E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	32256
Number of Logic Elements/Cells	-
Total RAM Bits	294912
Number of I/O	586
Number of Gates	200000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax2000-1fg896

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description

Up to four individual signals can be brought out to dedicated probe pins (PRA/B/C/D) on the device. The probe circuitry is accessed and controlled via Silicon Explorer II, Microsemi's integrated verification and logic analysis tool that attaches to the serial port of a PC and communicates with the FPGA via the JTAG port (See "Silicon Explorer II Probe Interface" on page 2-109).

Summary

Microsemi's Axcelerator family of FPGAs extends the successful SX-A architecture, adding embedded RAM/FIFOs, PLLs, and high-speed I/Os. With the support of a suite of robust software tools, design engineers can incorporate high gate counts and fixed pins into an Axcelerator design yet still achieve high performance and efficient device utilization.

Related Documents

Application Notes

Simultaneous Switching Noise and Signal Integrity http://www.microsemi.com/soc/documents/SSN_AN.pdf Axcelerator Family PLL and Clock Management http://www.microsemi.com/soc/documents/AX_PLL_AN.pdf Implementation of Security in Actel Antifuse FPGAs http://www.microsemi.com/soc/documents/Antifuse_Security_AN.pdf

User's Guides and Manuals

Antifuse Macro Library Guide http://www.microsemi.com/soc/documents/libguide_UG.pdf SmartGen, FlashROM, Analog System Builder, and Flash Memory System Builder http://www.microsemi.com/soc/documents/genguide_ug.pdf Silicon Sculptor II User's Guide http://www.microsemi.com/soc/documents/silisculptII_sculpt3_ug.pdf

White Paper

Design Security in Nonvolatile Flash and Antifuse FPGAs http://www.microsemi.com/soc/documents/DesignSecurity_WP.pdf Understanding Actel Antifuse Device Security http://www.microsemi.com/soc/documents/DesignSecurity_WP.pdf

Miscellaneous

Libero IDE flow diagram http://www.microsemi.com/soc/products/tools/libero/flow.html

User-Defined Supply Pins

VREF

Supply Voltage

Reference voltage for I/O banks. VREF pins are configured by the user from regular I/O pins; VREF pins are not in fixed locations. There can be one or more VREF pins in an I/O bank.

Global Pins

HCLKA/B/C/D Dedicated (Hardwired) Clocks A, B, C and D

These pins are the clock inputs for sequential modules or north PLLs. Input levels are compatible with all supported I/O standards. There is a P/N pin pair for support of differential I/O standards. Single-ended clock I/Os can only be assigned to the P side of a paired I/O. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. When the HCLK pins are unused, it is recommended that they are tied to ground.

CLKE/F/G/H Routed Clocks E, F, G, and H

These pins are clock inputs for clock distribution networks or south PLLs. Input levels are compatible with all supported I/O standards. There is a P/N pin pair for support of differential I/O standards. Single-ended clock I/Os can only be assigned to the P side of a paired I/O. The clock input is buffered prior to clocking the R-cells. When the CLK pins are unused, Microsemi recommends that they are tied to ground.

JTAG/Probe Pins

PRA/B/C/D Probe A, B, C and D

The Probe pins are used to output data from any user-defined design node within the device (controlled with Silicon Explorer II). These independent diagnostic pins can be used to allow real-time diagnostic output of any signal path within the device. The pins' probe capabilities can be permanently disabled to protect programmed design confidentiality. The probe pins are of LVTTL output levels.

TCK Test Clock

Test clock input for JTAG boundary-scan testing and diagnostic probe (Silicon Explorer II).

TDI Test Data Input

Serial input for JTAG boundary-scan testing and diagnostic probe. TDI is equipped with an internal 10 k Ω pull-up resistor.

TDO Test Data Output

Serial output for JTAG boundary-scan testing.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1149.1 boundary-scan pins (TCK, TDI, TDO, TRST). TMS is equipped with an internal 10 k Ω pull-up resistor.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize or reset the boundary scan circuit. The TRST pin is equipped with a 10 k Ω pull-up resistor.

Special Functions

LP Low Power Pin

The LP pin controls the low power mode of Axcelerator devices. The device is placed in the low power mode by connecting the LP pin to logic high. To exit the low power mode, the LP pin must be set Low. Additionally, the LP pin must be set Low during chip powering-up or chip powering-down operations. See "Low Power Mode" on page 2-106 for more details.

