E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	32256
Number of Logic Elements/Cells	-
Total RAM Bits	294912
Number of I/O	586
Number of Gates	200000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax2000-fg896i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description

Figure 1-8 • AX Routing Structures

Global Resources

Each family member has three types of global signals available to the designer: HCLK, CLK, and GCLR/GPSET. There are four hardwired clocks (HCLK) per device that can directly drive the clock input of each R-cell. Each of the four routed clocks (CLK) can drive the clock, clear, preset, or enable pin of an R-cell or any input of a C-cell (Figure 1-3 on page 1-2).

Global clear (GCLR) and global preset (GPSET) drive the clear and preset inputs of each R-cell as well as each I/O Register on a chip-wide basis at power-up.

Each HCLK and CLK has an associated analog PLL (a total of eight per chip). Each embedded PLL can be used for clock delay minimization, clock delay adjustment, or clock frequency synthesis. The PLL is capable of operating with input frequencies ranging from 14 MHz to 200 MHz and can generate output frequencies between 20 MHz and 1 GHz. The clock can be either divided or multiplied by factors ranging from 1 to 64. Additionally, multiply and divide settings can be used in any combination as long as the resulting clock frequency is between 20 MHz and 1 GHz. Adjacent PLLs can be cascaded to create complex frequency combinations.

The PLL can be used to introduce either a positive or a negative clock delay of up to 3.75 ns in 250 ps increments. The reference clock required to drive the PLL can be derived from three sources: external input pad (either single-ended or differential), internal logic, or the output of an adjacent PLL.

Low Power (LP) Mode

The AX architecture was created for high-performance designs but also includes a low power mode (activated via the LP pin). When the low power mode is activated, I/O banks can be disabled (inputs disabled, outputs tristated), and PLLs can be placed in a power-down mode. All internal register states are maintained in this mode. Furthermore, individual I/O banks can be configured to opt out of the LP mode, thereby giving the designer access to critical signals while the rest of the chip is in low power mode.

The power can be further reduced by providing an external voltage source (V_{PUMP}) to the device to bypass the internal charge pump (See "Low Power Mode" on page 2-106 for more information).

Using the Differential I/O Standards

Differential I/O macros should be instantiated in the netlist. The settings for these I/O standards cannot be changed inside Designer. Note that there are no tristated or bidirectional I/O buffers for differential standards.

Using the Voltage-Referenced I/O Standards

Using these I/O standards is similar to that of single-ended I/O standards. Their settings can be changed in Designer.

Using DDR (Double Data Rate)

In Double Data Rate mode, new data is present on every transition of the clock signal. Clock and data lines have identical bandwidth and signal integrity requirements, making it very efficient for implementing very high-speed systems.

To implement a DDR, users need to:

- 1. Instantiate an input buffer (with the required I/O standard)
- 2. Instantiate the DDR_REG macro (Figure 2-6)
- 3. Connect the output from the Input buffer to the input of the DDR macro

Figure 2-6 • DDR Register

Macros for Specific I/O Standards

There are different macro types for any I/O standard or feature that determine the required VCCI and VREF voltages for an I/O. The generic buffer macros require the LVTTL standard with slow slew rate and 24 mA-drive strength. LVTTL can support high slew rate but this should only be used for critical signals.

Most of the macro symbols represent variations of the six generic symbol types:

- CLKBUF: Clock Buffer
- HCLKBUF: Hardwired Clock Buffer
- INBUF: Input Buffer
- OUTBUF: Output Buffer
- TRIBUF: Tristate Buffer
- BIBUF: Bidirectional Buffer

Other macros include the following:

- Differential I/O standard macros: The LVDS and LVPECL macros either have a pair of differential inputs (e.g. INBUF_LVDS) or a pair of differential outputs (e.g. OUTBUF_LVPECL).
- Pull-up and pull-down variations of the INBUF, BIBUF, and TRIBUF macros. These are available only with TTL and LVCMOS thresholds. They can be used to model the behavior of the pull-up and pull-down resistors available in the architecture. Whenever an input pin is left unconnected, the output pin will either go high or low rather than unknown. This allows users to leave inputs unconnected without having the negative effect on simulation of propagating unknowns.
- DDR_REG macro. It can be connected to any I/O standard input buffers (i.e. INBUF) to implement a double data rate register. Designer software will map it to the I/O module in the same way it maps the other registers to the I/O module.

