

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	32256
Number of Logic Elements/Cells	-
Total RAM Bits	294912
Number of I/O	684
Number of Gates	2000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	1152-BGA
Supplier Device Package	1152-FPBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/ax2000-fg1152

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – General Description

Axcelerator devices offer high performance at densities of up to two million equivalent system gates. Based upon the Microsemi AX architecture, Axcelerator has several system-level features such as embedded SRAM (with complete FIFO control logic), PLLs, segmentable clocks, chip-wide highway routing, and carry logic.

Device Architecture

AX architecture, derived from the highly-successful SX-A sea-of-modules architecture, has been designed for high performance and total logic module utilization (Figure 1-1). Unlike in traditional FPGAs, the entire floor of the Axcelerator device is covered with a grid of logic modules, with virtually no chip area lost to interconnect elements or routing.

Programmable Interconnect Element

The Axcelerator family uses a patented metal-to-metal antifuse programmable interconnect element that resides between the upper two layers of metal (Figure 1-2 on page 1-2). This completely eliminates the channels of routing and interconnect resources between logic modules (as implemented on traditional FPGAs) and enables the efficient sea-of-modules architecture. The antifuses are normally open circuit and, when programmed, form a permanent, passive, low-impedance connection, leading to the fastest signal propagation in the industry. In addition, the extremely small size of these interconnect elements gives the Axcelerator family abundant routing resources.

The very nature of Microsemi's nonvolatile antifuse technology provides excellent protection against design pirating and cloning (FuseLock technology). Typical cloning attempts are impossible (even if the security fuse is left unprogrammed) as no bitstream or programming file is ever downloaded or stored in the device. Reverse engineering is virtually impossible due to the difficulty of trying to distinguish between programmed and unprogrammed antifuses and also due to the programming methodology of antifuse devices (see "Security" on page 2-108).

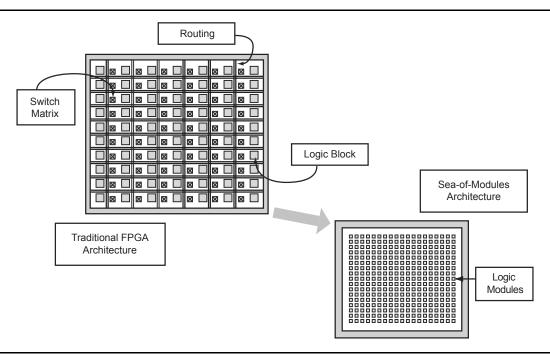
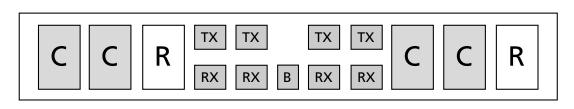



Figure 1-1 • Sea-of-Modules Comparison

Two C-cells, a single R-cell, two Transmit (TX), and two Receive (RX) routing buffers form a Cluster, while two Clusters comprise a SuperCluster (Figure 1-4). Each SuperCluster also contains an independent Buffer (B) module, which supports buffer insertion on high-fanout nets by the place-and-route tool, minimizing system delays while improving logic utilization.

Figure 1-4 • AX SuperCluster

The logic modules within the SuperCluster are arranged so that two combinatorial modules are side-byside, giving a C–C–R – C–C–R pattern to the SuperCluster. This C–C–R pattern enables efficient implementation (minimum delay) of two-bit carry logic for improved arithmetic performance (Figure 1-5 on page 1-3).

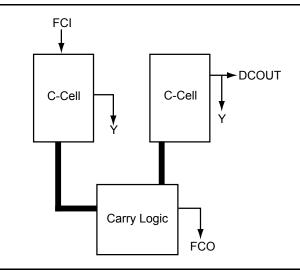


Figure 1-5 • AX 2-Bit Carry Logic

The AX architecture is fully fracturable, meaning that if one or more of the logic modules in a SuperCluster are used by a particular signal path, the other logic modules are still available for use by other paths.

At the chip level, SuperClusters are organized into core tiles, which are arrayed to build up the full chip. For example, the AX1000 is composed of a 3x3 array of nine core tiles. Surrounding the array of core tiles are blocks of I/O Clusters and the I/O bank ring (Table 1-1). Each core tile consists of an array of 336 SuperClusters and four SRAM blocks (176 SuperClusters and three SRAM blocks for the AX250).

Table 1-1	• Number	of Core	Tiles	per	Device
-----------	----------	---------	-------	-----	--------

Device	Number of Core Tiles
AX125	1 regular tile
AX250	4 smaller tiles
AX500	4 regular tiles
AX1000	9 regular tiles
AX2000	16 regular tiles

Detailed Specifications

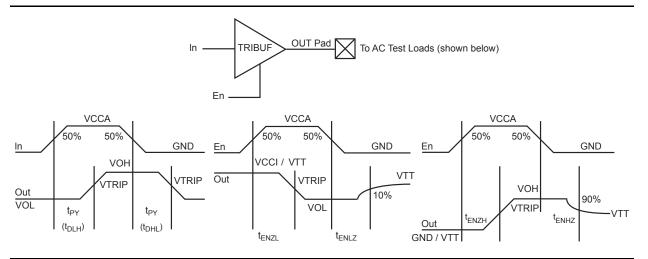
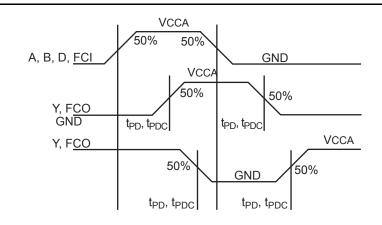