NC No Connection

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

Detailed Specifications

Table 2-8 • I/O Standards Supported by the Axcelerator Family

I/O Standard	Input/Output Supply Voltage (VCCI)	Input Reference Voltage (VREF)	Board Termination Voltage (VTT)
LVTTL	3.3	N/A	N/A
LVCMOS 2.5 V	2.5	N/A	N/A
LVCMOS 1.8 V	1.8	N/A	N/A
LVCMOS 1.5 V (JDEC8-11)	1.5	N/A	N/A
3.3V PCI/PCI-X	3.3	N/A	N/A
GTL+ 3.3 V	3.3	1.0	1.2
GTL+ 2.5 V [*]	2.5	1.0	1.2
HSTL Class 1	1.5	0.75	0.75
SSTL3 Class 1 and II	3.3	1.5	1.5
SSTL2 Class1 and II	2.5	1.25	1.25
LVDS	2.5	N/A	N/A
LVPECL	3.3	N/A	N/A

Note: *2.5 V GTL+ is not supported across the full military temperature range.

Table 2-9 • Supply Voltages

VCCA	VCCI	Input Tolerance	Output Drive Level
1.5 V	1.5 V	3.3 V	1.5 V
1.5 V	1.8 V	3.3 V	1.8 V
1.5 V	2.5 V	3.3 V	2.5 V
1.5 V	3.3 V	3.3 V	3.3 V

Table 2-10 • I/O Features Comparison

I/O Assignment	Clamp Diode	Hot Insertion	5 V Tolerance	Input Buffer	Output Buffer
LVTTL	No	Yes	Yes ¹	Enabled/	Disabled
3.3 V PCI, 3.3 V PCI-X	Yes	No	Yes ^{1, 2}	Enabled/	Disabled
LVCMOS 2.5 V	No	Yes	No	Enabled/Disabled	
LVCMOS 1.8 V	No	Yes	No	Enabled/Disabled	
LVCMOS 1.5 V (JESD8-11)	No	Yes	No	Enabled/	Disabled
Voltage-Referenced Input Buffer	No	Yes	No	Enabled/Disabled	
Differential, LVDS/LVPECL, Input	No	Yes	No	Enabled Disabled	
Differential, LVDS/LVPECL, Output	No	Yes	No	Disabled	Enabled ⁴

Notes:

1. Can be implemented with an IDT bus switch.

2. Can be implemented with an external resistor.

3. The OE input of the output buffer must be deasserted permanently (handled by software).

4. The OE input of the output buffer must be asserted permanently (handled by software).

Detailed Specifications

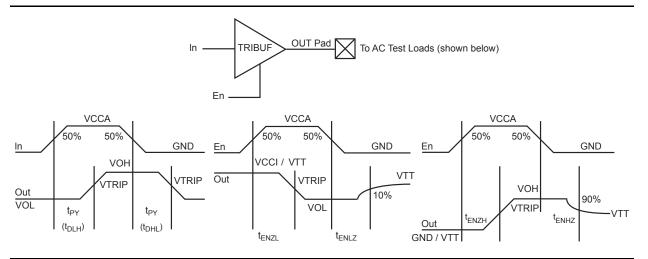


Figure 2-10 • Output Buffer Delays

Buffer Module

Introduction

An additional resource inside each SuperCluster is the Buffer (B) module (Figure 1-4 on page 1-3). When a fanout constraint is applied to a design, the synthesis tool inserts buffers as needed. The buffer module has been added to the AX architecture to avoid logic duplication resulting from the hard fanout constraints. The router utilizes this logic resource to save area and reduce loading and delays on medium-to-high-fanout nets.

Timing Models and Waveforms

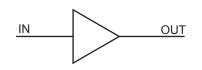


Figure 2-33 • Buffer Module Timing Model

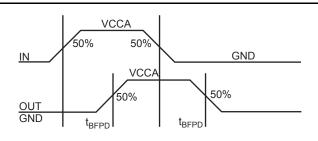


Figure 2-34 • Buffer Module Waveform

Timing Characteristics

Table 2-64 • Buffer Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		-2 Speed		–1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Buffer Module Propagation Delays								
t _{BFPD}	Any input to output Y		0.12		0.14		0.16	ns

Table 2-77 • AX500 Routed Array Clock Networks Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		-2 Speed		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Routed Arra	ay Clock Networks							
t _{RCKL}	Input Low to High		2.31		2.63		3.09	ns
t _{RCKH}	Input High to Low		2.44		2.78		3.27	ns
t _{RPWH}	Minimum Pulse Width High	0.57		0.64		0.75		ns
t _{RPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{RCKSW}	Maximum Skew		0.35		0.39		0.46	ns
t _{RP}	Minimum Period	1.15		1.31		1.54		ns
t _{RMAX}	Maximum Frequency		870		763		649	MHz