Figure 2-10 • Output Buffer Delays

Microsemi

Detailed Specifications

Table 2-22 • 3.3 V LVTTL I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C (continued)

			peed	-1 Speed		Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVTTL Outp	out Drive Strength =3 (16 mA) / High Slew Rate							
t _{DP}	Input Buffer		1.68		1.92		2.26	ns
t _{PY}	Output Buffer		3.12		3.56		4.18	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		3.54		4.04		4.75	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		2.78		3.17		3.72	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		1.91		1.93		1.93	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		2.58		2.59		2.60	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for both 33 MHz and 66 MHz PCI bus applications. It uses an LVTTL input buffer and a push-pull output buffer. The input and output buffers are 5 V tolerant with the aid of external components. Axcelerator 3.3 V PCI and 3.3 V PCI-X buffers are compliant with the PCI Local Bus Specification Rev. 2.1.

The PCI Compliance Specification requires the clamp diodes to be able to withstand for 11 ns, -3.5 V in undershoot, and 7.1 V in overshoot.

Table 2-33 • DC Input and Output Levels

	VIL		VIH		VOL	VOH	IOL	IOH
	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA
PCI	-0.3	0.3 VCCI	0.5 VCCI	VCCI + 0.5	(per PCI specification)			
PCI-X	-0.5	0.35 VCCI	0.5 VCCI	VCCI + 0.5		(per PCI specifi	cation)	

AC Loadings

Figure 2-18 • AC Test Loads

Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input Low (V) Input High (V) N		VREF (typ) (V)	C _{load} (pF)
(Pe	r PCI Spec and PCI-X Sp	N/A	10	

Note: * *Measuring Point* = *VTRIP*

PLLRCLK and PLLHCLK

PLLRCLK (PLLHCLK) is used to drive global resource CLK (HCLK) from a PLL (Figure 2-44).

Figure 2-44 • PLLRCLK and PLLHCLK

Using Global Resources with PLLs

Each global resource has an associated PLL at its root. For example, PLLA can drive HCLKA, PLLE can drive CLKE, etc. (Figure 2-45).

Figure 2-45 • Example of HCLKA Driven from a PLL with External Clock Source

In addition, each clock pin of the package can be used to drive either its associated global resource or PLL. For example, package pins CLKEP and CLKEN can drive either the RefCLK input of PLLE or CLKE.

There are two macros required when interfacing the embedded PLLs with the global resources: PLLINT and PLLOUT.

PLLINT

This macro is used to drive the RefCLK input of the PLL internally from user signals.

PLLOUT

This macro is used to connect either the CLK1 or CLK2 output of a PLL to the regular routing network (Figure 2-46).

Figure 2-46 • Example of PLLINT and PLLOUT Usage

Table 2-102 • Sixteen FIFO Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		–2 S	peed	–1 S	peed	Std S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
FIFO Module	Fiming							
t _{WSU}	Write Setup		16.32		18.60		21.86	ns
t _{WHD}	Write Hold		0.00		0.00		0.00	ns
t _{WCKH}	WCLK High		0.75		0.75		0.75	ns
t _{WCKL}	WCLK Low		13.40		13.40		13.40	ns
t _{WCKP}	Minimum WCLK Period	14.15		14.15		14.15		ns
t _{RSU}	Read Setup		17.16		19.54		22.97	ns
t _{RHD}	Read Hold		0.00		0.00		0.00	ns
t _{RCKH}	RCLK High		0.73		0.73		0.73	ns
t _{RCKL}	RCLK Low		14.41		14.41		14.41	ns
t _{RCKP}	Minimum RCLK period	15.14		15.14		15.14		ns
t _{CLRHF}	Clear High		0.00		0.00		0.00	ns
t _{CLR2FF}	Clear-to-flag (EMPTY/FULL)		1.92		2.18		2.57	ns
t _{CLR2AF}	Clear-to-flag (AEMPTY/AFULL)		4.39		5.00		5.88	ns
t _{CK2FF}	Clock-to-flag (EMPTY/FULL)		2.13		2.42		2.85	ns
t _{CK2AF}	Clock-to-flag (AEMPTY/AFULL)		5.04		5.75		6.75	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		12.08		13.76		16.17	ns
t _{RCK2RD2}	RCLK-To-OUT (Nonpipelined)		12.83		14.62		17.18	ns

Note: Timing data for these sixteen cascaded FIFO blocks uses a depth of 65,536. For all other combinations, use Microsemi's timing software.

