

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	4224
Number of Logic Elements/Cells	-
Total RAM Bits	55296
Number of I/O	248
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax250-1fgg484m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

User I/Os²

Introduction

The Axcelerator family features a flexible I/O structure, supporting a range of mixed voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V) with its bank-selectable I/Os. Table 2-8 on page 2-12 contains the I/O standards supported by the Axcelerator family, and Table 2-10 on page 2-12 compares the features of the different I/O standards.

Each I/O provides programmable slew rates, drive strengths, and weak pull-up and weak pull-down circuits. The slew rate setting is effective for both rising and falling edges.

I/O standards, except 3.3 V PCI and 3.3 V PCI-X, are capable of hot insertion. 3.3 V PCI and 3.3 V PCI-X are 5 V tolerant with the aid of an external resistor.

The input buffer has an optional user-configurable delay element. The element can reduce or eliminate the hold time requirement for input signals registered within the I/O cell. The value for the delay is set on a bank-wide basis. Note that the delay WILL be a function of process variations as well as temperature and voltage changes.

Each I/O includes three registers: an input (InReg), an output (OutReg), and an enable register (EnReg). I/Os are organized into banks, and there are eight banks per device—two per side (Figure 2-6 on page 2-18). Each I/O bank has a common VCCI, the supply voltage for its I/Os.

For voltage-referenced I/Os, each bank also has a common reference-voltage bus, VREF. While VREF must have a common voltage for an entire I/O bank, its location is user-selectable. In other words, any user I/O in the bank can be selected to be a VREF.

The location of the VREF pin should be selected according to the following rules:

- Any pin that is assigned as a VREF can control a maximum of eight user I/O pad locations in each direction (16 total maximum) within the same I/O bank.
- I/O pad locations listed as no connects are counted as part of the 16 maximum. In many cases, this leads to fewer than eight user I/O package pins in each direction being controlled by a VREF pin.
- Dedicated I/O pins such as GND and VCCI are counted as part of the 16.
- The two user I/O pads immediately adjacent on each side of the VREF pin (four in total) may only be used as inputs. The exception is when there is a VCCI/GND pair separating the VREF pin and the user I/O pad location.
- The user does not need to assign VREF pins for OUTBUF and TRIBUF. VREF pins are needed only for input and bidirectional I/Os.

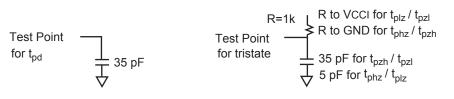
The differential amplifier supply voltage VCCDA should be connected to 3.3 V.

A user can gain access to the various I/O standards in three ways:

- Instantiate specific library macros that represent the desired specific standard.
- Use generic I/O macros and then use Designer's PinEditor to specify the desired I/O standards (please note that this is not applicable to differential standards).
- A combination of the first two methods.

Refer to the I/O Features in Axcelerator Family Devices application note and the Antifuse Macro Library Guide for more details.

^{2.} Do not use an external resister to pull the I/O above V_{CCI} for a higher logic "1" voltage level. The desired higher logic "1" voltage level will be degraded due to a small I/O current, which exists when the I/O is pulled up above V_{CCI} .

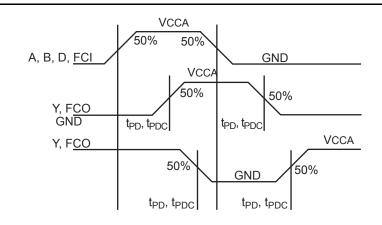

3.3 V LVTTL

Low-Voltage Transistor-Transistor Logic is a general purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer.