Table 2-78 • AX1000 Routed Array Clock Networks

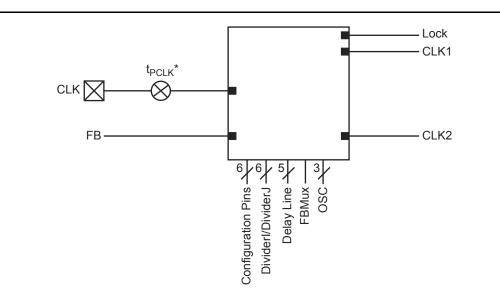
Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		-2 S	peed	-1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Routed Arra	ay Clock Networks							
t _{RCKL}	Input Low to High		3.08		3.50		4.12	ns
t _{RCKH}	Input High to Low		3.13		3.56		4.19	ns
t _{RPWH}	Minimum Pulse Width High	0.57		0.64		0.75		ns
t _{RPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{RCKSW}	Maximum Skew		0.35		0.39		0.46	ns
t _{RP}	Minimum Period	1.15		1.31		1.54		ns
t _{RMAX}	Maximum Frequency		870		763		649	MHz

Table 2-79 • AX2000 Routed Array Clock Networks

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	–1 S	peed	Std S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Routed Array Clock Networks								
t _{RCKL}	Input Low to High		3.08		3.50		4.12	ns
t _{RCKH}	Input High to Low		3.13		3.56		4.19	ns
t _{RPWH}	Minimum Pulse Width High	0.57		0.64		0.75		ns
t _{RPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{RCKSW}	Maximum Skew		0.35		0.39		0.46	ns
t _{RP}	Minimum Period	1.15		1.31		1.54		ns
t _{RMAX}	Maximum Frequency		870		763		649	MHz



User Flow

There are two methods of including a PLL in a design:

- The recommended method of using a PLL is to create custom PLL blocks using Microsemi's macro generator, SmartGen, that can be instantiated in a design.
- The alternative method is to instantiate one of the generic library primitives (PLL or PLLFB) into either a schematic or HDL netlist, using inverters for polarity control and tying all unused address and data bits to ground.

Timing Model

Note: t_{PCLK} is the delay in the clock signal Figure 2-52 • PLL Model

Note that the RAM blocks employ little-endian byte order for read and write operations.

Table 2-88 • RA	M Signal	Description
	in Olgilai	Description

Signal	Direction	Description
WCLK	Input	Write clock (can be active on either edge).
WA[J:0]	Input	Write address bus. The value J is dependent on the RAM configuration and the number of cascaded memory blocks. The valid range for J is from 6 to15.
WD[M-1:0]	Input	Write data bus. The value M is dependent on the RAM configuration and can be 1, 2, 4, 9, 18, or 36.
RCLK	Input	Read clock (can be active on either edge).
RA[K:0]	Input	Read address bus. The value K is dependent on the RAM configuration and the number of cascaded memory blocks. The valid range for K is from 6 to 15.
RD[N-1:0]	Output	Read data bus. The value N is dependent on the RAM configuration and can be 1, 2, 4, 9, 18, or 36.
REN	Input	Read enable. When this signal is valid on the active edge of the clock, data at location RA will be driven onto RD.
WEN	Input	Write enable. When this signal is valid on the active edge of the clock, WD data will be written at location WA.
RW[2:0]	Input	Width of the read operation dataword.
WW[2:0]	Input	Width of the write operation dataword.
Pipe	Input	Sets the pipe option to be on or off.

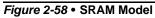
Modes of Operation

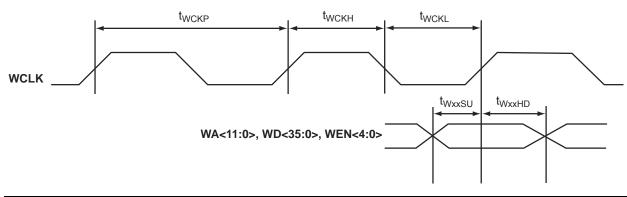
There are two read modes and one write mode:

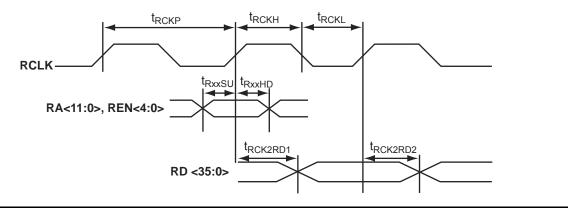
- Read Nonpipelined (synchronous one clock edge)
- Read Pipelined (synchronous two clock edges)
- Write (synchronous one clock edge)

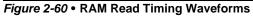
In the standard read mode, new data is driven onto the RD bus in the clock cycle immediately following RA and REN valid. The read address is registered on the read-port active-clock edge and data appears at read-data after the RAM access time. Setting the PIPE to OFF enables this mode.