Figure 2-10 • Output Buffer Delays

Timing Model and Waveforms

Timing Characteristics

Table 2-62 • C-Cell

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propagation Delays								
t _{PD}	Any input to output Y		0.74		0.84		0.99	ns
t _{PDC}	Any input to carry chain output (FCO)		0.57		0.64		0.76	ns
t _{PDB}	Any input through DB when one input is used		0.95		1.09		1.28	ns
t _{CCY}	Input to carry chain (FCI) to Y		0.61		0.69		0.82	ns
tcc	Input to carry chain (FCI) to carry chain output (FCO)		0.08		0.09		0.11	ns

Detailed Specifications

The HM and CM modules can select between:

- The HCLK or CLK source respectively
- · A local signal routed on generic routing resources

This allows each core tile to have eight clocks independent of the other core tiles in the device.

Both HCLK and CLK are segmentable, meaning that individual branches of the global resource can be used independently.

Like the HM and CM modules, the HD and RD modules can select between:

- The HCLK or CLK source from the HM or CM module respectively
- A local signal routed on generic routing resources

The AX architecture is capable of supporting a large number of local clocks—24 segments per HCLK driving north-south and 28 segments per CLK driving east-west per core tile.

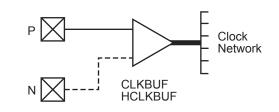
Microsemi's Designer software's place-and-route takes advantage of the segmented clock structure found in Axcelerator devices by turning off any unused clock segments. This results in not only better performance but also lower power consumption.

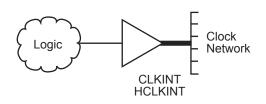
Global Resource Access Macros

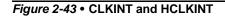
Global resources can be driven by one of three sources: external pad(s), an internal net, or the output of a PLL. These connections can be made by using one of three types of macros: CLKBUF, CLKINT, and PLLCLK.

CLKBUF and HCLKBUF

CLKBUF (HCLKBUF) is used to drive a CLK (HCLK) from external pads. These macros can be used either generically or with the specific I/O standard desired (e.g. CLKBUF_LVCMOS25, HCLKBUF_LVDS, etc.) (Figure 2-42).




Figure 2-42 • CLKBUF and HCLKBUF


Package pins CLKEP and CLKEN are associated with CLKE; package pins HCLKAP and HCLKAN are associated with HCLKA, etc.

Note that when CLKBUF (HCLKBUF) is used with a single-ended I/O standard, it must be tied to the P-pad of the CLK (HCLK) package pin. In this case, the CLK (HCLK) N-pad can be used for user signals.

CLKINT and HCLKINT

CLKINT (HCLKINT) is used to access the CLK (HCLK) resource internally from the user signals (Figure 2-43).

CLK1	CLK2
CLK1	Routed net
CLK1	Unused
CLK2	CLK1
CLK2	Routed net
CLK2	Both CLK1 and routed net
CLK2	Unused
Unused	CLK1
Unused	Routed net
Unused	Both CLK1 and routed net
Unused	Unused
Routed net	CLK1
Routed net	Unused
Both CLK1 and CLK2	Routed net
Both CLK1 and CLK2	Unused
Both CLK1 and routed net	Unusable
Both CLK2 and routed net	CLK1
Both CLK2 and routed net	Unused
CLK1, CLK2, and routed net	Unusable

Table 2-83 • South PLL Connections

Note: Designer software currently does not support all of these connections. Only exclusive connections where one output connects to a single net are supported at this time (e.g., CLK1 driving both CLK1 and CLK2 is not supported).

Embedded Memory

The AX architecture provides extensive, high-speed memory resources to the user. Each 4,608 bit block of RAM contains its own embedded FIFO controller, allowing the user to configure each block as either RAM or FIFO.

To meet the needs of high performance designs, the memory blocks operate in synchronous mode for both read and write operations. However, the read and write clocks are completely independent, and each may operate up to and above 500 MHz.

No additional core logic resources are required to cascade the address and data buses when cascading different RAM blocks. Dedicated routing runs along each column of RAM to facilitate cascading.

The AX memory block includes dedicated FIFO control logic to generate internal addresses and external flag logic (FULL, EMPTY, AFULL, AEMPTY). Since read and write operations can occur asynchronously to one another, special control circuitry is included to prevent metastability, overflow, and underflow. A block diagram of the memory module is illustrated in Figure 2-57.

During RAM operation, read (RA) and write (WA) addresses are sourced by user logic and the FIFO controller is ignored. In FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by internal MUXes. Enables with programmable polarity are provided to create upper address bits for cascading up to 16 memory blocks. When cascading memory blocks, the bussed signals WA, WD, WEN, RA, RD, and REN are internally linked to eliminate external routing congestion.

