E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	32256
Number of Logic Elements/Cells	
Total RAM Bits	294912
Number of I/O	586
Number of Gates	2000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax2000-2fg896

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Microsemi

Axcelerator Family FPGAs

Ordering Information

User I/Os (Including Clock Buffers)						
Package	AX125	AX250	AX500	AX1000	AX2000	
PQ208	-	115	115	-	-	
CQ208	-	115	115	-	-	
CQ256	-	-	-	-	136	
FG256	138	138	-	-	-	
FG324	168	-	-	-	-	
CQ352	-	198	198	198	198	
FG484	-	248	317	317	-	
CG624	-	-	-	418	418	
FG676	-	-	336	418	-	
BG729	-	-	-	516	-	
FG896	-	-	-	516	586	
FG1152	-	-	-	_	684	

Device Resources

Note: The FG256, FG324, and FG484 are footprint compatible with one another. The FG676, FG896, and FG1152 are also footprint compatible with one another.

1 – General Description

Axcelerator devices offer high performance at densities of up to two million equivalent system gates. Based upon the Microsemi AX architecture, Axcelerator has several system-level features such as embedded SRAM (with complete FIFO control logic), PLLs, segmentable clocks, chip-wide highway routing, and carry logic.

Device Architecture

AX architecture, derived from the highly-successful SX-A sea-of-modules architecture, has been designed for high performance and total logic module utilization (Figure 1-1). Unlike in traditional FPGAs, the entire floor of the Axcelerator device is covered with a grid of logic modules, with virtually no chip area lost to interconnect elements or routing.

Programmable Interconnect Element

The Axcelerator family uses a patented metal-to-metal antifuse programmable interconnect element that resides between the upper two layers of metal (Figure 1-2 on page 1-2). This completely eliminates the channels of routing and interconnect resources between logic modules (as implemented on traditional FPGAs) and enables the efficient sea-of-modules architecture. The antifuses are normally open circuit and, when programmed, form a permanent, passive, low-impedance connection, leading to the fastest signal propagation in the industry. In addition, the extremely small size of these interconnect elements gives the Axcelerator family abundant routing resources.

The very nature of Microsemi's nonvolatile antifuse technology provides excellent protection against design pirating and cloning (FuseLock technology). Typical cloning attempts are impossible (even if the security fuse is left unprogrammed) as no bitstream or programming file is ever downloaded or stored in the device. Reverse engineering is virtually impossible due to the difficulty of trying to distinguish between programmed and unprogrammed antifuses and also due to the programming methodology of antifuse devices (see "Security" on page 2-108).

Figure 1-1 • Sea-of-Modules Comparison

Figure 1-7 • I/O Cluster Arrangement

Routing

The AX hierarchical routing structure ties the logic modules, the embedded memory blocks, and the I/O modules together (Figure 1-8 on page 1-6). At the lowest level, in and between SuperClusters, there are three local routing structures: FastConnect, DirectConnect, and CarryConnect routing. DirectConnects provide the highest performance routing inside the SuperClusters by connecting a C-cell to the adjacent R-cell. DirectConnects do not require an antifuse to make the connection and achieve a signal propagation time of less than 0.1 ns.

FastConnects provide high-performance, horizontal routing inside the SuperCluster and vertical routing to the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering a maximum routing delay of 0.4 ns.

CarryConnects are used for routing carry logic between adjacent SuperClusters. They connect the FCO output of one two-bit, C-cell carry logic to the FCI input of the two-bit, C-cell carry logic of the SuperCluster below it. CarryConnects do not require an antifuse to make the connection and achieve a signal propagation time of less than 0.1 ns.

The next level contains the core tile routing. Over the SuperClusters within a core tile, both vertical and horizontal tracks run across rows or columns, respectively. At the chip level, vertical and horizontal tracks extend across the full length of the device, both north-to-south and east-to-west. These tracks are composed of highway routing that extend the entire length of the device (segmented at core tile boundaries) as well as segmented routing of varying lengths.

Table 2-22 • 3.3 V LVTTL I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C (continued)

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVTTL Outp	LVTTL Output Drive Strength = 2 (12 mA) / High Slew Rate							
t _{DP}	Input Buffer		1.68		1.92		2.26	ns
t _{PY}	Output Buffer		3.30		3.76		4.42	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		3.74		4.26		5.00	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		3.06		3.49		4.10	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		1.89		1.91		1.91	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		2.29		2.30		2.31	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Differential Standards

Physical Implementation

Implementing differential I/O standards requires the configuration of a pair of external I/O pads, resulting in a single internal signal. To facilitate construction of the differential pair, a single I/O Cluster contains the resources for a pair of I/Os. Configuration of the I/O Cluster as a differential pair is handled by Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with these standards.