Building RAM and FIFO Modules

RAM and FIFO modules can be generated and included in a design in two different ways:

- Using the SmartGen Core Generator where the user defines the depth and width of the FIFO/RAM, and then instantiates this block into the design (refer to the *SmartGen, FlashROM, Analog System Builder, and Flash Memory System Builder* User's Guide for more information).
- The alternative is to instantiate the RAM/FIFO blocks manually, using inverters for polarity control and tying all unused data bits to ground.

Other Architectural Features

Low Power Mode

Although designed for high performance, the AX architecture also allows the user to place the device into a low power mode. Each I/O bank in an Axcelerator device can be configured individually, when in low power mode, to tristate all outputs, disable inputs, or both. The low power mode is activated by asserting the LP pin, which is grounded in normal operation.

While in the low power mode, the device is still fully functional and all internal logic states are preserved. This allows a user to disable all but a few signals and operate the part in a low-frequency, watchdog

throughout the fabric of the device and may be programmed by the user to thwart attempts to reverse engineer the device by attempting to exploit either the programming or probing interfaces. Both invasive and noninvasive attacks against an Axcelerator device that access or bypass these security fuses will destroy access to the rest of the device. (refer to the *Design Security in Nonvolatile Flash and Antifuse FPGAs* white paper).

Look for this symbol to ensure your valuable IP is protected with highest level of security in the industry.

Figure 2-69 • FuseLock Logo

To ensure maximum security in Axcelerator devices, it is recommended that the user program the device security fuse (SFUS). When programmed, the Silicon Explorer II testing probes are disabled to prevent internal probing, and the programming interface is also disabled. All JTAG public instructions are still accessible by the user.

For more information, refer to the Implementation of Security in Actel Antifuse FPGAs application note.

Global Set Fuse

The Global Set Fuse determines if all R-cells and I/O registers (InReg, OutReg, and EnReg) are either cleared or preset by driving the GCLR and GPSET inputs of all R-cells and I/O Registers (Figure 2-31 on page 2-58). Default setting is to clear all registers (GCLR = 0 and GPSET =1) at device power-up. When the GBSETFUS option is checked during FUSE file generation, all registers are preset (GCLR = 1 and GPSET = 0). A local CLR or PRESET will take precedence over this setting. Both pins are pulled High during normal device operation. For use details, see the Libero IDE online help.

Silicon Explorer II Probe Interface

Silicon Explorer II is an integrated hardware and software solution that, in conjunction with the Designer tools, allows users to examine any of the internal nets (except I/O registers) of the device while it is operating in a prototype or a production system. The user can probe up to four nodes at a time without changing the placement and routing of the design and without using any additional device resources. Highlighted nets in Designer's ChipPlanner can be accessed using Silicon Explorer II in order to observe their real time values.

Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the debug cycle. In addition, Silicon Explorer II does not require relayout or additional MUXes to bring signals out to external pins, which is necessary when using programmable logic devices from other suppliers. By eliminating multiple place-and-route program cycles, the integrity of the design is maintained throughout the debug process.

Each member of the Axcelerator family has four external pads: PRA, PRB, PRC, and PRD. These can be used to bring out four probe signals from the Axcelerator device (note that the AX125 only has two probe signals that can be observed: PRA and PRB). Each core tile has up to two probe signals. To disallow probing, the SFUS security fuse in the silicon signature has to be programmed (see "Special Fuses" on page 2-108).

Silicon Explorer II connects to the host PC using a standard serial port connector. Connections to the circuit board are achieved using a nine-pin D-Sub connector (Figure 1-9 on page 1-7). Once the design has been placed-and-routed, and the Axcelerator device has been programmed, Silicon Explorer II can be connected and the Explorer software can be launched.

Silicon Explorer II comes with an additional optional PC hosted tool that emulates an 18-channel logic analyzer. Four channels are used to monitor four internal nodes, and 14 channels are available to probe external signals. The software included with the tool provides the user with an intuitive interface that allows for easy viewing and editing of signal waveforms.

