E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	2016
Number of Logic Elements/Cells	-
Total RAM Bits	18432
Number of I/O	168
Number of Gates	125000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	324-BGA
Supplier Device Package	324-FBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/ax125-2fg324i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

User I/Os²

Introduction

The Axcelerator family features a flexible I/O structure, supporting a range of mixed voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V) with its bank-selectable I/Os. Table 2-8 on page 2-12 contains the I/O standards supported by the Axcelerator family, and Table 2-10 on page 2-12 compares the features of the different I/O standards.

Each I/O provides programmable slew rates, drive strengths, and weak pull-up and weak pull-down circuits. The slew rate setting is effective for both rising and falling edges.

I/O standards, except 3.3 V PCI and 3.3 V PCI-X, are capable of hot insertion. 3.3 V PCI and 3.3 V PCI-X are 5 V tolerant with the aid of an external resistor.

The input buffer has an optional user-configurable delay element. The element can reduce or eliminate the hold time requirement for input signals registered within the I/O cell. The value for the delay is set on a bank-wide basis. Note that the delay WILL be a function of process variations as well as temperature and voltage changes.

Each I/O includes three registers: an input (InReg), an output (OutReg), and an enable register (EnReg). I/Os are organized into banks, and there are eight banks per device—two per side (Figure 2-6 on page 2-18). Each I/O bank has a common VCCI, the supply voltage for its I/Os.

For voltage-referenced I/Os, each bank also has a common reference-voltage bus, VREF. While VREF must have a common voltage for an entire I/O bank, its location is user-selectable. In other words, any user I/O in the bank can be selected to be a VREF.

The location of the VREF pin should be selected according to the following rules:

- Any pin that is assigned as a VREF can control a maximum of eight user I/O pad locations in each direction (16 total maximum) within the same I/O bank.
- I/O pad locations listed as no connects are counted as part of the 16 maximum. In many cases, this leads to fewer than eight user I/O package pins in each direction being controlled by a VREF pin.
- Dedicated I/O pins such as GND and VCCI are counted as part of the 16.
- The two user I/O pads immediately adjacent on each side of the VREF pin (four in total) may only be used as inputs. The exception is when there is a VCCI/GND pair separating the VREF pin and the user I/O pad location.
- The user does not need to assign VREF pins for OUTBUF and TRIBUF. VREF pins are needed only for input and bidirectional I/Os.

The differential amplifier supply voltage VCCDA should be connected to 3.3 V.

A user can gain access to the various I/O standards in three ways:

- Instantiate specific library macros that represent the desired specific standard.
- Use generic I/O macros and then use Designer's PinEditor to specify the desired I/O standards (please note that this is not applicable to differential standards).
- A combination of the first two methods.

Refer to the I/O Features in Axcelerator Family Devices application note and the Antifuse Macro Library Guide for more details.

^{2.} Do not use an external resister to pull the I/O above V_{CCI} for a higher logic "1" voltage level. The desired higher logic "1" voltage level will be degraded due to a small I/O current, which exists when the I/O is pulled up above V_{CCI} .

Using the Weak Pull-Up and Pull-Down Circuits

Each Axcelerator I/O comes with a weak pull-up/down circuit (on the order of 10 k Ω). These are weak transistors with the gates tied on, so the on resistance of the transistor emulates a resistor. The weak pull-up and pull-down is active only when the device is powered up, and they must be biased to be on. When the rails are coming up, they are not biased fully, so they do not behave as resistors until the voltage is at sufficient levels to bias the transistors. The key is they really are transistors; they are not traces of poly silicon, which is another way to do an on-chip resistor (those take much more room). I/O macros are provided for combinations of pull up/down for LVTTL, LVCMOS (2.5 V, 1.8 V, and 1.5 V) standards. These macros can be instantiated if a keeper circuit for any input buffer is required.