The pipelined mode incurs an additional clock delay from address to data, but enables operation at a much higher frequency. The read-address is registered on the read-port active-clock edge, and the read data is registered and appears at RD after the second read clock edge. Setting the PIPE to ON enables this mode.


On the write active-clock edge, the write data are written into the SRAM at the write address when WEN is high. The setup time of the write address, write enables, and write data are minimal with respect to the write clock.


Write and read transfers are described with timing requirements beginning in the "Timing Characteristics" section on page 2-89.


Timing Characteristics



Detailed Specifications

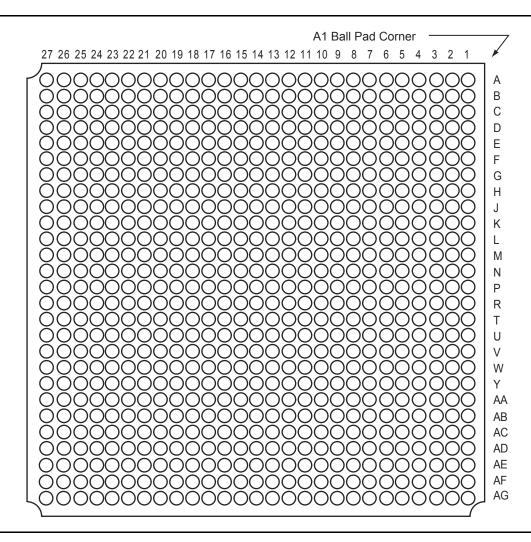
Programming

Device programming is supported through the Silicon Sculptor II, a single-site, robust and compact device programmer for the PC. Up to four Silicon Sculptor IIs can be daisy-chained and controlled from a single PC host. With standalone software for the PC, Silicon Sculptor II is designed to allow concurrent programming of multiple units from the same PC when daisy-chained.

Silicon Sculptor II programs devices independently to achieve the fastest programming times possible. Each fuse is verified by Silicon Sculptor II to ensure correct programming. Furthermore, at the end of programming, there are integrity tests that are run to ensure that programming was completed properly. Not only does it test programmed and nonprogrammed fuses, Silicon Sculptor II also provides a self-test to test its own hardware extensively.

Programming an Axcelerator device using Silicon Sculptor II is similar to programming any other antifuse device. The procedure is as follows:

- 1. Load the *.AFM file.
- 2. Select the device to be programmed.
- 3. Begin programming.

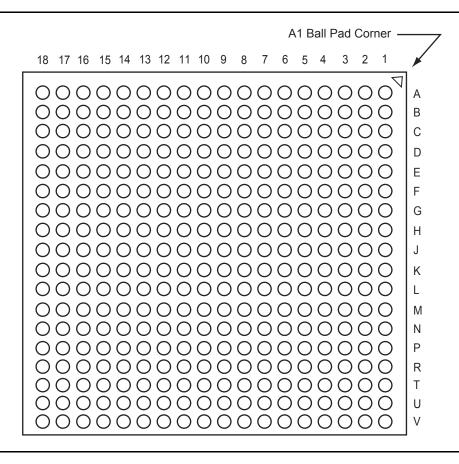

When the design is ready to go to production, Microsemi offers device volume-programming services either through distribution partners or via our In-House Programming Center.

In addition, BP Microsystems offers multi-site programmers that provide qualified support for Axcelerator devices.

For more details on programming the Axcelerator devices, please refer to the Silicon Sculptor II User's Guide.