LVDS

Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit is carried through two signal lines, so two pins are needed. It also requires an external resistor termination. The voltage swing between these two signal lines is approximately 350 mV.

Figure 2-25 • LVDS Board-Level Implementation

The LVDS circuit consists of a differential driver connected to a terminated receiver through a constantimpedance transmission line. The receiver is a wide-common-mode-range differential amplifier. The common-mode range is from 0.2 V to 2.2 V for a differential input with 400 mV swing.

To implement the driver for the LVDS circuit, drivers from two adjacent I/O cells are used to generate the differential signals (note that the driver is not a current-mode driver). This driver provides a nominal constant current of 3.5 mA. When this current flows through a 100 Ω termination resistor on the receiver side, a voltage swing of 350 mV is developed across the resistor. The direction of the current flow is controlled by the data fed to the driver.

An external-resistor network (three resistors) is needed to reduce the voltage swing to about 350 mV. Therefore, four external resistors are required, three for the driver and one for the receiver.

DC Parameter	Description	Min.	Тур.	Max.	Units
VCCI ¹	Supply Voltage	2.375	2.5	2.625	V
VOH	Output High Voltage	1.25	1.425	1.6	V
VOL	Output Low Voltage	0.9	1.075	1.25	V
VODIFF	Differential Output Voltage	250	350	450	mV
VOCM	Output Common Mode Voltage	1.125	1.25	1.375	V
VICM2	Input Common Mode Voltage	0.2	1.25	2.2	V

 Table 2-56 • DC Input and Output Levels

Notes: 1. ±5%

2. Differential input voltage = $\pm 350 \text{ mV}$.

Module Specifications

C-Cell

Introduction

The C-cell is one of the two logic module types in the AX architecture. It is the combinatorial logic resource in the Axcelerator device. The AX architecture implements a new combinatorial cell that is an extension of the C-cell implemented in the SX-A family. The main enhancement of the new C-cell is the addition of carry-chain logic.

The C-cell can be used in a carry-chain mode to construct arithmetic functions. If carry-chain logic is not required, it can be disabled.

The C-cell features the following (Figure 2-27):

- Eight-input MUX (data: D0-D3, select: A0, A1, B0, B1). User signals can be routed to any one of these inputs. Any of the C-cell inputs (D0-D3, A0, A1, B0, B1) can be tied to one of the four routed clocks (CLKE/F/G/H).
- Inverter (DB input) can be used to drive a complement signal of any of the inputs to the C-cell.
- A carry input and a carry output. The carry input signal of the C-cell is the carry output from the C-cell directly to the north.
- · Carry connect for carry-chain logic with a signal propagation time of less than 0.1 ns.
- A hardwired connection (direct connect) to the adjacent R-cell (Register Cell) for all C-cells on the east side of a SuperCluster with a signal propagation time of less than 0.1 ns.

This layout of the C-cell (and the C-cell Cluster) enables the implementation of over 4,000 functions of up to five bits. For example, two C-cells can be used together to implement a four-input XOR function in a single cell delay.

The carry-chain configuration is handled automatically for the user with Microsemi's extensive macro library (please see the *Antifuse Macro Library Guide* for a complete listing of available Axcelerator macros).

Figure 2-27 • C-Cell

Routing Specifications

Routing Resources

The routing structure found in Axcelerator devices enables any logic module to be connected to any other logic module while retaining high performance. There are multiple paths and routing resources that can be used to route one logic module to another, both within a SuperCluster and elsewhere on the chip.

There are four primary types of routing within the AX architecture: DirectConnect, CarryConnect, FastConnect, and Vertical and Horizontal Routing.

DirectConnect

DirectConnects provide a high-speed connection between an R-cell and its adjacent C-cell (Figure 2-35). This connection can be made from DCOUT of the C-cell to DCIN of the R-cell by configuring of the S1 line of the R-cell. This provides a connection that does not require an antifuse and has a delay of less than 0.1 ns.

Figure 2-35 • DirectConnect and CarryConnect

CarryConnect

CarryConnects are used to build carry chains for arithmetic functions (Figure 2-35). The FCO output of the right C-cell of a two-C-cell Cluster drives the FCI input of the left C-cell in the two-C-cell Cluster immediately below it. This pattern continues down both sides of each SuperCluster column.

Similar to the DirectConnects, CarryConnects can be built without an antifuse connection. This connection has a delay of less than 0.1 ns from the FCO of one two-C-cell cluster to the FCI of the two-C-cell cluster immediately below it (see the "Carry-Chain Logic" section on page 2-56 for more information).

FastConnect

For high-speed routing of logic signals, FastConnects can be used to build a short distance connection using a single antifuse (Figure 2-36 on page 2-62). FastConnects provide a maximum delay of 0.3 ns. The outputs of each logic module connect directly to the Output Tracks within a SuperCluster. Signals on the Output Tracks can then be routed through a single antifuse connection to drive the inputs of logic modules either within one SuperCluster or in the SuperCluster immediately below it.