Customizing the I/O

- A five-bit programmable input delay element is associated with each I/O. The value of this delay is
 set on a bank-wide basis (Table 2-14). It is optional for each input buffer within the bank (i.e. the
 user can enable or disable the delay element for the I/O). When the input buffer drives a register
 within the I/O, the delay element is activated by default to ensure a zero hold-time. The default
 setting for this property can be set in Designer. When the input buffer does not drive a register, the
 delay element is deactivated to provide higher performance. Again, this can be overridden by
 changing the default setting for this property in Designer.
- The slew-rate value for the LVTTL output buffer can be programmed and can be set to either slow or fast.
- The drive strength value for LVTTL output buffers can be programmed as well. There are four different drive strength values – 8 mA, 12 mA, 16 mA, or 24 mA – that can be specified in Designer.⁵

Bits Setting	Delay (ns)]	Bits Setting	Delay (ns)
0	0.54]	16	2.01
1	0.65	1	17	2.13
2	0.71	1	18	2.19
3	0.83	1	19	2.3
4	0.9	1	20	2.38
5	1.01	1	21	2.49
6	1.08]	22	2.55
7	1.19	1	23	2.67
8	1.27	1	24	2.75
9	1.39]	25	2.87
10	1.45	1	26	2.93
11	1.56	1	27	3.04
12	1.64	1	28	3.12
13	1.75	1	29	3.23
14	1.81		30	3.29
15	1.93		31	3.41

Table 2-14 • Bank-Wide Delay Values

Note: Delay values are approximate and will vary with process, temperature, and voltage.

^{5.} These values are minimum drive strengths.

I/O Module Timing Characteristics

Figure 2-11 • Timing Model

Table 2-36 • 3.3 V PCI-X I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI-X	Output Module Timing							
t _{DP}	Input Buffer		1.57		1.79		2.10	ns
t _{PY}	Output Buffer		2.10		2.40		2.82	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		1.61		1.62		1.63	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		1.59		1.60		1.61	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		2.65		3.02		3.55	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		3.11		3.55		4.17	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{ioclky}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

SSTL3

Stub Series Terminated Logic for 3.3 V is a general-purpose 3.3 V memory bus standard (JESD8-8). The Axcelerator devices support both classes of this standard. This requires a differential amplifier input buffer and a push-pull output buffer.

Class I

Table 2-50 • DC Input and Output Levels

	VIL	VIH		VOL	VOH	IOL	IOH
Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA
-0.3	VREF – 0.2	VREF +0.2	3.6	VREF – 0.6	VREF + 0.6	8	-8

AC Loadings

Figure 2-23 • AC Test Loads

Table 2-51 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ) (V)	C _{load} (pF)
VREF – 1.0	VREF + 1.0	VREF	1.50	30

Note: **Measuring Point* = *VTRIP*

Timing Characteristics

Table 2-52 • 3.3 V SSTL3 Class I I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

			–2 Speed		peed	Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V SSTL3	Class I I/O Module Timing							
t _{DP}	Input Buffer		1.78		2.03		2.39	ns
t _{PY}	Output Buffer		2.17		2.47		2.91	ns
t _{ICLKQ}	Clock-to-Q for the I/O input register		0.67		0.77		0.90	ns
t _{oclka}	Clock-to-Q for the I/O output register and the I/O enable register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Input Low (V)	Input High (V)	Measuring Point* (V)
1.2 – 0.125	1.2 + 0.125	1.2

Note: * Measuring Point = VTRIP

Timing Characteristics

Table 2-58 • LVDS I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 2.3 V, T_J = 70° C

			–2 Speed		peed	Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVDS Output	Module Timing							
t _{DP}	Input Buffer		1.80		2.05		2.41	ns
t _{PY}	Output Buffer		2.32		2.64		3.11	ns
t _{ICLKQ}	Clock-to-Q for the I/O input register		0.67		0.77		0.90	ns
t _{oclka}	Clock-to-Q for the I/O output register and the I/O enable register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit is carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination. The voltage swing between these two signal lines is approximately 850 mV.

Figure 2-26 • LVPECL Board-Level Implementation

The LVPECL circuit is similar to the LVDS scheme. It requires four external resistors, three for the driver and one for the receiver. The values for the three driver resistors are different from that of LVDS since the output voltage levels are different. Please note that the VOH levels are 200 mV below the standard LVPECL levels.