3 – Package Pin Assignments

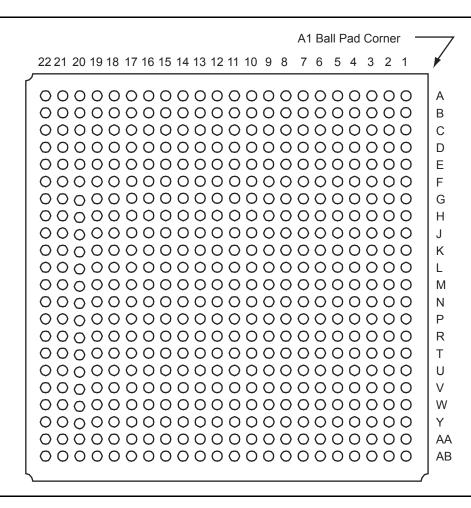
BG729



Note

Package Pin Assignments

FG324



Note

FG324		FG324		FG324	
AX125 Function	Pin Number	AX125 Function	Pin Number	AX125 Function	Pin Number
Bank 0		IO16PB1F1	C15	IO33NB3F3	R18
IO00NB0F0	C5	IO17NB1F1	E14	IO33PB3F3	P18
IO00PB0F0	C4	IO17PB1F1	E13	IO34NB3F3	N15
IO01NB0F0	A3	Bank 2	•	IO34PB3F3	M15
IO01PB0F0	A2	IO18NB2F2	G14	IO35NB3F3	M16
IO02NB0F0	C7	IO18PB2F2	F14	IO35PB3F3	M17
IO02PB0F0	C6	IO19NB2F2	D16	IO36NB3F3	P16
IO03NB0F0	B5	IO19PB2F2	D15	IO36PB3F3	N16
IO03PB0F0	B4	IO20NB2F2	C18	IO37NB3F3	R17
IO04NB0F0	A5	IO20PB2F2	B18	IO37PB3F3	P17
IO04PB0F0	A4	IO21NB2F2	D17	IO38NB3F3	N14
IO05NB0F0	A7	IO21PB2F2	C17	IO38PB3F3	M14
IO05PB0F0	A6	IO22NB2F2	F17	IO39NB3F3	U18
IO06NB0F0	B7	IO22PB2F2	E17	IO39PB3F3	T18
IO06PB0F0	B6	IO23NB2F2	G16	IO40NB3F3	R16
IO07NB0F0/HCLKAN	C9	IO23PB2F2	F16	IO40PB3F3	T17
IO07PB0F0/HCLKAP	C8	IO24NB2F2	E18	IO41NB3F3	P13
IO08NB0F0/HCLKBN	B10	IO24PB2F2	D18	IO41PB3F3	P14
IO08PB0F0/HCLKBP	B9	IO25NB2F2	G18	Bank 4	
Bank 1		IO25PB2F2	F18	IO42NB4F4	T13
IO09NB1F1/HCLKCN	D11	IO26NB2F2	H17	IO42PB4F4	T14
IO09PB1F1/HCLKCP	D10	IO26PB2F2	G17	IO43NB4F4	U15
IO10NB1F1/HCLKDN	C12	IO27NB2F2	J16	IO43PB4F4	T15
IO10PB1F1/HCLKDP	C11	IO27PB2F2	H16	IO44NB4F4	U13
IO11NB1F1	A15	IO28NB2F2	J18	IO44PB4F4	U14
IO11PB1F1	A14	IO28PB2F2	H18	IO45NB4F4	V15
IO12NB1F1	B14	IO29NB2F2	K17	IO45PB4F4	V16
IO12PB1F1	B13	IO29PB2F2	J17	IO46NB4F4	V13
IO13NB1F1	A17	Bank 3		IO46PB4F4	V14
IO13PB1F1	A16	IO30NB3F3	N18	IO47NB4F4	V12
IO14NB1F1	D13	IO30PB3F3	M18	IO47PB4F4	U12
IO14PB1F1	D12	IO31NB3F3	L18	IO48NB4F4	V10
IO15NB1F1	C14	IO31PB3F3	K18	IO48PB4F4	V11
IO15PB1F1	C13	IO32NB3F3	L16	IO49NB4F4/CLKEN	T10
IO16NB1F1	B16	IO32PB3F3	L17	IO49PB4F4/CLKEP	T11