Timing Characteristics

Table 2-65 • AX125 Predicted Routing Delays Worst-Case Commercial Conditions VCCA = 1.425 V, T_J = 70°C

		-2 Speed	-1 Speed	Std Speed	
Parameter	Description	Typical	Typical	Typical	Units
Predicted R	outing Delays				
t _{DC}	DirectConnect Routing Delay, FO1	0.11	0.12	0.15	ns
t _{FC}	FastConnect Routing Delay, FO1	0.35	0.39	0.46	ns
t _{RD1}	Routing delay for FO1	0.35	0.40	0.47	ns
t _{RD2}	Routing delay for FO2	0.38	0.43	0.51	ns
t _{RD3}	Routing delay for FO3	0.43	0.48	0.57	ns
t _{RD4}	Routing delay for FO4	0.48	0.55	0.64	ns
t _{RD5}	Routing delay for FO5	0.55	0.62	0.73	ns
t _{RD6}	Routing delay for FO6	0.64	0.72	0.85	ns
t _{RD7}	Routing delay for FO7	0.79	0.89	1.05	ns
t _{RD8}	Routing delay for FO8	0.88	0.99	1.17	ns
t _{RD16}	Routing delay for FO16	1.49	1.69	1.99	ns
t _{RD32}	Routing delay for FO32	2.32	2.63	3.10	ns

Table 2-66 • AX250 Predicted Routing Delays

Worst-Case Commercial Conditions VCCA = $1.425 \text{ V}, \text{ T}_{\text{J}} = 70^{\circ}\text{C}$

		-2 Speed	–1 Speed	Std Speed	
Parameter	Description	Typical	Typical	Typical	Units
Predicted R	Couting Delays				
t _{DC}	DirectConnect Routing Delay, FO1	0.11	0.12	0.15	ns
t _{FC}	FastConnect Routing Delay, FO1	0.35	0.39	0.46	ns
t _{RD1}	Routing delay for FO1	0.39	0.45	0.53	ns
t _{RD2}	Routing delay for FO2	0.41	0.46	0.54	ns
t _{RD3}	Routing delay for FO3	0.48	0.55	0.64	ns
t _{RD4}	Routing delay for FO4	0.56	0.63	0.75	ns
t _{RD5}	Routing delay for FO5	0.60	0.68	0.80	ns
t _{RD6}	Routing delay for FO6	0.84	0.96	1.13	ns
t _{RD7}	Routing delay for FO7	0.90	1.02	1.20	ns
t _{RD8}	Routing delay for FO8	1.00	1.13	1.33	ns
t _{RD16}	Routing delay for FO16	2.17	2.46	2.89	ns
t _{RD32}	Routing delay for FO32	3.55	4.03	4.74	ns

single-ended, or voltage-referenced standard. The [H]CLKxN pad can only be used as a differential pair with [H]CLKxP.

The block marked "/i Delay Match" is a fixed delay equal to that of the i divider. The "/j Delay Match" block has the same function as its j divider counterpart.

Functional Description

Figure 2-48 on page 2-75 illustrates a block diagram of the PLL. The PLL contains two dividers, i and j, that allow frequency scaling of the clock signal:

- The i divider in the feedback path allows multiplication of the input clock by integer factors ranging from 1 to 64, and the resultant frequency is available at the output of the PLL block.
- The j divider divides the PLL output by integer factors ranging from 1 to 64, and the divided clock is available at CLK1.
- The two dividers together can implement any combination of multiplication and division up to a maximum frequency of 1 GHz on CLK1. Both the CLK1 and CLK2 outputs have a fixed 50/50 duty cycle.
- The output frequencies of the two clocks are given by the following formulas (f_{REF} is the reference clock frequency):

 $f_{CLK1} = f_{REF} * (DividerI) / (DividerJ)$

 $f_{CLK2} = f_{REF} * (DividerI)$

FQ 5

EQ 4

CLK2 provides the PLL output directly—without division

The input and output frequency ranges are selected by LowFreq and Osc(2:0), respectively. These functions and their possible values are detailed in Table 2-80 on page 2-77.

The delay lines shown in Figure 2-48 on page 2-75 are programmable. The feedback clock path can be delayed (using the five DelayLine bits) relative to the reference clock (or vice versa) by up to 3.75 ns in increments of 250 ps. Table 2-80 on page 2-77 describes the usage of these bits. The delay increments are independent of frequency, so this results in phase changes that vary with frequency. The delay value is highly dependent on V_{CC} and the speed grade.