Table 2-20 • DC Input and Output Levels

,	VIL	VIH		VOL	VOH	IOL	ЮН
Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA
-0.3	0.8	2.0	3.6	0.4	2.4	24	-24

AC Loadings


Figure 2-15 • AC Test Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ) (V)	C _{load} (pF)
0	3.0	1.40	N/A	35

Note: * *Measuring Point* = VTRIP

Timing Model and Waveforms

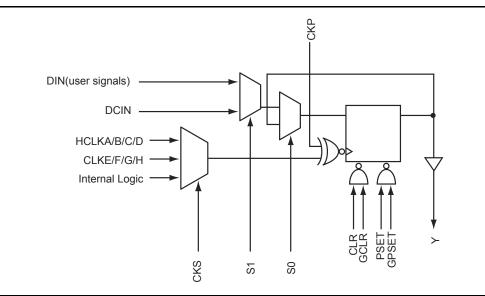
Timing Characteristics

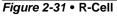
Table 2-62 • C-Cell

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

			peed	–1 S	peed	Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propagation Delays								
t _{PD}	Any input to output Y		0.74		0.84		0.99	ns
t _{PDC}	Any input to carry chain output (FCO)		0.57		0.64		0.76	ns
t _{PDB}	Any input through DB when one input is used		0.95		1.09		1.28	ns
t _{CCY}	Input to carry chain (FCI) to Y		0.61		0.69		0.82	ns
tcc	Input to carry chain (FCI) to carry chain output (FCO)		0.08		0.09		0.11	ns

R-Cell


Introduction


The R-cell, the sequential logic resource of the Axcelerator devices, is the second logic module type in the AX family architecture. It includes clock inputs for all eight global resources of the Axcelerator architecture as well as global presets and clears (Figure 2-31).

The main features of the R-cell include the following:

- Direct connection to the adjacent logic module through the hardwired connection DCIN. DCIN is driven by the DCOUT of an adjacent C-cell via the Direct-Connect routing resource, providing a connection with less than 0.1 ns of routing delay.
- The R-cell can be used as a standalone flip-flop. It can be driven by any C-cell or I/O modules through the regular routing structure (using DIN as a routable data input). This gives the option of using the R-Cell as a 2:1 MUXed flip-flop as well.
- Provision of data enable-input (S0).
- Independent active-low asynchronous clear (CLR).
- Independent active-low asynchronous preset (PSET). If both CLR and PSET are low, CLR has higher priority.
- · Clock can be driven by any of the following (CKP selects clock polarity):
 - One of the four high performance hardwired fast clocks (HCLKs)
 - One of the four routed clocks (CLKs)
 - User signals
- Global power-on clear (GCLR) and preset (GPSET), which drive each flip-flop on a chip-wide basis.
 - When the Global Set Fuse option in the Designer software is unchecked (by default), GCLR = 0 and GPSET = 1 at device power-up. When the option is checked, GCLR = 1 and GPSET = 0. Both pins are pulled High when the device is in user mode. Refer to the "Simulation Support for GCLR/GPSET in Axcelerator" section of the *Antifuse Macro Library Guide* for information on simulation support for GCLR and GPSET.
- S0, S1, PSET, and CLR can be driven by routed clocks CLKE/F/G/H or user signals.
- DIN and S1 can be driven by user signals.

As with the C-cell, the configuration of the R-cell to perform various functions is handled automatically for the user through Microsemi's extensive macro library (see the *Antifuse Macro Library Guide* for a complete listing of available AX macros).

Routing Specifications

Routing Resources

The routing structure found in Axcelerator devices enables any logic module to be connected to any other logic module while retaining high performance. There are multiple paths and routing resources that can be used to route one logic module to another, both within a SuperCluster and elsewhere on the chip.

There are four primary types of routing within the AX architecture: DirectConnect, CarryConnect, FastConnect, and Vertical and Horizontal Routing.

DirectConnect

DirectConnects provide a high-speed connection between an R-cell and its adjacent C-cell (Figure 2-35). This connection can be made from DCOUT of the C-cell to DCIN of the R-cell by configuring of the S1 line of the R-cell. This provides a connection that does not require an antifuse and has a delay of less than 0.1 ns.