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

FG484		FG484		FG484	
AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function	Pin Number
IO54PB2F5	H22	IO72PB3F6	P20	IO90NB4F8	Y17
IO55NB2F5	L17	IO73PB3F6	R19	IO90PB4F8	Y18
IO55PB2F5	K17	IO74NB3F7	V21	IO91NB4F8	V15
IO56NB2F5	K21	IO74PB3F7	U21	IO91PB4F8	V16
IO56PB2F5	K22	IO75NB3F7	V22	IO92PB4F8	AB17
IO58NB2F5	L20	IO75PB3F7	U22	IO93NB4F8	Y15
IO58PB2F5	K20	IO76NB3F7	U20	IO93PB4F8	Y16
IO59NB2F5	L18	IO76PB3F7	T20	IO94NB4F9	AA16
IO59PB2F5	K18	IO77NB3F7	R17	IO94PB4F9	AA17
IO60NB2F5	M21	IO77PB3F7	P17	IO95NB4F9	AB14
IO60PB2F5	L21	IO78NB3F7	W21	IO95PB4F9	AB15
IO61NB2F5	L16	IO78PB3F7	W22	IO96NB4F9	W15
IO61PB2F5	K16	IO79NB3F7	T18	IO96PB4F9	W16
IO62NB2F5	M19	IO79PB3F7	R18	IO97NB4F9	AA13
IO62PB2F5	L19	IO80NB3F7	W20	IO97PB4F9	AB13
Bank 3		IO80PB3F7	V20	IO98NB4F9	AA14
IO63NB3F6	N16	IO81NB3F7	U19	IO98PB4F9	AA15
IO63PB3F6	M16	IO81PB3F7	T19	IO100NB4F9	Y14
IO64NB3F6	P22	IO82NB3F7	U18	IO100PB4F9	W14
IO64PB3F6	N22	IO82PB3F7	V19	IO101NB4F9	Y12
IO65NB3F6	N20	IO83NB3F7	R16	IO101PB4F9	Y13
IO65PB3F6	M20	IO83PB3F7	P16	IO102NB4F9	AA11
IO66NB3F6	P21	Bank 4		IO102PB4F9	AA12
IO66PB3F6	N21	IO84NB4F8	AB18	IO103NB4F9/CLKEN	V12
IO67NB3F6	N18	IO84PB4F8	AB19	IO103PB4F9/CLKEP	V13
IO67PB3F6	N19	IO85NB4F8	T15	IO104NB4F9/CLKFN	W11
IO68NB3F6	T22	IO85PB4F8	T16	IO104PB4F9/CLKFP	W12
IO68PB3F6	R22	IO86NB4F8	AA18	Bank 5	
IO69NB3F6	N17	IO86PB4F8	AA19	IO105NB5F10/CLKGN	U10
IO69PB3F6	M17	IO87NB4F8	W17	IO105PB5F10/CLKGP	U11
IO70NB3F6	T21	IO87PB4F8	V17	IO106NB5F10/CLKHN	V9
IO70PB3F6	R21	IO88NB4F8	Y19	IO106PB5F10/CLKHP	V10
IO71NB3F6	P18	IO88PB4F8	W18	IO107NB5F10	Y10
IO71PB3F6	P19	IO89NB4F8	U14	IO107PB5F10	Y11
IO72NB3F6	R20	IO89PB4F8	U15	IO108NB5F10	AA9