Figure 2-49 is a logical diagram of the various control signals to the PLL and shows how the PLL interfaces with the global and routing networks of the FPGA. Note that not all signals are user-accessible. These non-user-accessible signals are used by the place-and-route tool to control the configuration of the PLL. The user gains access to these control signals either based upon the connections built in the user's design or through the special macros (Table 2-84 on page 2-81) inserted into the design. For example, connecting the macro PLLOUT to CLK2 will control the OUTSEL signal.

Note: Not all signals are available to the user.

Figure 2-49 • PLL Logical Interface

Detailed Specifications

Detailed Specifications

Programming

Device programming is supported through the Silicon Sculptor II, a single-site, robust and compact device programmer for the PC. Up to four Silicon Sculptor IIs can be daisy-chained and controlled from a single PC host. With standalone software for the PC, Silicon Sculptor II is designed to allow concurrent programming of multiple units from the same PC when daisy-chained.

Silicon Sculptor II programs devices independently to achieve the fastest programming times possible. Each fuse is verified by Silicon Sculptor II to ensure correct programming. Furthermore, at the end of programming, there are integrity tests that are run to ensure that programming was completed properly. Not only does it test programmed and nonprogrammed fuses, Silicon Sculptor II also provides a self-test to test its own hardware extensively.

Programming an Axcelerator device using Silicon Sculptor II is similar to programming any other antifuse device. The procedure is as follows:

- 1. Load the *.AFM file.
- 2. Select the device to be programmed.
- 3. Begin programming.

When the design is ready to go to production, Microsemi offers device volume-programming services either through distribution partners or via our In-House Programming Center.

In addition, BP Microsystems offers multi-site programmers that provide qualified support for Axcelerator devices.

For more details on programming the Axcelerator devices, please refer to the Silicon Sculptor II User's Guide.

FG484		
AX1000 Function	Pin Number	4
IO87PB2F8	H20	
IO88NB2F8	L18	
IO88PB2F8	K18	
IO89NB2F8	K19	
IO89PB2F8	J19	
IO90NB2F8	J21	
IO90PB2F8	H21	
IO91NB2F8	J22	
IO91PB2F8	H22	
IO93NB2F8	K21	
IO93PB2F8	K22	
IO94NB2F8	L20	
IO94PB2F8	K20	
IO95NB2F8	M21	
IO95PB2F8	L21	
Bank 3		
IO96NB3F9	N16	
IO96PB3F9	M16	
IO97NB3F9	M19	
IO97PB3F9	L19	
IO98NB3F9	P22	
IO98PB3F9	N22	
IO99NB3F9	N20	
IO99PB3F9	M20	
IO100NB3F9	N17	
IO100PB3F9	M17	
IO101NB3F9	P21	
IO101PB3F9	N21	
IO103NB3F9	R20	
IO103PB3F9	P20	
IO104NB3F9	N18	
IO104PB3F9	N19	
IO105NB3F9	T22	
IO105PB3F9	R22	
IO106NB3F9	R17	

FG484					
AX1000 Eurotion	Pin				
	T 17				
	R21				
IO110NB3F10	V22				
	022				
IO113NB3F10	V21				
IO113PB3F10	021				
IO114NB3F10	P18				
IO114PB3F10	P19				
IO116PB3F10	R19				
IO117NB3F10	U20				
IO117PB3F10	T20				
IO118NB3F11	T18				
IO118PB3F11	R18				
IO121NB3F11	U19				
IO121PB3F11	T19				
IO124NB3F11	R16				
IO124PB3F11	P16				
IO127NB3F11	W21				
IO127PB3F11	W22				
Bank 4					
IO129PB4F12	AB17				
IO132NB4F12	Y19				
IO132PB4F12	W18				
IO133NB4F12	W17				
IO133PB4F12	V17				
IO135NB4F12	T15				
IO135PB4F12	T16				
IO138NB4F12	Y17				
IO138PB4F12	Y18				
IO139NB4F13	V15				
IO139PB4F13	V16				
IO140NB4F13	U18				
IO140PB4F13	V19				
IO142NB4F13	W20				

FG484				
AX1000 Function	Pin Number			
IO142PB4F13	V20			
IO143NB4F13	W15			
IO143PB4F13	W16			
IO144NB4F13	AA18			
IO144PB4F13	AA19			
IO145NB4F13	U14			
IO145PB4F13	U15			
IO146NB4F13	Y15			
IO146PB4F13	Y16			
IO147NB4F13	AB18			
IO147PB4F13	AB19			
IO149NB4F13	Y14			
IO149PB4F13	W14			
IO150NB4F13	AA16			
IO150PB4F13	AA17			
IO152NB4F14	AA14			
IO152PB4F14	AA15			
IO154NB4F14	AB14			
IO154PB4F14	AB15			
IO155NB4F14	AA13			
IO155PB4F14	AB13			
IO158NB4F14	Y12			
IO158PB4F14	Y13			
IO159NB4F14/CLKEN	V12			
IO159PB4F14/CLKEP	V13			
IO160NB4F14/CLKFN	W11			
IO160PB4F14/CLKFP	W12			
Bank 5				
IO161NB5F15/CLKGN	U10			
IO161PB5F15/CLKGP	U11			
IO162NB5F15/CLKHN	V9			
IO162PB5F15/CLKHP	V10			
IO163NB5F15	Y10			
IO163PB5F15	Y11			
IO167NB5F15	AA11			