	I	Vin.	Тур.		Ma		
DC Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
VCCI		3	3	3.3	3	.6	V
VOH	1.8	2.11	1.92	2.28	2.13	2.41	V
VOL	0.96	1.27	1.06	1.43	1.3	1.57	V
VIH	1.49	2.72	1.49	2.72	1.49	2.72	V
VIL	0.86	2.125	0.86	2.125	0.86	2.125	V
Differential Input Voltage	0.3		0.3		0.3		V

Table 2-59 • DC Input and Output Levels

Table 2-60 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)
1.6 – 0.3	1.6 + 0.3	1.6

Note: * Measuring Point = VTRIP

Routed Clocks

The routed clock (CLK) is a low-skew network that can drive the clock inputs of all sequential modules in the device (logically equivalent to the HCLK), but has the added flexibility in that it can drive the S0 (Enable), S1, PSET, and CLR input of a register (R-cells and I/O registers) as well as any of the inputs of any C-cell in the device. This allows CLKs to be used not only as clocks, but also for other global signals or high fanout nets. All four CLKs are available everywhere on the chip.

Timing Characteristics

Table 2-75 • AX125 Routed Array Clock Networks Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		–2 S	-2 Speed -1 Speed		Std Speed			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Routed Array Clock Networks								
t _{RCKL}	Input Low to High		3.08		3.50		4.12	ns
t _{RCKH}	Input High to Low		3.13		3.56		4.19	ns
t _{RPWH}	Minimum Pulse Width High	0.57		0.64		0.75		ns
t _{RPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{RCKSW}	Maximum Skew		0.35		0.39		0.46	ns
t _{RP}	Minimum Period	1.15		1.31		1.54		ns
t _{RMAX}	Maximum Frequency		870		763		649	MHz

Table 2-76 • AX250 Routed Array Clock Networks

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		-2 S	speed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Routed Array Clock Networks								
t _{RCKL}	Input Low to High		2.52		2.87		3.37	ns
t _{RCKH}	Input High to Low		2.59		2.95		3.47	ns
t _{RPWH}	Minimum Pulse Width High	0.57		0.64		0.75		ns
t _{RPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{RCKSW}	Maximum Skew		0.35		0.39		0.46	ns
t _{RP}	Minimum Period	1.15		1.31		1.54		ns
t _{RMAX}	Maximum Frequency		870		763		649	MHz

single-ended, or voltage-referenced standard. The [H]CLKxN pad can only be used as a differential pair with [H]CLKxP.

The block marked "/i Delay Match" is a fixed delay equal to that of the i divider. The "/j Delay Match" block has the same function as its j divider counterpart.

Functional Description

Figure 2-48 on page 2-75 illustrates a block diagram of the PLL. The PLL contains two dividers, i and j, that allow frequency scaling of the clock signal:

- The i divider in the feedback path allows multiplication of the input clock by integer factors ranging from 1 to 64, and the resultant frequency is available at the output of the PLL block.
- The j divider divides the PLL output by integer factors ranging from 1 to 64, and the divided clock is available at CLK1.
- The two dividers together can implement any combination of multiplication and division up to a maximum frequency of 1 GHz on CLK1. Both the CLK1 and CLK2 outputs have a fixed 50/50 duty cycle.
- The output frequencies of the two clocks are given by the following formulas (f_{REF} is the reference clock frequency):

 $f_{CLK1} = f_{REF} * (DividerI) / (DividerJ)$

 $f_{CLK2} = f_{REF} * (DividerI)$

FQ 5

EQ 4

CLK2 provides the PLL output directly—without division

The input and output frequency ranges are selected by LowFreq and Osc(2:0), respectively. These functions and their possible values are detailed in Table 2-80 on page 2-77.

The delay lines shown in Figure 2-48 on page 2-75 are programmable. The feedback clock path can be delayed (using the five DelayLine bits) relative to the reference clock (or vice versa) by up to 3.75 ns in increments of 250 ps. Table 2-80 on page 2-77 describes the usage of these bits. The delay increments are independent of frequency, so this results in phase changes that vary with frequency. The delay value is highly dependent on V_{CC} and the speed grade.

Figure 2-49 is a logical diagram of the various control signals to the PLL and shows how the PLL interfaces with the global and routing networks of the FPGA. Note that not all signals are user-accessible. These non-user-accessible signals are used by the place-and-route tool to control the configuration of the PLL. The user gains access to these control signals either based upon the connections built in the user's design or through the special macros (Table 2-84 on page 2-81) inserted into the design. For example, connecting the macro PLLOUT to CLK2 will control the OUTSEL signal.