Figure 2-35 • DirectConnect and CarryConnect

CarryConnect

CarryConnects are used to build carry chains for arithmetic functions (Figure 2-35). The FCO output of the right C-cell of a two-C-cell Cluster drives the FCI input of the left C-cell in the two-C-cell Cluster immediately below it. This pattern continues down both sides of each SuperCluster column.

Similar to the DirectConnects, CarryConnects can be built without an antifuse connection. This connection has a delay of less than 0.1 ns from the FCO of one two-C-cell cluster to the FCI of the two-C-cell cluster immediately below it (see the "Carry-Chain Logic" section on page 2-56 for more information).

FastConnect

For high-speed routing of logic signals, FastConnects can be used to build a short distance connection using a single antifuse (Figure 2-36 on page 2-62). FastConnects provide a maximum delay of 0.3 ns. The outputs of each logic module connect directly to the Output Tracks within a SuperCluster. Signals on the Output Tracks can then be routed through a single antifuse connection to drive the inputs of logic modules either within one SuperCluster or in the SuperCluster immediately below it.

		-2 Speed	-1 Speed	Std Speed	
Parameter	Description	Typical	Typical	Typical	Units
Predicted R	Routing Delays				
t _{DC}	DirectConnect Routing Delay, FO1	0.12	0.13	0.15	ns
t _{FC}	FastConnect Routing Delay, FO1	0.35	0.39	0.46	ns
t _{RD1}	Routing delay for FO1	0.50	0.56	0.66	ns
t _{RD2}	Routing delay for FO2	0.59	0.67	0.79	ns
t _{RD3}	Routing delay for FO3	0.70	0.80	0.94	ns
t _{RD4}	Routing delay for FO4	0.76	0.87	1.02	ns
t _{RD5}	Routing delay for FO5	0.98	1.11	1.31	ns
t _{RD6}	Routing delay for FO6	1.48	1.68	1.97	ns
t _{RD7}	Routing delay for FO7	1.65	1.87	2.20	ns
t _{RD8}	Routing delay for FO8	1.73	1.96	2.31	ns
t _{RD16}	Routing delay for FO16	2.58	2.92	3.44	ns
t _{RD32}	Routing delay for FO32	4.24	4.81	5.65	ns

Table 2-69 • AX2000 Predicted Routing Delays Worst-Case Commercial Conditions VCCA = 1.425 V, T_J = 70°C

Table 2-72 • AX500 Dedicated (Hardwired) Array Clock Networks Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

					• •			
		–2 S	-2 Speed -1 Speed		peed	Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (Hardwired) Array Clock Networks								
t _{HCKL}	Input Low to High		2.35		2.68		3.15	ns
t _{нскн}	Input High to Low		2.44		2.79		3.27	ns
t _{HPWH}	Minimum Pulse Width High	0.58		0.65		0.77		ns
t _{HPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{HCKSW}	Maximum Skew		0.06		0.07		0.08	ns
t _{HP}	Minimum Period	1.15		1.31		1.54		ns
t _{HMAX}	Maximum Frequency		870		763		649	MHz

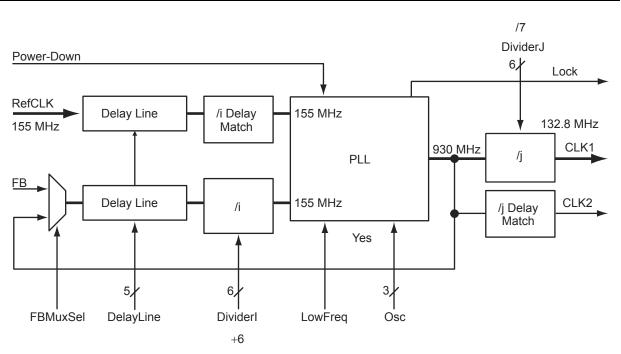
Table 2-73 • AX1000 Dedicated (Hardwired) Array Clock Networks