FG896

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

Package Pin Assignments

FG1152		FG1152		FG1152		
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number	
Bank 0		IO17NB0F1	F12	IO34PB0F3	D14	
IO00NB0F0	D6	IO17PB0F1	F11	IO35NB0F3	A15	
IO00PB0F0	C6	IO18NB0F1	E11	IO35PB0F3	B15	
IO01NB0F0	H10	IO18PB0F1	E10	IO36NB0F3	B16	
IO01PB0F0	H9	IO19NB0F1	F13	IO36PB0F3	A16	
IO02NB0F0	F8	IO19PB0F1	G13	IO37NB0F3	G16	
IO02PB0F0	G8	IO20NB0F1	A10	IO37PB0F3	G15	
IO03NB0F0	A6	IO20PB0F1	A9	IO38NB0F3	D16	
IO03PB0F0	B6	IO21NB0F1	K14	IO38PB0F3	C16	
IO04NB0F0	C7	IO21PB0F1	K13	IO39NB0F3	K16	
IO04PB0F0	D7	IO22NB0F2	B11	IO39PB0F3	L16	
IO05NB0F0	K10	IO22PB0F2	B10	IO40NB0F3	D17	
IO05PB0F0	J10	IO23NB0F2	C12	IO40PB0F3	C17	
IO06NB0F0	F9	IO23PB0F2	C11	IO41NB0F3/HCLKAN	E16	
IO06PB0F0	G9	IO24NB0F2	A12	IO41PB0F3/HCLKAP	F16	
IO07NB0F0	F10	IO24PB0F2	A11	IO42NB0F3/HCLKBN	G17	
IO07PB0F0	G10	IO25NB0F2	H14	IO42PB0F3/HCLKBP	F17	
IO08NB0F0	E9	IO25PB0F2	J14	Bank 1		
IO08PB0F0	E8	IO26NB0F2	D13	IO43NB1F4/HCLKCN	G19	
IO09NB0F0	J11	IO26PB0F2	D12	IO43PB1F4/HCLKCP	G18	
IO09PB0F0	K11	IO27NB0F2	F14	IO44NB1F4/HCLKDN	E19	
IO10NB0F0	C8	IO27PB0F2	G14	IO44PB1F4/HCLKDP	F19	
IO10PB0F0	D8	IO28NB0F2	E14	IO45NB1F4	C18	
IO11NB0F0	K12	IO28PB0F2	E13	IO45PB1F4	D18	
IO11PB0F0	J12	IO29NB0F2	B13	IO46NB1F4	A18	
IO12NB0F1	G11	IO29PB0F2	B12	IO46PB1F4	B18	
IO12PB0F1	H11	IO30NB0F2	C14	IO47NB1F4	K19	
IO13NB0F1	G12	IO30PB0F2	C13	IO47PB1F4	L19	
IO13PB0F1	H12	IO31NB0F2	H15	IO48NB1F4	C19	
IO14NB0F1	A7	IO31PB0F2	J15	IO48PB1F4	D19	
IO14PB0F1	B7	IO32NB0F2	A14	IO49NB1F4	K20	
IO15NB0F1	H13	IO32PB0F2	B14	IO49PB1F4	L20	
IO15PB0F1	J13	IO33NB0F2	K15	IO50NB1F4	A19	
IO16NB0F1	C9	IO33PB0F2	L15	IO50PB1F4	B19	
IO16PB0F1	D9	IO34NB0F3	D15	IO51NB1F4	H20	

PQ208				
AX500 Function	Pin Number			
Bank 0				
IO03NB0F0	198			
IO03PB0F0	199			
IO04NB0F0	197			
IO19NB0F1/HCLKAN	191			
IO19PB0F1/HCLKAP	192			
IO20NB0F1/HCLKBN	185			
IO20PB0F1/HCLKBP	186			
Bank 1	I			
IO21NB1F2/HCLKCN	180			
IO21PB1F2/HCLKCP	181			
IO22NB1F2/HCLKDN	174			
IO22PB1F2/HCLKDP	175			
IO23NB1F2	170			
IO23PB1F2	171			
IO37NB1F3	165			
IO37PB1F3	166			
IO39NB1F3	161			
IO39PB1F3	162			
IO41NB1F3	159			
IO41PB1F3	160			
Bank 2				
IO43NB2F4	151			
IO43PB2F4	153			
IO44NB2F4	152			
IO44PB2F4	154			
IO45PB2F4	148			
IO46NB2F4	146			
IO46PB2F4	147			
IO48NB2F4	144			
IO48PB2F4	145			
1057NB2F5	139			
IO57PB2F5	140			
IO58PB2F5	141			
IO59NB2F5	137			
IO59PB2F5	138			
IO61NB2F5	132			