Note: Not all signals are available to the user.

Figure 2-49 • PLL Logical Interface

Embedded Memory

The AX architecture provides extensive, high-speed memory resources to the user. Each 4,608 bit block of RAM contains its own embedded FIFO controller, allowing the user to configure each block as either RAM or FIFO.

To meet the needs of high performance designs, the memory blocks operate in synchronous mode for both read and write operations. However, the read and write clocks are completely independent, and each may operate up to and above 500 MHz.

No additional core logic resources are required to cascade the address and data buses when cascading different RAM blocks. Dedicated routing runs along each column of RAM to facilitate cascading.

The AX memory block includes dedicated FIFO control logic to generate internal addresses and external flag logic (FULL, EMPTY, AFULL, AEMPTY). Since read and write operations can occur asynchronously to one another, special control circuitry is included to prevent metastability, overflow, and underflow. A block diagram of the memory module is illustrated in Figure 2-57.

During RAM operation, read (RA) and write (WA) addresses are sourced by user logic and the FIFO controller is ignored. In FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by internal MUXes. Enables with programmable polarity are provided to create upper address bits for cascading up to 16 memory blocks. When cascading memory blocks, the bussed signals WA, WD, WEN, RA, RD, and REN are internally linked to eliminate external routing congestion.

Figure 2-57 • Axcelerator Memory Module

Timing Characteristics

		-2 Speed -1 Spe		peed	Std S	speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Write Mode								
t _{WDASU}	Write Data Setup vs. WCLK		1.39		1.59		1.87	ns
t _{WDAHD}	Write Data Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WADSU}	Write Address Setup vs. WCLK		1.39		1.59		1.87	ns
t _{WADHD}	Write Address Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WENSU}	Write Enable Setup vs. WCLK		1.39		1.59		1.87	ns
t _{WENHD}	Write Enable Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WCKH}	WCLK Minimum High Pulse Width	0.75		0.75		0.75		ns
t _{WCLK}	WCLK Minimum Low Pulse Width	1.76		1.76		1.76		ns
t _{WCKP}	WCLK Minimum Period	2.51		2.51		2.51		ns
Read Mode								
t _{RADSU}	Read Address Setup vs. RCLK		1.71		1.94		2.28	ns
t _{RADHD}	Read Address Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RENSU}	Read Enable Setup vs. RCLK		1.71		1.94		2.28	ns
t _{RENHD}	Read Enable Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		1.43		1.63		1.92	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		2.26		2.58		3.03	ns
t _{RCLKH}	RCLK Minimum High Pulse Width	0.73		0.73		0.73		ns
t _{RCLKL}	RCLK Minimum Low Pulse Width	1.89		1.89		1.89		ns
t _{RCKP}	RCLK Minimum Period	2.62		2.62		2.62		ns

Table 2-90 • Two RAM Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

Note: Timing data for these two cascaded RAM blocks uses a depth of 8,192. For all other combinations, use Microsemi's timing software.

Figure 2-68 • FIFO Read Timing

Package Pin Assignments

FG256-Pin FB	GA	FG256-Pin FB	GA
AX125 Function	Pin Number	AX125 Function	Pin Number
VCCA	L10	VCCIB4	M11
VCCA	L7	VCCIB4	M9
VCCA	L8	VCCIB5	M6
VCCA	L9	VCCIB5	M7
VCCA	N3	VCCIB5	M8
VCCA	P14	VCCIB6	J5
VCCPLA	C7	VCCIB6	K5
VCCPLB	D6	VCCIB6	L5
VCCPLC	A10	VCCIB7	F5
VCCPLD	D10	VCCIB7	G5
VCCPLE	P10	VCCIB7	H5
VCCPLF	N11	VCOMPLA	A7
VCCPLG	T7	VCOMPLB	D7
VCCPLH	N7	VCOMPLC	B9
VCCDA	A2	VCOMPLD	D11
VCCDA	C13	VCOMPLE	T10
VCCDA	D9	VCOMPLF	N10
V _{CCDA}	H1	VCOMPLG	R8
VCCDA	J15	VCOMPLH	N6
VCCDA	N14	VPUMP	A14
VCCDA	N8		•
VCCDA	P4		
VCCIB0	E6		
VCCIB0	E7		
VCCIB0	E8		
VCCIB1	E10		
VCCIB1	E11		
VCCIB1	E9		
VCCIB2	F12		
VCCIB2	G12		
VCCIB2	H12		
VCCIB3	J12		
VCCIB3	K12		
VCCIB3	L12		
VCCIB4	M10		