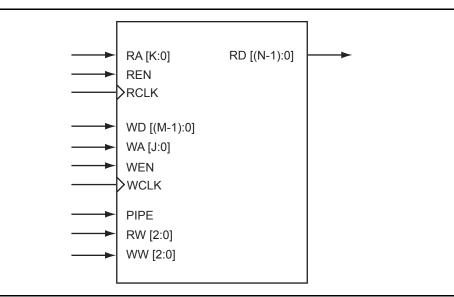


Figure 2-57 • Axcelerator Memory Module

Detailed Specifications

Table 2-89 • One RAM Block

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		-2 Speed		-1 S	-1 Speed		Std Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Write Mode								
t _{WDASU}	Write Data Setup vs. WCLK		1.08		1.23		1.45	ns
t _{WDAHD}	Write Data Hold vs. WCLK		0.22		0.25		0.30	ns
t _{WADSU}	Write Address Setup vs. WCLK		1.08		1.23		1.45	ns
t _{WADHD}	Write Address Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WENSU}	Write Enable Setup vs. WCLK		1.08		1.23		1.45	ns
t _{WENHD}	Write Enable Hold vs. WCLK		0.22		0.25		0.30	ns
t _{wcкн}	WCLK Minimum High Pulse Width	0.75		0.75		0.75		ns
t _{WCLK}	WCLK Minimum Low Pulse Width	0.88		0.88		0.88		ns
t _{WCKP}	WCLK Minimum Period	1.63		1.63		1.63		ns
Read Mode								
t _{RADSU}	Read Address Setup vs. RCLK		0.81		0.92		1.08	ns
t _{RADHD}	Read Address Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RENSU}	Read Enable Setup vs. RCLK		0.81		0.92		1.08	ns
t _{RENHD}	Read Enable Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RCK2RD1}	RCLK-to-OUT (Pipelined)		1.32		1.51		1.77	ns
t _{RCK2RD2}	RCLK-to-OUT (Non-Pipelined)		2.16		2.46		2.90	ns
t _{RCLKH}	RCLK Minimum High Pulse Width	0.77		0.77		0.77		ns
t _{RCLKL}	RCLK Minimum Low Pulse Width	0.93		0.93		0.93		ns
t _{RCKP}	RCLK Minimum Period	1.70		1.70		1.70		ns

Note: Timing data for this single block RAM has a depth of 4,096. For all other combinations, use Microsemi's timing software.

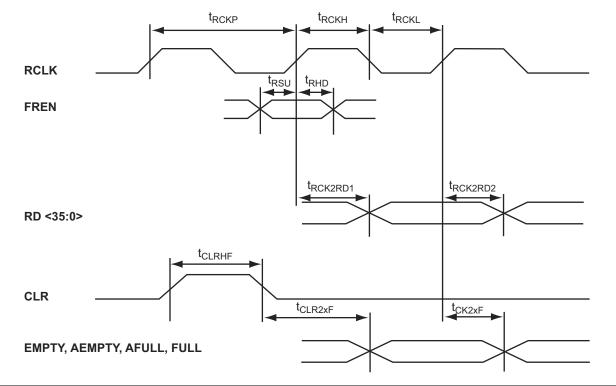


Figure 2-68 • FIFO Read Timing

mode if desired. Please note, if the I/O bank is not disabled, differential I/Os belonging to the I/O bank will still consume normal power, even when operating in the low power mode.

The Axcelerator device will resume normal operation $10\mu s$ after the LP pin is pulled Low.

To further reduce power consumption, the internal charge pump can be bypassed and an external power supply voltage can be used instead. This saves the internal charge-pump operating current, resulting in no DC current draw. The Axcelerator family devices have a dedicated " V_{PUMP} " pin that can be used to access an external charge pump device. In normal chip operation, when using the internal charge pump, V_{PUMP} should be tied to GND. When the voltage level on V_{PUMP} is set to 3.3V, the internal charge pump is turned off, and the V_{PUMP} voltage will be used as the charge pump voltage. Adequate voltage regulation (i.e. high drive, low output impedance, and good decoupling) should be used at V_{PUMP} .

In addition, any PLL in use can be powered down to further reduce power consumption. This can be done with the PowerDown pin driven Low. Driving this pin High restarts the PLL with the output clock(s) being stable once lock is restored.

JTAG

Axcelerator offers a JTAG interface that is compliant with the IEEE 1149.1 standard. The user can employ the JTAG interface for probing a design and performing any JTAG Public Instructions as defined in the Table 2-103.

Instruction (IR4:IR0)	Binary Code
Extest	00000
Preload / Sample	00001
Intest	00010
USERCODE	00011
IDCODE	00100
HIGHZ	01110
CLAMP	01111
Diagnostic	10000
Reserved	All others
Bypass	11111

Table 2-103 • JTAG Instruction Code

Interface

The interface consists of four inputs: Test Mode Select (TMS), Test Data In (TDI), Test Clock (TCK), TAP Controller Reset (TRST), and an output, Test Data Out (TDO). TMS, TDI, and TRST have on-chip pull-up resistors.