PQ208				
AX500 Function	Pin Number			
IO61PB2F5	134			
IO62NB2F5	131			
IO62PB2F5	133			
Bank 3				
IO63NB3F6	127			
IO63PB3F6	129			
IO64NB3F6	126			
IO64PB3F6	128			
IO66NB3F6	122			
IO66PB3F6	123			
IO68NB3F6	120			
IO68PB3F6	121			
IO77NB3F7	116			
IO77PB3F7	117			
IO79NB3F7	114			
IO79PB3F7	115			
IO81NB3F7	110			
IO81PB3F7	111			
IO82NB3F7	108			
IO82PB3F7	109			
IO83NB3F7	106			
IO83PB3F7	107			
Bank 4				
IO84PB4F8	103			
IO85NB4F8	100			
IO86NB4F8	101			
IO86PB4F8	102			
IO87NB4F8	96			
IO87PB4F8	97			
IO101NB4F9	91			
IO101PB4F9	92			
IO103NB4F9/CLKEN	87			
IO103PB4F9/CLKEP	88			
IO104NB4F9/CLKFN	81			
IO104PB4F9/CLKFP	82			
Bank 5				
IO105NB5F10/CLKGN	76			

PQ208			
AX500 Function	Pin Number		
IO105PB5F10/CLKGP	77		
IO106NB5F10/CLKHN	70		
IO106PB5F10/CLKHP	71		
IO107NB5F10	66		
IO107PB5F10	67		
IO119NB5F11	62		
IO121NB5F11	60		
IO121PB5F11	61		
IO123NB5F11	56		
IO123PB5F11	57		
IO125NB5F11	54		
IO125PB5F11	55		
Bank 6			
IO127NB6F12	47		
IO127PB6F12	49		
IO128NB6F12	48		
IO128PB6F12	50		
IO129NB6F12	42		
IO129PB6F12	43		
IO130PB6F12	44		
IO132NB6F12	40		
IO132PB6F12	41		
IO141NB6F13	35		
IO141PB6F13	36		
IO142PB6F13	37		
IO143NB6F13	33		
IO143PB6F13	34		
IO145NB6F13	28		
IO145PB6F13	30		
IO146NB6F13	27		
IO146PB6F13	29		
Bank 7			
IO147NB7F14	23		
IO147PB7F14	25		
IO148NB7F14	22		
IO148PB7F14	24		
IO150NB7F14	18		

Package Pin Assignments

CQ352	52 CQ352 CQ352				
AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Number
IO64PB4F4	167	IO85PB5F5	105	IO106NB6F6	46
IO65NB4F4	170	IO86NB5F5	98	IO106PB6F6	47
IO65PB4F4	171	IO86PB5F5	99	Bank 7	
IO66NB4F4	164	IO87NB5F5	94	IO107NB7F7	40
IO66PB4F4	165	IO87PB5F5	95	IO107PB7F7	41
IO67NB4F4	160	IO89NB5F5	92	IO108NB7F7	42
IO67PB4F4	161	IO89PB5F5	93	IO108PB7F7	43
IO68NB4F4	158	Bank 6	- 1	IO109NB7F7	36
IO68PB4F4	159	IO90PB6F6	86	IO109PB7F7	37
IO70NB4F4	154	IO91NB6F6	84	IO110NB7F7	34
IO70PB4F4	155	IO91PB6F6	85	IO110PB7F7	35
IO72NB4F4	152	IO92NB6F6	78	IO111NB7F7	30
IO72PB4F4	153	IO92PB6F6	79	IO111PB7F7	31
IO73NB4F4	146	IO93NB6F6	82	IO113NB7F7	28
IO73PB4F4	147	IO93PB6F6	83	IO113PB7F7	29
IO74NB4F4/CLKEN	142	IO95NB6F6	76	IO114NB7F7	24
IO74PB4F4/CLKEP	143	IO95PB6F6	77	IO114PB7F7	25
IO75NB4F4/CLKFN	136	IO96NB6F6	72	IO115NB7F7	22
IO75PB4F4/CLKFP	137	IO96PB6F6	73	IO115PB7F7	23
Bank 5		IO97NB6F6	70	IO116NB7F7 18	
IO76NB5F5/CLKGN	128	IO97PB6F6	71	IO116PB7F7	19
IO76PB5F5/CLKGP	129	IO98NB6F6	66	IO117NB7F7	16
IO77NB5F5/CLKHN	122	IO98PB6F6	67	IO117PB7F7	17
IO77PB5F5/CLKHP	123	IO99NB6F6	64	IO118NB7F7	12
IO78NB5F5	112	IO99PB6F6	65	IO118PB7F7	13
IO78PB5F5	113	IO100NB6F6	60	IO119NB7F7	10
IO79NB5F5	118	IO100PB6F6	61	IO119PB7F7	11
IO79PB5F5	119	IO101NB6F6	58	IO121NB7F7	6
IO80NB5F5	110	IO101PB6F6	59	IO121PB7F7	7
IO80PB5F5	111	IO103NB6F6	54	IO123NB7F7	4
IO82NB5F5	106	IO103PB6F6	55	IO123PB7F7	5
IO82PB5F5	107	IO104NB6F6	52	Dedicated I/O	
IO84NB5F5	100	IO104PB6F6	53	GND	1
IO84PB5F5	101	IO105NB6F6	48	GND	9
IO85NB5F5	104	IO105PB6F6	49	GND	15