Package Pin Assignments

FG484		FG484		FG484		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number	
IO167PB5F15	AA12	IO194NB6F18	V2	IO223NB6F20	M7	
IO169NB5F15	AA9	IO194PB6F18	W2	IO223PB6F20	N7	
IO169PB5F15	AA10	IO195NB6F18	U5	IO224NB6F20	M4	
IO170NB5F15	AB9	IO195PB6F18	T5	IO224PB6F20	N4	
IO170PB5F15	AB10	IO200NB6F18	T4	Bank 7	•	
IO171NB5F16	W8	IO200PB6F18	U4	IO225NB7F21	M2	
IO171PB5F16	W9	IO201NB6F18	P6	IO225PB7F21	N1	
IO172NB5F16	Y8	IO201PB6F18	R6	IO226NB7F21	K2	
IO172PB5F16	Y9	IO203NB6F19	U2	IO226PB7F21	K1	
IO173NB5F16	U8	IO204NB6F19	Т3	IO228NB7F21	L3	
IO173PB5F16	U9	IO204PB6F19	U3	IO228PB7F21	L2	
IO174NB5F16	AA7	IO205NB6F19	P5	IO229NB7F21	K5	
IO174PB5F16	AA8	IO205PB6F19	R5	IO229PB7F21	L5	
IO175NB5F16	AB5	IO208NB6F19	V1	IO230NB7F21	H1	
IO175PB5F16	AB6	IO208PB6F19	W1	IO230PB7F21	J1	
IO176NB5F16	AA5	IO209NB6F19	P7	IO231NB7F21	H2	
IO176PB5F16	AA6	IO209PB6F19	R7	IO231PB7F21	J2	
IO177NB5F16	AA4	IO212NB6F19	P4	IO232NB7F21	K4	
IO177PB5F16	AB4	IO212PB6F19	R4	IO232PB7F21	K3	
IO178NB5F16	Y6	IO214NB6F20	P3	IO233NB7F21	K6	
IO178PB5F16	Y7	IO214PB6F20	R3	IO233PB7F21	L6	
IO179NB5F16	T7	IO215NB6F20	M6	IO234NB7F21	F1	
IO179PB5F16	Т8	IO215PB6F20	N6	IO234PB7F21	G1	
IO180NB5F16	W6	IO216NB6F20	R2	IO235NB7F21	F2	
IO180PB5F16	W7	IO216PB6F20	T2	IO235PB7F21	G2	
IO181NB5F17	Y4	IO217NB6F20	T1	IO236NB7F22	H3	
IO181PB5F17	Y5	IO217PB6F20	U1	IO236PB7F22	J3	
IO184NB5F17	AB7	IO219NB6F20	M5	IO237NB7F22	K7	
IO187NB5F17	V3	IO219PB6F20	N5	IO237PB7F22	L7	
IO187PB5F17	W3	IO220NB6F20	P1	IO241NB7F22	H6	
IO188NB5F17	V4	IO220PB6F20	R1	IO241PB7F22	J6	
IO188PB5F17	W5	IO221NB6F20	N2	IO242NB7F22	H4	
IO192NB5F17	V6	IO221PB6F20	P2	IO242PB7F22	J4	
IO192PB5F17	V7	IO222NB6F20	M3	IO243NB7F22	H5	
Bank 6		IO222PB6F20	N3	IO243PB7F22	J5	