TRST

TRST (Test-Logic Reset) is an active-low, asynchronous reset signal to the TAP controller. The TRST input can be used to reset the Test Access Port (TAP) Controller to the TRST state. The TAP Controller can be held at this state permanently by grounding the TRST pin. To hold the JTAG TAP controller in the TRST state, it is recommended to connect TRST to ground via a 1 k Ω resistor.

There is an optional internal pull-up resistor available for the TRST input that can be set by the user at programming. Care should be exercised when using this option in combination with an external tie-off to ground.

An on-chip power-on-reset (POWRST) circuit is included. POWRST has the same function as "TRST," but it only occurs at power-up or during recovery from a VCCA and/or VCCDA voltage drop.

Package Pin Assignments

FG484		FG484		FG484	FG484		
AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function	Pin Number		
IO54PB2F5	H22	IO72PB3F6	P20	IO90NB4F8	Y17		
IO55NB2F5	L17	IO73PB3F6	R19	IO90PB4F8	Y18		
IO55PB2F5	K17	IO74NB3F7	V21	IO91NB4F8	V15		
IO56NB2F5	K21	IO74PB3F7	U21	IO91PB4F8	V16		
IO56PB2F5	K22	IO75NB3F7	V22	IO92PB4F8	AB17		
IO58NB2F5	L20	IO75PB3F7	U22	IO93NB4F8	Y15		
IO58PB2F5	K20	IO76NB3F7	U20	IO93PB4F8	Y16		
IO59NB2F5	L18	IO76PB3F7	T20	IO94NB4F9	AA16		
IO59PB2F5	K18	IO77NB3F7	R17	IO94PB4F9	AA17		
IO60NB2F5	M21	IO77PB3F7	P17	IO95NB4F9	AB14		
IO60PB2F5	L21	IO78NB3F7	W21	IO95PB4F9	AB15		
IO61NB2F5	L16	IO78PB3F7	W22	IO96NB4F9	W15		
IO61PB2F5	K16	IO79NB3F7	T18	IO96PB4F9	W16		
IO62NB2F5	M19	IO79PB3F7	R18	IO97NB4F9	AA13		
IO62PB2F5	L19	IO80NB3F7	W20	IO97PB4F9	AB13		
Bank 3		IO80PB3F7	V20	IO98NB4F9	AA14		
IO63NB3F6	N16	IO81NB3F7	U19	IO98PB4F9	AA15		
IO63PB3F6	M16	IO81PB3F7	T19	IO100NB4F9	Y14		
IO64NB3F6	P22	IO82NB3F7	U18	IO100PB4F9	W14		
IO64PB3F6	N22	IO82PB3F7	V19	IO101NB4F9	Y12		
IO65NB3F6	N20	IO83NB3F7	R16	IO101PB4F9	Y13		
IO65PB3F6	M20	IO83PB3F7	P16	IO102NB4F9	AA11		
IO66NB3F6	P21	Bank 4		IO102PB4F9	AA12		
IO66PB3F6	N21	IO84NB4F8	AB18	IO103NB4F9/CLKEN	V12		
IO67NB3F6	N18	IO84PB4F8	AB19	IO103PB4F9/CLKEP	V13		
IO67PB3F6	N19	IO85NB4F8	T15	IO104NB4F9/CLKFN	W11		
IO68NB3F6	T22	IO85PB4F8	T16	IO104PB4F9/CLKFP	W12		
IO68PB3F6	R22	IO86NB4F8	AA18	Bank 5			
IO69NB3F6	N17	IO86PB4F8	AA19	IO105NB5F10/CLKGN	U10		
IO69PB3F6	M17	IO87NB4F8	W17	IO105PB5F10/CLKGP	U11		
IO70NB3F6	T21	IO87PB4F8	V17	IO106NB5F10/CLKHN	V9		
IO70PB3F6	R21	IO88NB4F8	Y19	IO106PB5F10/CLKHP	V10		
IO71NB3F6	P18	IO88PB4F8	W18	IO107NB5F10	Y10		
IO71PB3F6	P19	IO89NB4F8	U14	IO107PB5F10	Y11		
IO72NB3F6	R20	IO89PB4F8	U15	IO108NB5F10	AA9		