Note

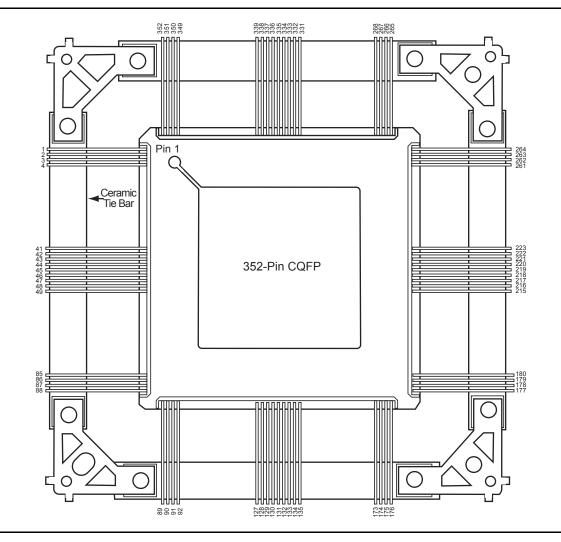
Microsemi

Package Pin Assignments

FG484		FG48	4	FG484		
AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Number	
IO104PB6F6	N4	IO122NB7F7	G5	GND	J9	
IO105NB6F6	M5	IO122PB7F7	G6	GND	K10	
IO105PB6F6	N5	IO123NB7F7	F5	GND	K11	
IO106NB6F6	M3	IO123PB7F7	E4	GND	K12	
IO106PB6F6	N3	Dedicate	d I/O	GND	K13	
Bank	7	VCCDA	H7	GND	L1	
IO107NB7F7	M2	GND	A1	GND	L10	
IO107PB7F7	N1	GND	A11	GND	L11	
IO108NB7F7	L3	GND	A12	GND	L12	
IO108PB7F7	L2	GND	A2	GND	L13	
IO109NB7F7	K2	GND	A21	GND	L22	
IO109PB7F7	K1	GND	A22	GND	M1	
IO110NB7F7	K5	GND	AA1	GND	M10	
IO110PB7F7	L5	GND	AA2	GND	M11	
IO111NB7F7	K6	GND	AA21	GND	M12	
IO111PB7F7	L6	GND	AA22	GND	M13	
IO112NB7F7	K4	GND	AB1	GND	M22	
IO112PB7F7	K3	GND	AB11	GND	N10	
IO113NB7F7	K7	GND	AB12	GND	N11	
IO113PB7F7	L7	GND	AB2	GND	N12	
IO114NB7F7	H1	GND	AB21	GND	N13	
IO114PB7F7	J1	GND	AB22	GND	P14	
IO115NB7F7	H2	GND	B1	GND	P9	
IO115PB7F7	J2	GND	B2	GND	R15	
IO116NB7F7	H4	GND	B21	GND	R8	
IO116PB7F7	J4	GND	B22	GND	U16	
IO117NB7F7	H5	GND	C20	GND	U6	
IO117PB7F7	J5	GND	C3	GND	V18	
IO118NB7F7	F2	GND	D19	GND	V5	
IO118PB7F7	G2	GND	D4	GND	W19	
IO119NB7F7	H6	GND	E18	GND	W4	
IO119PB7F7	J6	GND	E5	GND	Y20	
IO120NB7F7	F1	GND	G18	GND	Y3	
IO120PB7F7	G1	GND	H15	GND/LP	G7	
IO121NB7F7	F4	GND	H8	NC	A17	
IO121PB7F7	G4	GND	J14	NC	A18	

Package Pin Assignments

FG484		FG484		FG484	
AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function	Pin Number
IO54PB2F5	H22	IO72PB3F6	P20	IO90NB4F8	Y17
IO55NB2F5	L17	IO73PB3F6	R19	IO90PB4F8	Y18
IO55PB2F5	K17	IO74NB3F7	V21	IO91NB4F8	V15
IO56NB2F5	K21	IO74PB3F7	U21	IO91PB4F8	V16
IO56PB2F5	K22	IO75NB3F7	V22	IO92PB4F8	AB17
IO58NB2F5	L20	IO75PB3F7	U22	IO93NB4F8	Y15
IO58PB2F5	K20	IO76NB3F7	U20	IO93PB4F8	Y16
IO59NB2F5	L18	IO76PB3F7	T20	IO94NB4F9	AA16
IO59PB2F5	K18	IO77NB3F7	R17	IO94PB4F9	AA17
IO60NB2F5	M21	IO77PB3F7	P17	IO95NB4F9	AB14
IO60PB2F5	L21	IO78NB3F7	W21	IO95PB4F9	AB15
IO61NB2F5	L16	IO78PB3F7	W22	IO96NB4F9	W15
IO61PB2F5	K16	IO79NB3F7	T18	IO96PB4F9	W16
IO62NB2F5	M19	IO79PB3F7	R18	IO97NB4F9	AA13
IO62PB2F5	L19	IO80NB3F7	W20	IO97PB4F9	AB13
Bank 3	Bank 3		V20	IO98NB4F9	AA14
IO63NB3F6	N16	IO81NB3F7	U19	IO98PB4F9	AA15
IO63PB3F6	M16	IO81PB3F7	T19	IO100NB4F9	Y14
IO64NB3F6	P22	IO82NB3F7	U18	IO100PB4F9	W14
IO64PB3F6	N22	IO82PB3F7	V19	IO101NB4F9	Y12
IO65NB3F6	N20	IO83NB3F7	R16	IO101PB4F9	Y13
IO65PB3F6	M20	IO83PB3F7	P16	IO102NB4F9	AA11
IO66NB3F6	P21	Bank 4	Bank 4		AA12
IO66PB3F6	N21	IO84NB4F8	AB18	IO103NB4F9/CLKEN	V12
IO67NB3F6	N18	IO84PB4F8	AB19	IO103PB4F9/CLKEP	V13
IO67PB3F6	N19	IO85NB4F8	T15	IO104NB4F9/CLKFN	W11
IO68NB3F6	T22	IO85PB4F8	T16	IO104PB4F9/CLKFP	W12
IO68PB3F6	R22	IO86NB4F8	AA18	Bank 5	
IO69NB3F6	N17	IO86PB4F8	AA19	IO105NB5F10/CLKGN	U10
IO69PB3F6	M17	IO87NB4F8	W17	IO105PB5F10/CLKGP	U11
IO70NB3F6	T21	IO87PB4F8	V17	IO106NB5F10/CLKHN	V9
IO70PB3F6	R21	IO88NB4F8	Y19	IO106PB5F10/CLKHP	V10
IO71NB3F6	P18	IO88PB4F8	W18	IO107NB5F10	Y10
IO71PB3F6	P19	IO89NB4F8	U14	IO107PB5F10	Y11
IO72NB3F6	R20	IO89PB4F8	U15	IO108NB5F10	AA9