FG676		FG676		FG676	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
GND	A8	GND	L12	GND	R12
GND	AC23	GND	L13	GND	R13
GND	AC4	GND	L14	GND	R14
GND	AD24	GND	L15	GND	R15
GND	AD3	GND	L16	GND	R16
GND	AE2	GND	L17	GND	R17
GND	AE25	GND	M10	GND	T10
GND	AF1	GND	M11	GND	T11
GND	AF13	GND	M12	GND	T12
GND	AF14	GND	M13	GND	T13
GND	AF19	GND	M14	GND	T14
GND	AF26	GND	M15	GND	T15
GND	AF8	GND	M16	GND	T16
GND	B2	GND	M17	GND	T17
GND	B25	GND	N1	GND	U10
GND	B26	GND	N10	GND	U11
GND	C24	GND	N11	GND	U12
GND	C3	GND	N12	GND	U13
GND	G20	GND	N13	GND	U14
GND	G7	GND	N14	GND	U15
GND	H1	GND	N15	GND	U16
GND	H19	GND	N16	GND	U17
GND	H26	GND	N17	GND	V18
GND	H8	GND	N26	GND	V9
GND	J18	GND	P1	GND	W1
GND	J9	GND	P10	GND	W19
GND	K10	GND	P11	GND	W26
GND	K11	GND	P12	GND	W8
GND	K12	GND	P13	GND	Y20
GND	K13	GND	P14	GND	Y7
GND	K14	GND	P15	GND/LP	C2
GND	K15	GND	P16	NC	A25
GND	K16	GND	P17	NC	AC13
GND	K17	GND	P26	NC	AC14
GND	L10	GND	R10	NC	AF2
GND	L11	GND	R11	NC	AF25

FG1152		FG1152		FG1152		
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number	
GND	AK12	GND	AN34	GND	D1	
GND	AK17	GND	AN4	GND	D11	
GND	AK18	GND	AN9	GND	D2	
GND	AK23	GND	AP13	GND	D24	
GND	AK30	GND	AP2	GND	D3	
GND	AK5	GND	AP22	GND	D31	
GND	AL1	GND	AP27	GND	D32	
GND	AL11	GND	AP3	GND	D33	
GND	AL2	GND	AP31	GND	D34	
GND	AL24	GND	AP32	GND	D4	
GND	AL3	GND	AP33	GND	E12	
GND	AL31	GND	AP4	GND	E17	
GND	AL32	GND	AP8	GND	E18	
GND	AL33	GND	B1	GND	E23	
GND	AL34	GND	B2	GND	E30	
GND	AL4	GND	B26	GND	E5	
GND	AM1	GND	B3	GND	F29	
GND	AM10	GND	B31	GND	F30	
GND	AM15	GND	B32	GND	F6	
GND	AM2	GND	B33	GND	G28	
GND	AM20	GND	B34	GND	G7	
GND	AM25	GND	B4	GND	H1	
GND	AM3	GND	B9	GND	H34	
GND	AM31	GND	C1	GND	J2	
GND	AM32	GND	C10	GND	J33	
GND	AM33	GND	C15	GND	K3	
GND	AM34	GND	C2	GND	K32	
GND	AM4	GND	C20	GND	L11	
GND	AN1	GND	C25	GND	L24	
GND	AN2	GND	C3	GND	L31	
GND	AN26	GND	C31	GND	L4	
GND	AN3	GND	C32	GND	M12	
GND	AN31	GND	C33	GND	M23	
GND	AN32	GND	C34	GND	M30	
GND	AN33	GND	C4	GND	M5	

. .