Package Pin Assignments

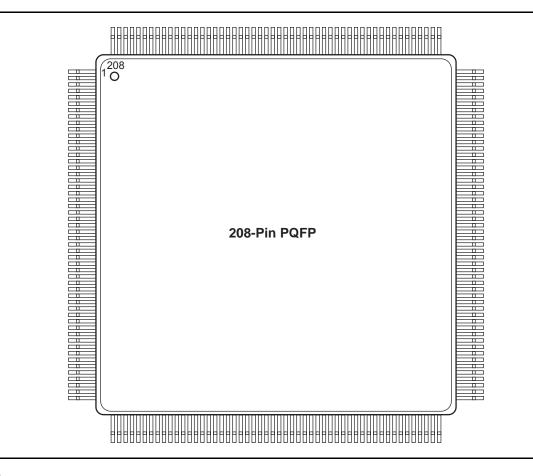
FG484	FG484 FG48			FG484	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
Bank 0	1	IO29NB0F2	B12	IO51PB1F4	D22
IO01NB0F0	E3	IO29PB0F2	B11	IO52NB1F4	E16
IO01PB0F0	D3	IO30NB0F2/HCLKAN	E11	IO52PB1F4	E15
IO02NB0F0	E7	IO30PB0F2/HCLKAP	E10	IO57NB1F5	E21
IO02PB0F0	E6	IO31NB0F2/HCLKBN	D12	IO57PB1F5	D21
IO05NB0F0	D2	IO31PB0F2/HCLKBP	D11	IO60NB1F5	G16
IO05PB0F0	E2	Bank 1		IO60PB1F5	G15
IO06NB0F0	C5	IO32NB1F3/HCLKCN	F13	IO61NB1F5	D18
IO06PB0F0	C4	IO32PB1F3/HCLKCP	F12	IO61PB1F5	E17
IO12NB0F1	D7	IO33NB1F3/HCLKDN	E14	IO63NB1F5	E20
IO12PB0F1	D6	IO33PB1F3/HCLKDP	E13	IO63PB1F5	D20
IO13NB0F1	B5	IO34NB1F3	C13	Bank 2	
IO13PB0F1	B4	IO34PB1F3	C12	IO64NB2F6	F18
IO14NB0F1	E9	IO37NB1F3	B14	IO64PB2F6	F17
IO14PB0F1	E8	IO37PB1F3	B13	IO67NB2F6	F19
IO15NB0F1	C7	IO38NB1F3	A16	IO67PB2F6	E19
IO15PB0F1	C6	IO38PB1F3	A15	IO68NB2F6	J16
IO16NB0F1	A5	IO40NB1F3	C15	IO68PB2F6	H16
IO16PB0F1	A4	IO42NB1F4	A18	IO70NB2F6	J17
IO17NB0F1	B7	IO42PB1F4	A17	IO70PB2F6	H17
IO17PB0F1	B6	IO43NB1F4	B16	IO74NB2F7	J18
IO18NB0F1	A7	IO43PB1F4	B15	IO74PB2F7	H18
IO18PB0F1	A6	IO44NB1F4	B18	IO75NB2F7	G20
IO19NB0F1	C9	IO44PB1F4	B17	IO75PB2F7	F20
IO19PB0F1	C8	IO45NB1F4	B19	IO79NB2F7	H19
IO20NB0F1	D9	IO45PB1F4	A19	IO79PB2F7	G19
IO20PB0F1	D8	IO46NB1F4	C19	IO80NB2F7	L16
IO21NB0F1	B9	IO46PB1F4	C18	IO80PB2F7	K16
IO21PB0F1	B8	IO48NB1F4	F15	IO84NB2F7	L17
IO22NB0F2	A9	IO48PB1F4	F14	IO84PB2F7	K17
IO22PB0F2	A8	IO49NB1F4	D16	IO85NB2F8	G21
IO23NB0F2	B10	IO49PB1F4	D15	IO85PB2F8	F21
IO23PB0F2	A10	IO50NB1F4	C17	IO86NB2F8	G22
IO26NB0F2	A14	IO50PB1F4	C16	IO86PB2F8	F22
IO26PB0F2	A13	IO51NB1F4	E22	IO87NB2F8	J20

FG676		
AX1000 Function	Pin Number	A
IO129PB4F12	AA21	
IO131NB4F12	AD22	
IO131PB4F12	AD23	
IO132NB4F12	AE23	
IO132PB4F12	AE24	
IO133NB4F12	AB20	
IO133PB4F12	AA20	
IO134NB4F12	AC21	1015
IO134PB4F12	AC22	1015
IO135NB4F12	AF22	1016
IO135PB4F12	AF23	1016
IO137NB4F12	AB19	
IO137PB4F12	AA19	1016
IO139NB4F13	AC19	1016
IO139PB4F13	AC20	1016
IO140NB4F13	AE21	1016
IO140PB4F13	AE22	
IO141NB4F13	AD20	
IO141PB4F13	AD21	
IO143NB4F13	AB17	
IO143PB4F13	AB18	
IO144NB4F13	AE19	
IO144PB4F13	AE20	
IO145NB4F13	AC17	
IO145PB4F13	AC18	
IO146NB4F13	AD18	
IO146PB4F13	AD19	
IO147NB4F13	AA17	
IO147PB4F13	AA18	
IO148NB4F13	AF20	
IO148PB4F13	AF21	
IO149NB4F13	AA16	
IO149PB4F13	Y16	
IO151NB4F13	AC16	
IO151PB4F13	AB16	
IO153NB4F14	AE17	