FG484		FG484			
AX500 Function	Pin Number	AX500 Function	Pin Number		
VCCA	P11	VCCIB2	C22		
VCCA	P12	VCCIB2	J15		
VCCA	P13	VCCIB2	K15		
VCCA	Т6	VCCIB2	L15		
VCCA	U17	VCCIB3	M15		
VCCPLA	F10	VCCIB3	N15		
VCCPLB	G9	VCCIB3	P15		
VCCPLC	D13	VCCIB3	Y21		
VCCPLD	G13	VCCIB3	Y22		
VCCPLE	U13	VCCIB4	AA20		
VCCPLF	T14	VCCIB4	AB20		
VCCPLG	W10	VCCIB4	R12		
VCCPLH	T10	VCCIB4	R13		
VCCDA	D14	VCCIB4	R14		
VCCDA	D5	VCCIB5	AA3		
VCCDA	F16	VCCIB5	AB3		
VCCDA	G12	VCCIB5	R10		
VCCDA	L4	VCCIB5	R11		
VCCDA	M18	VCCIB5	R9		
VCCDA	T11	VCCIB6	M8		
VCCDA	T17	VCCIB6	N8		
VCCDA	U7	VCCIB6	P8		
VCCDA	V14	VCCIB6	Y1		
VCCDA	V8	VCCIB6	Y2		
VCCIB0	A3	VCCIB7	C1		
VCCIB0	B3	VCCIB7	C2		
VCCIB0	H10	VCCIB7	J8		
VCCIB0	H11	VCCIB7	K8		
VCCIB0	H9	VCCIB7	L8		
VCCIB1	A20	VCOMPLA	D10		
VCCIB1	B20	VCOMPLB	G10		
VCCIB1	H12	VCOMPLC	E12		
VCCIB1	H13	VCOMPLD	G14		
VCCIB1	H14	VCOMPLE	W13		
VCCIB2	C21	VCOMPLF	T13		

FG484						
AX500 Function	Pin Number					
VCOMPLG	V11					
VCOMPLH	Т9					
VPUMP	D17					

FG676		FG676		FG676	
AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function	Pin Number
IO153PB7F14	M6	GND	A8	GND	L11
IO154NB7F14	K2	GND	AC23	GND	L12
IO154PB7F14	L2	GND	AC4	GND	L13
IO155NB7F14	K3	GND	AD24	GND	L14
IO155PB7F14	L3	GND	AD3	GND	L15
IO156NB7F14	L5	GND	AE2	GND	L16
IO156PB7F14	L4	GND	AE25	GND	L17
IO157NB7F14	L6	GND	AF1	GND	M10
IO157PB7F14	L7	GND	AF13	GND	M11
IO158NB7F15	J1	GND	AF14	GND	M12
IO158PB7F15	K1	GND	AF19	GND	M13
IO159NB7F15	J4	GND	AF26	GND	M14
IO159PB7F15	K4	GND	AF8	GND	M15
IO160NB7F15	H2	GND	B2	GND	M16
IO160PB7F15	J2	GND	B25	GND	M17
IO161NB7F15	K6	GND	B26	GND	N1
IO161PB7F15	K5	GND	C24	GND	N10
IO162NB7F15	H3	GND	C3	GND	N11
IO162PB7F15	J3	GND	G20	GND	N12
IO163NB7F15	G2	GND	G7	GND	N13
IO163PB7F15	G1	GND	H1	GND	N14
IO164NB7F15	G4	GND	H19	GND	N15
IO164PB7F15	H4	GND	H26	GND	N16
IO165NB7F15	F3	GND	H8	GND	N17
IO165PB7F15	G3	GND	J18	GND	N26
IO166NB7F15	E2	GND	J9	GND	P1
IO166PB7F15	F2	GND	K10	GND	P10
IO167NB7F15	F5	GND	K11	GND	P11
IO167PB7F15	G5	GND	K12	GND	P12
Dedicated I/	0	GND	K13	GND	P13
GND	A1	GND	K14	GND	P14
GND	A13	GND	K15	GND	P15
GND	A14	GND	K16	GND	P16
GND	A19	GND	K17	GND	P17
GND	A26	GND	L10	GND	P26

FG676		FG676		
AX500 Function	Pin Number	AX500 Function	Pin Number	
VCCIB3	T19	VCCIB7	L8	
VCCIB3	U19	VCCIB7	M8	
VCCIB3	U20	VCCIB7	N8	
VCCIB3	V19	VCCPLA	E12	
VCCIB3	V20	VCCPLB	F13	
VCCIB3	W20	VCCPLC	E15	
VCCIB4	W14	VCCPLD	G14	
VCCIB4	W15	VCCPLE	AF15	
VCCIB4	W16	VCCPLF	AA14	
VCCIB4	W17	VCCPLG	AF12	
VCCIB4	W18	VCCPLH	AB13	
VCCIB4	Y17	VCOMPLA	D12	
VCCIB4	Y18	VCOMPLB	G13	
VCCIB4	Y19	VCOMPLC	D15	
VCCIB5	W10	VCOMPLD	F14	
VCCIB5	W11	VCOMPLE	AD15	
VCCIB5	W12	VCOMPLF	AB14	
VCCIB5	W13	VCOMPLG	AD12	
VCCIB5	W9	VCOMPLH	Y13	
VCCIB5	Y10	VPUMP	E22	
VCCIB5	Y8			
VCCIB5	Y9			
VCCIB6	P8			
VCCIB6	R8			
VCCIB6	T8			
VCCIB6	U7			
VCCIB6	U8			
VCCIB6	V7			
VCCIB6	V8			
VCCIB6	W7			
VCCIB7	H7			
VCCIB7	J7			
VCCIB7	J8			
VCCIB7	K7			
VCCIB7	К8			