Package Pin Assignments

CQ352		CQ352		CQ352		
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number	
IO182PB4F17	171	IO240PB5F22	101	IO296NB6F27	46	
IO183NB4F17	166	IO242NB5F22	94	IO296PB6F27	47	
IO183PB4F17	167	IO242PB5F22	95	Bank 7		
IO184NB4F17	164	IO243NB5F22	98	IO300NB7F28	42	
IO184PB4F17	165	IO243PB5F22	99	IO300PB7F28	43	
IO185NB4F17	160	IO244NB5F22	92	IO303NB7F28	40	
IO185PB4F17	161	IO244PB5F22	93	IO303PB7F28	41	
IO190NB4F17	158	Bank 6	•	IO310NB7F29	34	
IO190PB4F17	159	IO257PB6F24	86	IO310PB7F29	35	
IO191NB4F17	154	IO258NB6F24	84	IO311NB7F29	36	
IO191PB4F17	155	IO258PB6F24	85	IO311PB7F29	37	
IO192NB4F17	152	IO261NB6F24	82	IO312NB7F29	28	
IO192PB4F17	153	IO261PB6F24	83	IO312PB7F29	29	
IO207NB4F19	146	IO262NB6F24	78	IO315NB7F29	30	
IO207PB4F19	147	IO262PB6F24	79	IO315PB7F29	31	
IO212NB4F19/CLKEN	142	IO265NB6F24	76	IO316NB7F29	22	
IO212PB4F19/CLKEP	143	IO265PB6F24	77	IO316PB7F29	23	
IO213NB4F19/CLKFN	136	IO279NB6F26	72	IO317NB7F29	24	
IO213PB4F19/CLKFP	137	IO279PB6F26	73	IO317PB7F29	25	
Bank 5		IO280NB6F26	70	IO318NB7F29	18	
IO214NB5F20/CLKGN	128	IO280PB6F26	71	IO318PB7F29	19	
IO214PB5F20/CLKGP	129	IO281NB6F26	66	IO320NB7F29	16	
IO215NB5F20/CLKHN	122	IO281PB6F26	67	IO320PB7F29	17	
IO215PB5F20/CLKHP	123	IO282NB6F26	64	IO334NB7F31	10	
IO217NB5F20	118	IO282PB6F26	65	IO334PB7F31	11	
IO217PB5F20	119	IO284NB6F26	60	IO335NB7F31	12	
IO236NB5F22	110	IO284PB6F26	61	IO335PB7F31	13	
IO236PB5F22	111	IO285NB6F26	58	IO338NB7F31	6	
IO237NB5F22	112	IO285PB6F26	59	IO338PB7F31	7	
IO237PB5F22	113	IO286NB6F26	54	IO341NB7F31	4	
IO238NB5F22	104	IO286PB6F26	55	IO341PB7F31	5	
IO238PB5F22	105	IO287NB6F26	52	Dedicated I/	0	
IO239NB5F22	106	IO287PB6F26	53	GND	1	
IO239PB5F22	107	IO294NB6F27	48	GND	9	
IO240NB5F22	100	IO294PB6F27	49	GND	15	

Revision	Changes	Page		
Revision 8 (continued)	$\begin{array}{c c} \mbox{The following changes were made in the "FG676"(AX500) section:} \\ AE2, AE25 & Change from NC to GND. \\ AF2, AF25 & Changed from GND to NC \\ AB4, AF24, C1, C26 & Changed from V_{CCDA} to V_{CCA} \\ AD15 & Change from V_{CCDA} to V_{COMPLE} \\ AD17 & Changed from V_{COMPLE} to V_{CCDA} \\ \end{array}$	3-37		
	In the "FG896" (AX2000) section, the AK28 changed from VCCIB5 to VCCIB4.	3-52		
	The "CQ352" and "CG624" sections are new.	3-98, 3-115		
Revision 7	All I/O FIFO capability was removed.	n/a		
(Advance v1.6)	Table 1 was updated.	i		
	Figure 1-9 was updated.	1-7		
	Figure 2-5 was updated.	2-16		
	The "Using an I/O Register" section was updated.	2-16		
	The AX250 and AX1000 descriptions were added to the "FG484"section.	3-21		
Revision 6	Table 2-3 was updated.	2-2		
(Advance v1.5)	Figure 2-1 was updated.			
	Figure 2-48 was updated.			
	Figure 2-52 was updated.			
Revision 5 (Advance v1.4)	In the "PQ208" table, pin 196 was missing, but it has been added in this version with a function of GND.	3-84		
	The following pins in the "FG484" table for AX500 were changed: Pin G7 is GND/LP	3-21		
	Pins AB8, C10, C11, C14, AB16 are NC.			
Devision 4	The "FG6/6" table was updated.	3-37		
(Advance v1.3)	The "Device Resources" section was updated for the CS180.			
· · · ·	The "Programmable Interconnect Element" and Figure 1-2 are new.	1-1 and 1-2		
	The "CS180" table is new.	3-1		
	GND 21 GND 136 GND 136 GND 136 GND 136 GND 136 GND 136 GND 136 GND 136 GND 136 GND 136	3-84		
Revision 3 (Advance v1.2)	Table 1, "Ordering Information", "Device Resources", and the Product Plan table were updated.	i, ii		
	The following figures and tables were updated: Figure 1-3 Figure 1-8 (new) Table 2-3 Figure 2-2 Table 2-8 Figure 2-11 The "Design Environment" section was updated. The "Package Thermal Characteristics" was updated.	1-2 1-6 2-2 2-9 2-12 2-23 1-7 2-6		
		20		