Pin Number M8 Μ7 K4 L4 L6 M6 K5 L5 J4 J3 G2 H2 L8 L7 G3 H3 G4 H4 J6 K6 H5 J5 F2 F1 K8 K7 F4 F3 G6 H6 F5 G5 H7 J7

FG896		FG896		FG896		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function		
IO206PB6F19	AB4	IO224NB6F20	R2	IO241NB7F22		
IO207NB6F19	W6	IO224PB6F20	T2	IO241PB7F22		
IO207PB6F19	W7	Bank 7		IO242NB7F22		
IO208NB6F19	AB3	IO225NB7F21	R7	IO242PB7F22		
IO208PB6F19	AC3	IO225PB7F21	R6	IO243NB7F22	Τ	
IO209NB6F19	V8	IO226NB7F21	R4	IO243PB7F22		
IO209PB6F19	V9	IO226PB7F21	R5	IO244NB7F22	Τ	
IO210NB6F19	AA2	IO227NB7F21	R8	IO244PB7F22		
IO210PB6F19	AA1	IO227PB7F21	R9	IO245NB7F22		
IO211NB6F19	V5	IO228NB7F21	P1	IO245PB7F22		
IO211PB6F19	W5	IO228PB7F21	R1	IO246NB7F22		
IO212NB6F19	Y3	IO229NB7F21	P9	IO246PB7F22		
IO212PB6F19	Y4	IO229PB7F21	P8	IO247NB7F23		
IO213NB6F19	V7	IO230NB7F21	N2	IO247PB7F23		
IO213PB6F19	V6	IO230PB7F21	P2	IO248NB7F23		
IO214NB6F20	W3	IO231NB7F21	P7	IO248PB7F23		
IO214PB6F20	W4	IO231PB7F21	P6	IO249NB7F23	Τ	
IO215NB6F20	U8	IO232NB7F21	N3	IO249PB7F23		
IO215PB6F20	U9	IO232PB7F21	P3	IO250NB7F23	Τ	
IO216NB6F20	W1	IO233NB7F21	P4	IO250PB7F23		
IO216PB6F20	W2	IO233PB7F21	P5	IO251NB7F23		
IO217NB6F20	U7	IO234NB7F21	L1	IO251PB7F23	Τ	
IO217PB6F20	U6	IO234PB7F21	M1	IO252NB7F23		
IO218NB6F20	U4	IO235NB7F21	M4	IO252PB7F23	Τ	
IO218PB6F20	V4	IO235PB7F21	N4	IO253NB7F23	Τ	
IO219NB6F20	T5	IO236NB7F22	N7	IO253PB7F23		
IO219PB6F20	U5	IO236PB7F22	N6	IO254NB7F23		
IO220NB6F20	U3	IO237NB7F22	N8	IO254PB7F23		
IO220PB6F20	V3	IO237PB7F22	N9	IO255NB7F23	Τ	
IO221NB6F20	Т8	IO238NB7F22	M5	IO255PB7F23		
IO221PB6F20	Т9	IO238PB7F22	N5	IO256NB7F23		
IO222NB6F20	U2	IO239NB7F22	L2	IO256PB7F23	Γ	
IO222PB6F20	V2	IO239PB7F22	M2	IO257NB7F23	Ι	
IO223NB6F20	T7	IO240NB7F22	L3	IO257PB7F23		
IO223PB6F20	T6	IO240PB7F22	M3	Dedicated I/	0	