Package Pin Assignments

CQ352			
AX500 Function	Pin Number		
VCCDA	346		
VCCIB0	321		
VCCIB0	333		
VCCIB0	344		
VCCIB1	273		
VCCIB1	285		
VCCIB1	297		
VCCIB2	227		
VCCIB2	239		
VCCIB2	245		
VCCIB2	257		
VCCIB3	185		
VCCIB3	197		
VCCIB3	203		
VCCIB3	215		
VCCIB4	144		
VCCIB4	156		
VCCIB4	168		
VCCIB5	96		
VCCIB5	108		
VCCIB5	120		
VCCIB6	50		
VCCIB6	62		
VCCIB6	68		
VCCIB6	80		
VCCIB7	8		
VCCIB7	20		
VCCIB7	26		
VCCIB7	38		
VCCPLA	317		
VCCPLB	315		
VCCPLC	303		
VCCPLD	301		
VCCPLE	140		
VCCPLF	138		

CQ352			
AX500 Function	Pin Number		
VCCPLG	126		
VCCPLH	124		
VCOMPLA	318		
VCOMPLB	316		
VCOMPLC	304		
VCOMPLD	302		
VCOMPLE	141		
VCOMPLF	139		
VCOMPLG	127		
VCOMPLH	125		
VPUMP	267		

CQ352		
AX2000 Function	Pin Number	AX2000
Bank 0		IO71
IO01NB0F0	341	IO71
IO01PB0F0	342	1073
IO02PB0F0	343	IO73
IO04NB0F0	337	IO74
IO04PB0F0	338	1074
IO05NB0F0	335	
IO05PB0F0	336	IO87
IO08NB0F0	331	1087
IO08PB0F0	332	IO88
IO37NB0F3	325	IO88
IO37PB0F3	326	IO89
IO38NB0F3	323	IO89
IO38PB0F3	324	IO91
IO41NB0F3/HCLKAN	319	IO91
IO41PB0F3/HCLKAP	320	IO99
IO42NB0F3/HCLKBN	313	IO99
IO42PB0F3/HCLKBP	314	IO100
Bank 1		IO100
IO43NB1F4/HCLKCN	305	IO107
IO43PB1F4/HCLKCP	306	IO107
IO44NB1F4/HCLKDN	299	IO110
IO44PB1F4/HCLKDP	300	IO110
IO48NB1F4	295	IO111
IO48PB1F4	296	IO111
IO65NB1F6	283	IO112
IO65PB1F6	284	IO112
IO66NB1F6	289	IO113
IO66PB1F6	290	IO113
IO68NB1F6	287	IO114
IO68PB1F6	288	IO114
IO69NB1F6	275	IO115
IO69PB1F6	276	IO115
IO70NB1F6	281	IO117
IO70PB1F6	282	IO117

CQ352			
AX2000 Function	Pin Number		
IO71NB1F6	277		
IO71PB1F6	278		
IO73NB1F6	269		
IO73PB1F6	270		
IO74NB1F6	271		
IO74PB1F6	272		
Bank 2			
IO87NB2F8	261		
IO87PB2F8	262		
IO88NB2F8	255		
IO88PB2F8	256		
IO89NB2F8	259		
IO89PB2F8	260		
IO91NB2F8	253		
IO91PB2F8	254		
IO99NB2F9	249		
IO99PB2F9	250		
IO100NB2F9	247		
IO100PB2F9	248		
IO107NB2F10	243		
IO107PB2F10	244		
IO110NB2F10	241		
IO110PB2F10	242		
IO111NB2F10	237		
IO111PB2F10	238		
IO112NB2F10	235		
IO112PB2F10	236		
IO113NB2F10	231		
IO113PB2F10	232		
IO114NB2F10	229		
IO114PB2F10	230		
IO115NB2F10	225		
IO115PB2F10	226		
IO117NB2F10	223		
IO117PB2F10	224		