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

					peed	ed –1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units		
Dedicated (Hardwired) Array Clock Networks										
t _{HCKL}	Input Low to High		3.02		3.44		4.05	ns		
t _{HCKH}	Input High to Low		3.03		3.46		4.06	ns		
t _{HPWH}	Minimum Pulse Width High	0.58		0.65		0.77		ns		
t _{HPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns		
t _{HCKSW}	Maximum Skew		0.06		0.07		0.08	ns		
t _{HP}	Minimum Period	1.15		1.31		1.54		ns		
t _{HMAX}	Maximum Frequency		870		763		649	MHz		

Table 2-74 • AX2000 Dedicated (Hardwired) Array Clock Networks Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		–2 S	peed	–1 S	peed	Std S	speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (Hardwired) Array Clock Networks								
t _{HCKL}	Input Low to High		3.02		3.44		4.05	ns
t _{HCKH}	Input High to Low		3.03		3.46		4.06	ns
t _{HPWH}	Minimum Pulse Width High	0.58		0.65		0.77		ns
t _{HPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{HCKSW}	Maximum Skew		0.06		0.07		0.08	ns
t _{HP}	Minimum Period	1.15		1.31		1.54		ns
t _{HMAX}	Maximum Frequency		870		763		649	MHz



The ClockTileDist Cluster contains an HCLKMux (HM) module for each of the four HCLK trees and a CLKMux (CM) module for each of the CLK trees. The HCLK branches then propagate horizontally through the middle of the core tile to HCLKColDist (HD) modules in every SuperCluster column. The CLK branches propagate vertically through the center of the core tile to CLKRowDist (RD) modules in every SuperCluster row. Together, the HCLK and CLK branches provide for a low-skew global fanout within the core tile (Figure 2-40 and Figure 2-41).

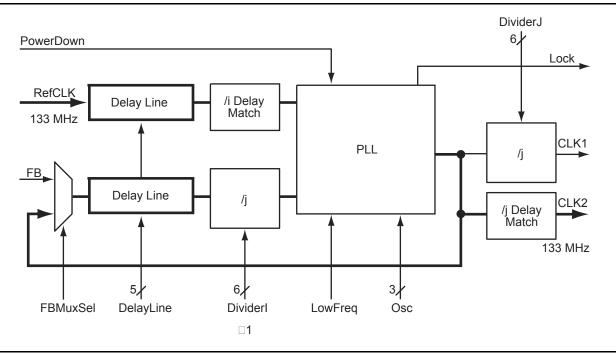

Figure 2-40 • CTD, CD, and HD Module Layout

Figure 2-41 • HCLK and CLK Distribution within a Core Tile

Note that the RAM blocks employ little-endian byte order for read and write operations.

Table 2-88 • RA	M Signal	Description
	in Olgilai	Description

Signal	Direction	Description
WCLK	Input	Write clock (can be active on either edge).
WA[J:0]	Input	Write address bus. The value J is dependent on the RAM configuration and the number of cascaded memory blocks. The valid range for J is from 6 to15.
WD[M-1:0]	Input	Write data bus. The value M is dependent on the RAM configuration and can be 1, 2, 4, 9, 18, or 36.
RCLK	Input	Read clock (can be active on either edge).
RA[K:0]	Input	Read address bus. The value K is dependent on the RAM configuration and the number of cascaded memory blocks. The valid range for K is from 6 to 15.
RD[N-1:0]	Output	Read data bus. The value N is dependent on the RAM configuration and can be 1, 2, 4, 9, 18, or 36.
REN	Input	Read enable. When this signal is valid on the active edge of the clock, data at location RA will be driven onto RD.
WEN	Input	Write enable. When this signal is valid on the active edge of the clock, WD data will be written at location WA.
RW[2:0]	Input	Width of the read operation dataword.
WW[2:0]	Input	Width of the write operation dataword.
Pipe	Input	Sets the pipe option to be on or off.

