	W21	VCCIB7	C2
VCCIB3	W22	VCCIB7	K9
VCCIB3	Y21	VCCIB7	L10
VCCIB3	Y22	VCCIB7	L9
VCCIB4	AA16	VCCIB7	M10
VCCIB4	AA17	VCCIB7	M9
VCCIB4	AA18	VCCIB7	N10
VCCIB4	AA19	VCCIB7	P10
VCCIB4	AA20	VCCIB7	R10
VCCIB4	AB19	VCCPLA	G14
VCCIB4	AB20	VCCPLB	H15
VCCIB4	AB21	VCCPLC	G17
VCCIB4	AJ28	VCCPLD	J16
VCCIB4	AK28	VCCPLE	AH17
VCCIB5	AA11	VCCPLF	AC16
VCCIB5	AA12	VCCPLG	AH14
VCCIB5	AA13	VCCPLH	AD15
VCCIB5	AA14	VCOMPLA	F14
VCCIB5	AA15	VCOMPLB	J15
VCCIB5	AB10	VCOMPLC	F17
VCCIB5	AB11	VCOMPLD	H16
VCCIB5	AB12	VCOMPLE	AF17
VCCIB5	AJ3	VCOMPLF	AD16
VCCIB5	AK3	VCOMPLG	AF14
VCCIB6	AA9	VCOMPLH	AB15
VCCIB6	AH1	VPUMP	G24
VCCIB6	AH2		
VCCIB6	T10		
VCCIB6	U10		
VCCIB6	V10		
VCCIB6	W10		

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

Datasheet Information

Revision	Changes	Page
Revision 10 (continued)	The "TRST" section was updated.	2-107
	The "Global Set Fuse" section was added.	2-109
	A footnote was added to "FG896" for the AX2000 regarding pins AB1, AE2, G1, and K2.	3-52
	Pinouts for the AX250, AX500, and AX1000 were added for "CQ352".	3-98
	Pinout for the AX1000 was added for "CG624".	3-115
Revision 9	Table 2-79 was updated.	2-69
(v2.1)	The "Low Power Mode" section was updated.	2-106
Revision 8 (v2.0)	Table 1 has been updated.	i
	The "Ordering Information" section has been updated.	ii
	The "Device Resources" section has been updated.	ii
	The "Temperature Grade Offerings" section is new.	iii
	The "Speed Grade and Temperature Grade Matrix" section has been updated.	iii
	Table 2-9 has been updated.	2-12
	Table 2-10 has been updated.	2-12
	Table 2-1 has been updated.	2-1
	Table 2-2 has been updated.	2-1
	Table 2-3 has been updated.	2-2
	Table 2-4 has been updated.	2-3
	Table 2-5 has been updated.	2-4
	The "Power Estimation Example" section has been updated.	2-5
	The "Thermal Characteristics" section has been updated.	2-6
	The "Package Thermal Characteristics" section has been updated.	2-6
	The "Timing Characteristics" section has been updated.	2-7
	The "Pin Descriptions" section has been updated.	2-9
	Timing numbers have been updated from the "3.3 V LVTTL" section to the "Timing Characteristics" section. Many AC Loads were updated as well.	2-25 to 2-59
	Timing characteristics for the "Hardwired Clocks" and "Routed Clocks" sections were updated.	2-66, 2-68
	Table 2-89 to Table 2-92 and Table 2-98 to Table 2-99 were updated.	2-90 to 2-93, 2-102 to 2-103
	The following sections were updated: "Low Power Mode", "Interface", "Data Registers (DRs)", "Security", "Silicon Explorer II Probe Interface", and "Programming"	2-106 to 2-110
	In the "PQ208" (AX500) section, pins 2, 52, and 156 changed from V _{CCDA} to V _{CCA} . For pins 170 and 171, the I/O names refer to pair 23 instead of 24.	3-84