CQ352			
	Pin		
AX2000 Function	Number		
Bank 3			
IO129NB3F12	219		
IO129PB3F12	220		
IO132NB3F12	217		
IO132PB3F12	218		
IO137NB3F12	213		
IO137PB3F12	214		
IO139NB3F13	211		
IO139PB3F13	212		
IO141NB3F13	205		
IO141PB3F13	206		
IO142NB3F13	207		
IO142PB3F13	208		
IO145NB3F13	199		
IO145PB3F13	200		
IO146NB3F13	201		
IO146PB3F13	202		
IO147NB3F13	193		
IO147PB3F13	194		
IO148NB3F13	195		
IO148PB3F13	196		
IO149NB3F13	189		
IO149PB3F13	190		
IO161NB3F15	183		
IO161PB3F15	184		
IO163NB3F15	187		
IO163PB3F15	188		
IO165NB3F15	181		
IO165PB3F15	182		
IO167NB3F15	179		
IO167PB3F15	180		
Bank 4			
IO181NB4F17	172		
IO181PB4F17	173		
IO182NB4F17	170		

CG624 CG624		CG624			
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
IO194NB6F18	Y3	IO215PB6F20	V4	IO237NB7F22	N8
IO194PB6F18	AA3	IO216NB6F20	P8	IO237PB7F22	N7
IO195NB6F18	V6	IO216PB6F20	R3	IO238NB7F22	M5
IO195PB6F18	W4	IO217NB6F20	P7	IO239NB7F22	L6
IO197NB6F18	R5	IO217PB6F20	R7	IO239PB7F22	L5
IO197PB6F18	U3	IO219NB6F20	R4	IO240NB7F22	M4
IO198NB6F18	P6	IO219PB6F20	T4	IO241NB7F22	L7
IO199NB6F18	Y5	IO220NB6F20	P2	IO241PB7F22	M7
IO199PB6F18	W5	IO220PB6F20	R2	IO242NB7F22	J3
IO200NB6F18	V3	IO221NB6F20	N4	IO243NB7F22	M9
IO200PB6F18	W3	IO221PB6F20	P4	IO243PB7F22	M8
IO201NB6F18	T7	IO223NB6F20	M2	IO244NB7F22	P9
IO201PB6F18	U7	IO223PB6F20	N2	IO244PB7F22	N6
IO202NB6F18	V2	IO224NB6F20	N3	IO245NB7F22	K8
IO203NB6F19	W2	IO224PB6F20	P3	IO245PB7F22	L8
IO203PB6F19	Y2	Bank 7	•	IO246NB7F22	F3
IO204NB6F19	AA1	IO225NB7F21	J2	IO246PB7F22	E3
IO204PB6F19	AB1	IO225PB7F21	J1	IO247NB7F23	K7
IO205NB6F19	R6	IO226PB7F21	G2	IO247PB7F23	K6
IO205PB6F19	Т6	IO227NB7F21	H3	IO248NB7F23	D2
IO206NB6F19	W1	IO227PB7F21	H2	IO249NB7F23	G4
IO206PB6F19	Y1	IO229NB7F21	K2	IO249PB7F23	G3
IO207NB6F19	T2	IO229PB7F21	L2	IO251NB7F23	N10
IO207PB6F19	U2	IO230NB7F21	K1	IO251PB7F23	N9
IO208NB6F19	T1	IO230PB7F21	L1	IO253NB7F23	H4
IO208PB6F19	U1	IO231NB7F21	E2	IO253PB7F23	J4
IO209NB6F19	AA2	IO231PB7F21	F2	IO255NB7F23	J6
IO209PB6F19	AB2	IO232NB7F21	F1	IO255PB7F23	J5
IO210NB6F19	P5	IO232PB7F21	G1	IO257NB7F23	H5
IO211NB6F19	M1	IO233NB7F21	L3	IO257PB7F23	H6
IO211PB6F19	N1	IO233PB7F21	M3	Dedicated I/	0
IO212NB6F19	P1	IO234NB7F21	D1	GND	K5
IO212PB6F19	R1	IO234PB7F21	E1	GND	A18
IO213NB6F19	R8	IO235NB7F21	K4	GND	A2
IO213PB6F19	T8	IO235PB7F21	L4	GND	A24
IO215NB6F20	U4	IO236NB7F22	M6	GND	A25

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of