Microsemi

FG676		FG676		FG676		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number	
NC	D13	VCCA	Т9	VCCIB0	G10	
NC	D14	VCCA	U18	VCCIB0	G8	
PRA	E13	VCCA	U9	VCCIB0	G9	
PRB	B14	VCCA	V10	VCCIB0	H10	
PRC	Y14	VCCA	V11	VCCIB0	H11	
PRD	AD14	VCCA	V12	VCCIB0	H12	
ТСК	E5	VCCA	V13	VCCIB0	H13	
TDI	B3	VCCA	V14	VCCIB0	H9	
TDO	G6	VCCA	V15	VCCIB1	G17	
TMS	D4	VCCA	V16	VCCIB1	G18	
TRST	A2	VCCA	V17	VCCIB1	G19	
VCCA	AB4	VCCPLA	E12	VCCIB1	H14	
VCCA	AF24	VCCPLB	F13	VCCIB1	H15	
VCCA	C1	VCCPLC	E15	VCCIB1	H16	
VCCA	C26	VCCPLD	G14	VCCIB1	H17	
VCCA	J10	VCCPLE	AF15	VCCIB1	H18	
VCCA	J11	VCCPLF	AA14	VCCIB2	H20	
VCCA	J12	VCCPLG	AF12	VCCIB2	J19	
VCCA	J13	VCCPLH	AB13	VCCIB2	J20	
VCCA	J14	VCCDA	A11	VCCIB2	K19	
VCCA	J15	VCCDA	A3	VCCIB2	K20	
VCCA	J16	VCCDA	AB22	VCCIB2	L19	
VCCA	J17	VCCDA	AB5	VCCIB2	M19	
VCCA	K18	VCCDA	AD10	VCCIB2	N19	
VCCA	K9	VCCDA	AD11	VCCIB3	P19	
VCCA	L18	VCCDA	AD13	VCCIB3	R19	
VCCA	L9	VCCDA	AD16	VCCIB3	T19	
VCCA	M18	VCCDA	AD17	VCCIB3	U19	
VCCA	M9	VCCDA	B1	VCCIB3	U20	
VCCA	N18	VCCDA	B11	VCCIB3	V19	
VCCA	N9	VCCDA	B17	VCCIB3	V20	
VCCA	P18	VCCDA	C16	VCCIB3	W20	
VCCA	P9	VCCDA	D24	VCCIB4	W14	
VCCA	R18	VCCDA	E14	VCCIB4	W15	
VCCA	R9	VCCDA	P2	VCCIB4	W16	
VCCA	T18	VCCDA	P23	VCCIB4	W17	

CQ208

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

CQ256		CQ256		CQ256	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
IO242NB5F22	74	IO315PB7F29	21	GND	121
IO242PB5F22	75	IO316NB7F29	18	GND	128
IO243NB5F22	70	IO316PB7F29	19	GND	129
IO243PB5F22	71	IO317NB7F29	14	GND	132
IO244NB5F22	68	IO317PB7F29	15	GND	139
IO244PB5F22	69	IO318NB7F29	12	GND	145
Bank 6	•	IO318PB7F29	13	GND	151
IO257PB6F24	60	IO320NB7F29	8	GND	157
IO258NB6F24	58	IO320PB7F29	9	GND	161
IO258PB6F24	59	Bank 7	•	GND	165
Bank 6		IO341NB7F31	6	GND	171
IO279NB6F26	56	IO341PB7F31	7	GND	177
IO279PB6F26	57	Dedicated I/O	•	GND	183
IO280NB6F26	52	GND	1	GND	190
IO280PB6F26	53	GND	5	GND	192
IO281NB6F26	50	GND	11	GND	193
IO281PB6F26	51	GND	17	GND	201
IO282NB6F26	46	GND	23	GND	207
IO282PB6F26	47	GND	29	GND	213
IO284NB6F26	44	GND	33	GND	219
IO284PB6F26	45	GND	37	GND	225
IO285NB6F26	40	GND	43	GND	231
IO285PB6F26	41	GND	49	GND	239
IO286NB6F26	38	GND	55	GND	245
IO286PB6F26	39	GND	62	GND	256
IO287NB6F26	34	GND	64	PRA	227
IO287PB6F26	35	GND	65	PRB	226
Bank 7 9		GND	73	PRC	99
IO310NB7F29	30	GND	79	PRD	98
IO310PB7F29	31	GND	85	тск	253
IO311NB7F29	26	GND	91	TDI	252
IO311PB7F29	27	GND	97	TDO	250
IO312NB7F29	24	GND	103	TMS	254
IO312PB7F29	25	GND	109	TRST	255
IO315NB7F29	20	GND	115	VCCA	3