FG676					
AX1000 Function	Pin Number				
IO153PB4F14	AE18				
IO154NB4F14	AF17				
IO154PB4F14	AF18				
IO155NB4F14	AA15				
IO155PB4F14	Y15				
IO157NB4F14	AC15				
IO157PB4F14	AB15				
IO159NB4F14/CLKEN	AE16				
IO159PB4F14/CLKEP	AF16				
IO160NB4F14/CLKFN	AE14				
IO160PB4F14/CLKFP	AE15				
Bank 5					
IO161NB5F15/CLKGN	AE12				
IO161PB5F15/CLKGP	AE13				
IO162NB5F15/CLKHN	AE11				
IO162PB5F15/CLKHP	AF11				
IO163NB5F15	AC12				
IO163PB5F15	AB12				
IO165NB5F15	Y12				
IO165PB5F15	AA13				
IO167NB5F15	Y11				
IO167PB5F15	AA12				
IO168NB5F15	AF9				
IO168PB5F15	AF10				
IO169NB5F15	AB11				
IO169PB5F15	AA11				
IO171NB5F16	AE9				
IO171PB5F16	AE10				
IO173NB5F16	AC10				
IO173PB5F16	AC11				
IO174NB5F16	AE7				
IO174PB5F16	AE8				
IO175NB5F16	AC9				
IO175PB5F16	AD9				
IO176NB5F16	AF6				
IO176PB5F16	AF7				

50070					
FG676					
AX1000 Function	Pin Number				
IO177NB5F16	AA10				
IO177PB5F16	AB10				
IO179NB5F16	AD7				
IO179PB5F16	AD8				
IO180NB5F16	AC7				
IO180PB5F16	AC8				
IO181NB5F17	AA9				
IO181PB5F17	AB9				
IO183NB5F17	AD6				
IO183PB5F17	AE6				
IO184NB5F17	AE5				
IO184PB5F17	AF5				
IO185NB5F17	AA8				
IO185PB5F17	AB8				
IO187NB5F17	AC5				
IO187PB5F17	AC6				
IO188NB5F17	AD4				
IO188PB5F17	AD5				
IO189NB5F17	AB6				
IO189PB5F17	AB7				
IO190NB5F17	AF4				
IO190PB5F17	AE4				
IO191NB5F17	AE3				
IO191PB5F17	AF3				
IO192NB5F17	AA6				
IO192PB5F17	AA7				
Bank 6					
IO193NB6F18	Y5				
IO193PB6F18	AA5				
IO194NB6F18	AB3				
IO194PB6F18	AC3				
IO195NB6F18	Y4				
IO195PB6F18	AA4				
IO196NB6F18	AC2				
IO196PB6F18	AD2				
IO197NB6F18	W6				
	•				

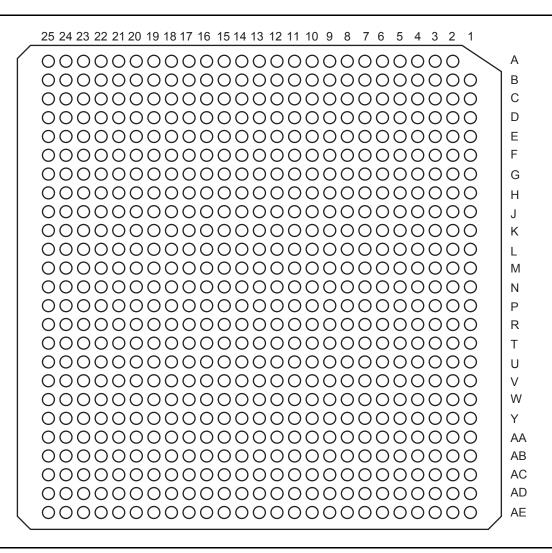
FG676		FG676		FG676	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
GND	A8	GND	L12	GND	R12
GND	AC23	GND	L13	GND	R13
GND	AC4	GND	L14	GND	R14
GND	AD24	GND	L15	GND	R15
GND	AD3	GND	L16	GND	R16
GND	AE2	GND	L17	GND	R17
GND	AE25	GND	M10	GND	T10
GND	AF1	GND	M11	GND	T11
GND	AF13	GND	M12	GND	T12
GND	AF14	GND	M13	GND	T13
GND	AF19	GND	M14	GND	T14
GND	AF26	GND	M15	GND	T15
GND	AF8	GND	M16	GND	T16
GND	B2	GND	M17	GND	T17
GND	B25	GND	N1	GND	U10
GND	B26	GND	N10	GND	U11
GND	C24	GND	N11	GND	U12
GND	C3	GND	N12	GND	U13
GND	G20	GND	N13	GND	U14
GND	G7	GND	N14	GND	U15
GND	H1	GND	N15	GND	U16
GND	H19	GND	N16	GND	U17
GND	H26	GND	N17	GND	V18
GND	H8	GND	N26	GND	V9
GND	J18	GND	P1	GND	W1
GND	J9	GND	P10	GND	W19
GND	K10	GND	P11	GND	W26
GND	K11	GND	P12	GND	W8
GND	K12	GND	P13	GND	Y20
GND	K13	GND	P14	GND	Y7
GND	K14	GND	P15	GND/LP	C2
GND	K15	GND	P16	NC	A25
GND	K16	GND	P17	NC	AC13
GND	K17	GND	P26	NC	AC14
GND	L10	GND	R10	NC	AF2
GND	L11	GND	R11	NC	AF25