Modes of Operation

There are two read modes and one write mode:

- Read Nonpipelined (synchronous one clock edge)
- Read Pipelined (synchronous two clock edges)
- Write (synchronous one clock edge)

In the standard read mode, new data is driven onto the RD bus in the clock cycle immediately following RA and REN valid. The read address is registered on the read-port active-clock edge and data appears at read-data after the RAM access time. Setting the PIPE to OFF enables this mode.

The pipelined mode incurs an additional clock delay from address to data, but enables operation at a much higher frequency. The read-address is registered on the read-port active-clock edge, and the read data is registered and appears at RD after the second read clock edge. Setting the PIPE to ON enables this mode.

On the write active-clock edge, the write data are written into the SRAM at the write address when WEN is high. The setup time of the write address, write enables, and write data are minimal with respect to the write clock.

Write and read transfers are described with timing requirements beginning in the "Timing Characteristics" section on page 2-89.

Table 2-89 • One RAM Block

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		-2 Speed -1 Speed Std Sp		Std Speed				
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Write Mode								
t _{WDASU}	Write Data Setup vs. WCLK		1.08		1.23		1.45	ns
t _{WDAHD}	Write Data Hold vs. WCLK		0.22		0.25		0.30	ns
t _{WADSU}	Write Address Setup vs. WCLK		1.08		1.23		1.45	ns
t _{WADHD}	Write Address Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WENSU}	Write Enable Setup vs. WCLK		1.08		1.23		1.45	ns
t _{WENHD}	Write Enable Hold vs. WCLK		0.22		0.25		0.30	ns
t _{wcкн}	WCLK Minimum High Pulse Width	0.75		0.75		0.75		ns
t _{WCLK}	WCLK Minimum Low Pulse Width	0.88		0.88		0.88		ns
t _{WCKP}	WCLK Minimum Period	1.63		1.63		1.63		ns
Read Mode								
t _{RADSU}	Read Address Setup vs. RCLK		0.81		0.92		1.08	ns
t _{RADHD}	Read Address Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RENSU}	Read Enable Setup vs. RCLK		0.81		0.92		1.08	ns
t _{RENHD}	Read Enable Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RCK2RD1}	RCLK-to-OUT (Pipelined)		1.32		1.51		1.77	ns
t _{RCK2RD2}	RCLK-to-OUT (Non-Pipelined)		2.16		2.46		2.90	ns
t _{RCLKH}	RCLK Minimum High Pulse Width	0.77		0.77		0.77		ns
t _{RCLKL}	RCLK Minimum Low Pulse Width	0.93		0.93		0.93		ns
t _{RCKP}	RCLK Minimum Period	1.70		1.70		1.70		ns

Note: Timing data for this single block RAM has a depth of 4,096. For all other combinations, use Microsemi's timing software.

FIFO

Every memory block has its own embedded FIFO controller. Each FIFO block has one read port and one write port. This embedded FIFO controller uses no internal FPGA logic and features:

- Glitch-free FIFO Flags
- · Gray-code address counters/pointers to prevent metastability problems
- Overflow and underflow control

Both ports are configurable in various sizes from 4k x 1 to 128 x 36, similar to the RAM block size. Each port is fully synchronous.

Read and write operations can be completely independent. Data on the appropriate WD pins are written to the FIFO on every active WCLK edge as long as WEN is high. Data is read from the FIFO and output on the appropriate RD pins on every active RCLK edge as long as REN is asserted.

The FIFO block offers programmable almost-empty (AEMPTY) and almost-full (AFULL) flags as well as EMPTY and FULL flags (Figure 2-61):

- The FULL flag is synchronous to WCLK. It allows the FIFO to inhibit writing when full.
- The EMPTY flag is synchronous to RCLK. It allows the FIFO to inhibit reading at the empty condition.