CQ352		CQ352		CQ352	
AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Number
IO64PB4F4	167	IO85PB5F5	105	IO106NB6F6	46
IO65NB4F4	170	IO86NB5F5	98	IO106PB6F6	47
IO65PB4F4	171	IO86PB5F5	99	Bank 7	
IO66NB4F4	164	IO87NB5F5	94	IO107NB7F7	40
IO66PB4F4	165	IO87PB5F5	95	IO107PB7F7	41
IO67NB4F4	160	IO89NB5F5	92	IO108NB7F7	42
IO67PB4F4	161	IO89PB5F5	93	IO108PB7F7	43
IO68NB4F4	158	Bank 6		IO109NB7F7	36
IO68PB4F4	159	IO90PB6F6	86	IO109PB7F7	37
IO70NB4F4	154	IO91NB6F6	84	IO110NB7F7	34
IO70PB4F4	155	IO91PB6F6	85	IO110PB7F7	35
IO72NB4F4	152	IO92NB6F6	78	IO111NB7F7	30
IO72PB4F4	153	IO92PB6F6	79	IO111PB7F7	31
IO73NB4F4	146	IO93NB6F6	82	IO113NB7F7	28
IO73PB4F4	147	IO93PB6F6	83	IO113PB7F7	29
IO74NB4F4/CLKEN	142	IO95NB6F6	76	IO114NB7F7	24
IO74PB4F4/CLKEP	143	IO95PB6F6	77	IO114PB7F7	25
IO75NB4F4/CLKFN	136	IO96NB6F6	72	IO115NB7F7	22
IO75PB4F4/CLKFP	137	IO96PB6F6	73	IO115PB7F7	23
Bank 5		IO97NB6F6	70	IO116NB7F7	18
IO76NB5F5/CLKGN	128	IO97PB6F6	71	IO116PB7F7	19
IO76PB5F5/CLKGP	129	IO98NB6F6	66	IO117NB7F7	16
IO77NB5F5/CLKHN	122	IO98PB6F6	67	IO117PB7F7	17
IO77PB5F5/CLKHP	123	IO99NB6F6	64	IO118NB7F7	12
IO78NB5F5	112	IO99PB6F6	65	IO118PB7F7	13
IO78PB5F5	113	IO100NB6F6	60	IO119NB7F7	10
IO79NB5F5	118	IO100PB6F6	61	IO119PB7F7	11
IO79PB5F5	119	IO101NB6F6	58	IO121NB7F7	6
IO80NB5F5	110	IO101PB6F6	59	IO121PB7F7	7
IO80PB5F5	111	IO103NB6F6	54	IO123NB7F7	4
IO82NB5F5	106	IO103PB6F6	55	IO123PB7F7	5
IO82PB5F5	107	IO104NB6F6	52	Dedicated I/O	
IO84NB5F5	100	IO104PB6F6	53	GND	1
IO84PB5F5	101	IO105NB6F6	48	GND	9
IO85NB5F5	104	IO105PB6F6	49	GND	15