FG1152		FG1152		FG1152	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
GND	AK12	GND	AN34	GND	D1
GND	AK17	GND	AN4	GND	D11
GND	AK18	GND	AN9	GND	D2
GND	AK23	GND	AP13	GND	D24
GND	AK30	GND	AP2	GND	D3
GND	AK5	GND	AP22	GND	D31
GND	AL1	GND	AP27	GND	D32
GND	AL11	GND	AP3	GND	D33
GND	AL2	GND	AP31	GND	D34
GND	AL24	GND	AP32	GND	D4
GND	AL3	GND	AP33	GND	E12
GND	AL31	GND	AP4	GND	E17
GND	AL32	GND	AP8	GND	E18
GND	AL33	GND	B1	GND	E23
GND	AL34	GND	B2	GND	E30
GND	AL4	GND	B26	GND	E5
GND	AM1	GND	B3	GND	F29
GND	AM10	GND	B31	GND	F30
GND	AM15	GND	B32	GND	F6
GND	AM2	GND	B33	GND	G28
GND	AM20	GND	B34	GND	G7
GND	AM25	GND	B4	GND	H1
GND	AM3	GND	B9	GND	H34
GND	AM31	GND	C1	GND	J2
GND	AM32	GND	C10	GND	J33
GND	AM33	GND	C15	GND	K3
GND	AM34	GND	C2	GND	K32
GND	AM4	GND	C20	GND	L11
GND	AN1	GND	C25	GND	L24
GND	AN2	GND	C3	GND	L31
GND	AN26	GND	C31	GND	L4
GND	AN3	GND	C32	GND	M12
GND	AN31	GND	C33	GND	M23
GND	AN32	GND	C34	GND	M30
GND	AN33	GND	C4	GND	M5

Package Pin Assignments

PQ208



Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

CQ352		CQ352		CQ352	
AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Number
Bank 0	-	IO24NB1F1	275	Bank 3	
IO00NB0F0	341	IO24PB1F1	276	IO45NB3F3	217
IO00PB0F0	342	IO25NB1F1	271	IO45PB3F3	218
IO01NB0F0	343	IO25PB1F1	272	IO46NB3F3	219
IO02NB0F0	337	IO27NB1F1	269	IO46PB3F3	220
IO02PB0F0	338	IO27PB1F1	270	IO47NB3F3	213
IO04NB0F0	335	Bank 2		IO47PB3F3	214
IO04PB0F0	336	IO29NB2F2	261	IO48NB3F3	211
IO06NB0F0	331	IO29PB2F2	262	IO48PB3F3	212
IO06PB0F0	332	IO30NB2F2	259	IO49NB3F3	207
IO08NB0F0	325	IO30PB2F2	260	IO49PB3F3	208
IO08PB0F0	326	IO31NB2F2	255	IO51NB3F3	205
IO10NB0F0	323	IO31PB2F2	256	IO51PB3F3	206
IO10PB0F0	324	IO33NB2F2	249	IO52NB3F3	201
IO12NB0F0/HCLKAN	319	IO33PB2F2	250	IO52PB3F3	202
IO12PB0F0/HCLKAP	320	IO34NB2F2	253	IO53NB3F3	199
IO13NB0F0/HCLKBN	313	IO34PB2F2	254	IO53PB3F3	200
IO13PB0F0/HCLKBP	314	IO35NB2F2	247	IO54NB3F3	195
Bank 1		IO35PB2F2	248	IO54PB3F3	196
IO14NB1F1/HCLKCN	305	IO36NB2F2	243	IO55NB3F3	193
IO14PB1F1/HCLKCP	306	IO36PB2F2	244	IO55PB3F3	194
IO15NB1F1/HCLKDN	299	IO37NB2F2	241	IO56NB3F3	187
IO15PB1F1/HCLKDP	300	IO37PB2F2	242	IO56PB3F3	188
IO16NB1F1	289	IO38NB2F2	237	IO57NB3F3	189
IO16PB1F1	290	IO38PB2F2	238	IO57PB3F3	190
IO17NB1F1	295	IO39NB2F2	235	IO59NB3F3	183
IO17PB1F1	296	IO39PB2F2	236	IO59PB3F3	184
IO18NB1F1	287	IO41NB2F2	231	IO60NB3F3	181
IO18PB1F1	288	IO41PB2F2	232	IO60PB3F3	182
IO20NB1F1	283	IO42NB2F2	229	IO61NB3F3	179
IO20PB1F1	284	IO42PB2F2	230	IO61PB3F3	180
IO22NB1F1	277	IO43NB2F2	225	Bank 4	
IO22PB1F1	278	IO43PB2F2	226	IO62NB4F4	172
IO23NB1F1	281	IO44NB2F2	223	IO62PB4F4	173
IO23PB1F1	282	IO44PB2F2	224	IO64NB4F4	166

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

CG624		
AX2000 Function	Pin Number	
IO229PB5F21	AD10	
IO230NB5F21	V11	
IO233NB5F21	AD7	
IO233PB5F21	AD8	
IO234NB5F21	V9	
IO234PB5F21	V10	
IO236NB5F22	AC9	
IO238NB5F22	W8	
IO238PB5F22	W9	
IO239NB5F22	AE4	
IO239PB5F22	AE5	
IO240NB5F22	AB9	
IO242NB5F22	AA9	
IO242PB5F22	Y9	
IO243NB5F22	AD5	
IO243PB5F22	AD6	
IO244NB5F22	U8	
IO246NB5F23	AB8	
IO246PB5F23	AC8	
IO247NB5F23	AB7	
IO247PB5F23	AC7	
IO250NB5F23	AA8	
IO250PB5F23	Y8	
IO251NB5F23	V8	
IO251PB5F23	V7	
IO252NB5F23	Y7	
IO252PB5F23	W7	
IO253NB5F23	AC5	
IO253PB5F23	AC6	
IO254NB5F23	Y6	
IO254PB5F23	W6	
IO256NB5F23	AB6*	