Package Pin Assignments

CQ352

Note

CQ352		CQ352		CQ352	
AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function	Pin Number
GND	21	GND	240	TDI	348
GND	27	GND	246	TDO	347
GND	33	GND	252	TMS	350
GND	39	GND	258	TRST	351
GND	45	GND	264	VCCA	3
GND	51	GND	265	VCCA	14
GND	57	GND	274	VCCA	32
GND	63	GND	280	VCCA	56
GND	69	GND	286	VCCA	74
GND	75	GND	292	VCCA	87
GND	81	GND	298	VCCA	102
GND	88	GND	310	VCCA	114
GND	89	GND	322	VCCA	150
GND	97	GND	330	VCCA	162
GND	103	GND	334	VCCA	175
GND	109	GND	340	VCCA	191
GND	115	GND	345	VCCA	209
GND	121	GND/LP	352	VCCA	233
GND	133	NC	91	VCCA	251
GND	145	NC	117	VCCA	263
GND	151	NC	130	VCCA	279
GND	157	NC	131	VCCA	291
GND	163	NC	148	VCCA	329
GND	169	NC	174	VCCA	339
GND	176	NC	268	VCCDA	2
GND	177	NC	294	VCCDA	44
GND	186	NC	307	VCCDA	90
GND	192	NC	308	VCCDA	116
GND	198	NC	327	VCCDA	132
GND	204	NC	328	VCCDA	149
GND	210	PRA	312	VCCDA	178
GND	216	PRB	311	VCCDA	221
GND	222	PRC	135	VCCDA	266
GND	228	PRD	134	VCCDA	293
GND	234	ТСК	349	VCCDA	309

Datasheet Information

Revision	Changes	Page
Revision 10 (continued)	The "TRST" section was updated.	2-107
	The "Global Set Fuse" section was added.	2-109
	A footnote was added to "FG896" for the AX2000 regarding pins AB1, AE2, G1, and K2.	3-52
	Pinouts for the AX250, AX500, and AX1000 were added for "CQ352".	3-98
	Pinout for the AX1000 was added for "CG624".	3-115
Revision 9	Table 2-79 was updated.	2-69
(v2.1)	The "Low Power Mode" section was updated.	2-106
Revision 8 (v2.0)	Table 1 has been updated.	i
	The "Ordering Information" section has been updated.	ii
	The "Device Resources" section has been updated.	ii
	The "Temperature Grade Offerings" section is new.	iii
	The "Speed Grade and Temperature Grade Matrix" section has been updated.	iii
	Table 2-9 has been updated.	2-12
	Table 2-10 has been updated.	2-12
	Table 2-1 has been updated.	2-1
	Table 2-2 has been updated.	2-1
	Table 2-3 has been updated.	2-2
	Table 2-4 has been updated.	2-3
	Table 2-5 has been updated.	2-4
	The "Power Estimation Example" section has been updated.	2-5
	The "Thermal Characteristics" section has been updated.	2-6
	The "Package Thermal Characteristics" section has been updated.	2-6
	The "Timing Characteristics" section has been updated.	2-7
	The "Pin Descriptions" section has been updated.	2-9
	Timing numbers have been updated from the "3.3 V LVTTL" section to the "Timing Characteristics" section. Many AC Loads were updated as well.	2-25 to 2-59
	Timing characteristics for the "Hardwired Clocks" and "Routed Clocks" sections were updated.	2-66, 2-68
	Table 2-89 to Table 2-92 and Table 2-98 to Table 2-99 were updated.	2-90 to 2-93, 2-102 to 2-103
	The following sections were updated: "Low Power Mode", "Interface", "Data Registers (DRs)", "Security", "Silicon Explorer II Probe Interface", and "Programming"	2-106 to 2-110
	In the "PQ208" (AX500) section, pins 2, 52, and 156 changed from V _{CCDA} to V _{CCA} . For pins 170 and 171, the I/O names refer to pair 23 instead of 24.	3-84