CG624		CG624		CG624	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
IO310NB7F29	N10	IO335PB7F31	H6	GND	AE1
IO310PB7F29	N9	IO337NB7F31	D2	GND	AE18
IO311NB7F29	K1	IO338NB7F31	J6	GND	AE2
IO311PB7F29	L1	IO338PB7F31	J5	GND	AE24
IO313NB7F29	M5	IO339NB7F31	F3	GND	AE25
IO316NB7F29	L6	IO339PB7F31	E3	GND	AE8
IO316PB7F29	L5	IO340NB7F31	G4*	GND	B1
IO317NB7F29	K2	IO340PB7F31	G3*	GND	B2
IO317PB7F29	L2	IO341NB7F31	K8	GND	B24
IO318NB7F29	K4	IO341PB7F31	L8	GND	B25
IO318PB7F29	L4	Dedicated	/0	GND	C10
IO320NB7F29	J3	GND	K5	GND	C16
IO321NB7F30	J2	GND	A18	GND	C23
IO321PB7F30	J1	GND	A2	GND	C3
IO323NB7F30	L7	GND	A24	GND	D22
IO323PB7F30	M7	GND	A25	GND	D4
IO324NB7F30	M9	GND	A8	GND	E10
IO324PB7F30	M8	GND	AA10	GND	E16
IO327NB7F30	F1	GND	AA16	GND	E21
IO327PB7F30	G1	GND	AA18	GND	E5
IO328NB7F30	K7	GND	AA21	GND	E8
IO328PB7F30	K6	GND	AA5	GND	H1
IO329NB7F30	D1	GND	AB22	GND	H21
IO329PB7F30	E1	GND	AB4	GND	H25
IO331PB7F30	G2	GND	AC10	GND	K21
IO332NB7F31	H3	GND	AC16	GND	K23
IO332PB7F31	H2	GND	AC23	GND	K3
IO333NB7F31	E2	GND	AC3	GND	L11
IO333PB7F31	F2	GND	AD1	GND	L12
IO334NB7F31	H4	GND	AD2	GND	L13
IO334PB7F31	J4	GND	AD24	GND	L14
IO335NB7F31	H5	GND	AD25	GND	L15
Note: *Not routed on th		Note: *Not routed on t	the same	Note: *Not routed on t	ho samo

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O. *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

e: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

CG624		CG624		
AX2000 Function	Pin Number	AX2000 Function	Pin Number	
VCCIB2	D23	VCCIB6	Т9	
VCCIB2	E22	VCCIB7	C1	
VCCIB2	K17	VCCIB7	C2	
VCCIB2	L17	VCCIB7	D3	
VCCIB2	M16	VCCIB7	E4	
VCCIB3	AA22	VCCIB7	K9	
VCCIB3	AB23	VCCIB7	L9	
VCCIB3	AC24	VCCIB7	M10	
VCCIB3	AC25	VCCPLA	E12	
VCCIB3	P16	VCCPLB	J12	
VCCIB3	R17	VCCPLC	E14	
VCCIB3	T17	VCCPLD	H14	
VCCIB4	AB21	VCCPLE	Y14	
VCCIB4	AC22	VCCPLF	U14	
VCCIB4	AD23	VCCPLG	Y12	
VCCIB4	AE23	VCCPLH	U12	
VCCIB4	T14	VCOMPLA	F12	
VCCIB4	U15	VCOMPLB	H12	
VCCIB4	U16	VCOMPLC	F14	
VCCIB5	AB5	VCOMPLD	J14	
VCCIB5	AC4	VCOMPLE	AA14	
VCCIB5	AD3	VCOMPLF	V14	
VCCIB5	AE3	VCOMPLG	AA12	
VCCIB5	T12	VCOMPLH	V12	
VCCIB5	U10	VPUMP	E20	
VCCIB5	U11	Note: *Not routed on t	the same	
VCCIB6	AA4	package layer a LGA pads as its	na to adjacent s differential	
VCCIB6	AB3	pair complement. Recommended to be used a a single-ended I/O.		
VCCIB6	AC1			
VCCIB6	AC2			
VCCIB6	P10			

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

R9

VCCIB6

Datasheet Information

Revision	Changes	Page
Revision 3 (continued)	The timing characteristics tables from pages 2-26 to 2-60 were updated.	2-26 to 2-60
	The "Global Resources" section was updated.	2-66
	The timing characteristics tables from pages 2-102 to 2-103 were updated.	2-102 to 2-103
	The "PQ208", "FG256", and "FG324" tables are new.	3-9,3-16, 3-84