CG624	
AX2000 Function	Pin Number
IO256PB5F23	AA6*
Bank 6	
IO257NB6F24	Y3
IO257PB6F24	AA3
IO258NB6F24	V3
IO258PB6F24	W3
IO259NB6F24	AA2
IO259PB6F24	AB2
IO260NB6F24	V6*
IO260PB6F24	W4*
IO262NB6F24	U4
IO262PB6F24	V4
IO263NB6F24	Y5
IO263PB6F24	W5
IO268NB6F25	U6
IO268PB6F25	U5
IO269PB6F25	U3
IO272NB6F25	T2
IO272PB6F25	U2
IO273NB6F25	W2
IO273PB6F25	Y2
IO274NB6F25	R6
IO274PB6F25	Т6
IO275NB6F25	T7
IO275PB6F25	U7
IO277NB6F25	V2
IO278NB6F26	R4
IO278PB6F26	T4
IO279PB6F26	R3
IO280NB6F26	R5
IO281NB6F26	AA1
IO281PB6F26	AB1

00004				
CG624				
AX2000 Function	Pin Number			
IO284NB6F26	R8			
IO284PB6F26	Т8			
IO285NB6F26	W1			
IO285PB6F26	Y1			
IO286NB6F26	P2			
IO286PB6F26	R2			
IO287NB6F26	T1			
IO287PB6F26	U1			
IO288NB6F26	P5			
IO290NB6F27	P6			
IO291NB6F27	P1			
IO291PB6F27	R1			
IO292NB6F27	P7			
IO292PB6F27	R7			
IO293NB6F27	M1			
IO293PB6F27	N1			
IO294NB6F27	P8			
IO296NB6F27	N3			
IO296PB6F27	P3			
IO298NB6F27	N4			
IO298PB6F27	P4			
IO299NB6F27	M2			
IO299PB6F27	N2			
Bank 7				
IO300NB7F28	P9*			
IO300PB7F28	N6*			
IO302NB7F28	M6			
IO304NB7F28	N8			
IO304PB7F28	N7			
IO308NB7F28	M4			
IO309NB7F28	L3			
IO309PB7F28	M3			

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O. Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O. Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

4 – Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Revision	Changes	Page
Revision 18 (March 2012)	Table 2-1 • Absolute Maximum Ratings was updated to correct the maximum DC core supply voltage (VCCA) from 1.6 V to 1.7 V (SAR 36786). The maximum input voltage (VI) was corrected from 3.75 V to 4.1 V (SAR 35419).	
	Values for tristate leakage current IOZ, and IIH and IIL were added to Table 2-3 • Standby Current (SARs 35774, 32021).	2-2
	Figure 2-2 • VCCPLX and VCOMPLX Power Supply Connect was updated to correct the units for the resistance from "W" to Ω (SAR 36415).	2-9
	In the Introduction to the "User I/Os" section, the following sentence was added to clarify the slew rate setting (SAR 34943): The slew rate setting is effective for both rising and falling edges.	2-11
	Figure 2-3 • Use of an External Resistor for 5 V Tolerance was revised to show the VCCI and GND clamp diodes. The explanatory text above the figure was revised as well (SAR 34942).	2-13
	EQ 3 for 5 V tolerance was corrected to change Vdiode from 0.6 V to 0.7 V (SAR 36786).	2-13
	Additional information was added to the "Using the Weak Pull-Up and Pull-Down Circuits" section to clarify how the weak pull-up and pull-down resistors are physically implemented (SAR 34945).	2-17
	The description for the C _{INCLK} parameter in Table 2-18 • Input Capacitance was changed from "Input capacitance on clock pin" to "Input capacitance on HCLK and RCLK pin" (SAR 34944).	2-21
	Table 2-19 • I/O Input Rise Time and Fall Time* is new (SAR 34942).	2-21
-	The minimum VIL for 1.5 V LVCMOS and PCI was corrected from –0.5 to –0.3 in Table 2-29 • DC Input and Output Levels and Table 2-33 • DC Input and Output Levels (SAR 34358).	2-38, 2-40
	Support for simulating the GCLR/ GPSET feature in the Axcelerator Family was added in Libero software v9.0 SPI1. Reference to the section explaining this in the <i>Antifuse Macro Library Guide</i> was added to the "R-Cell" section (SAR 26413).	2-58
	The enable signal in Figure 2-32 • R-Cell Delays was corrected to show it is active low rather than active high (SAR 34946).	2-59
Revision 17 (September 2011)	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "Axcelerator Family Device Status" table indicates the status for each device in the device family.	iii
	The "Features" section, "Programmable Interconnect Element" section, and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 32865).	i, 1-1, 2-108