Gray code counters are used to prevent metastability problems associated with flag logic. The depth of the FIFO is dependent on the data width and the number of memory blocks used to create the FIFO. The write operations to the FIFO are synchronous with respect to the WCLK, and the read operations are synchronous with respect to the RCLK.

The FIFO block may be reset to the empty state.

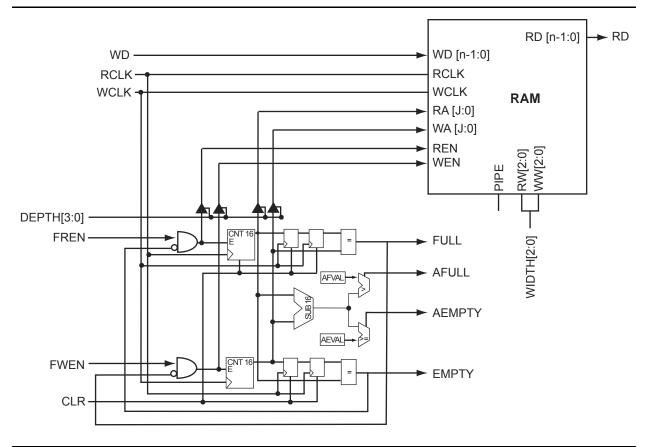


Figure 2-61 • Axcelerator RAM with Embedded FIFO Controller

Table 2-98 • One FIFO Block

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		-2 Speed -1 Speed		peed	Std Speed			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
FIFO Module	Timing							
t _{WSU}	Write Setup		11.40		12.98		15.26	ns
t _{WHD}	Write Hold		0.22		0.25		0.30	ns
t _{WCKH}	WCLK High		0.75		0.75		0.75	ns
t _{WCKL}	WCLK Low		0.88		0.88		0.88	ns
t _{WCKP}	Minimum WCLK Period	1.63		1.63		1.63		ns
t _{RSU}	Read Setup		11.63		13.25		15.58	ns
t _{RHD}	Read Hold		0.00		0.00		0.00	ns
t _{RCKH}	RCLK High		0.77		0.77		0.77	ns
t _{RCKL}	RCLK Low		0.93		0.93		0.93	ns
t _{RCKP}	Minimum RCLK period	1.70		1.70		1.70		ns
t _{CLRHF}	Clear High		0.00		0.00		0.00	ns
t _{CLR2FF}	Clear-to-flag (EMPTY/FULL)		1.92		2.18		2.57	ns
t _{CLR2AF}	Clear-to-flag (AEMPTY/AFULL)		4.39		5.00		5.88	ns
t _{CK2FF}	Clock-to-flag (EMPTY/FULL)		2.13		2.42		2.85	ns
t _{CK2AF}	Clock-to-flag (AEMPTY/AFULL)		5.04		5.75		6.75	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		1.32		1.51		1.77	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		2.16		2.46		2.90	ns

Note: Timing data for this single block FIFO has a depth of 4,096. For all other combinations, use Microsemi's timing software.

Table 2-100 • Four FIFO Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		–2 S	peed	-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
FIFO Module	Timing							
t _{WSU}	Write Setup		14.60		16.63		19.55	ns
t _{WHD}	Write Hold		0.00		0.00		0.00	ns
t _{WCKH}	WCLK High		0.75		0.75		0.75	ns
t _{WCKL}	WCLK Low		2.51		2.51		2.51	ns
t _{WCKP}	Minimum WCLK Period	3.26		3.26		3.26		ns
t _{RSU}	Read Setup		15.27		17.39		20.44	ns
t _{RHD}	Read Hold		0.00		0.00		0.00	ns
t _{RCKH}	RCLK High		0.73		0.73		0.73	ns
t _{RCKL}	RCLK Low		2.96		2.96		2.96	ns
t _{RCKP}	Minimum RCLK period	3.69		3.69		3.69		ns
t _{CLRHF}	Clear High		0.00		0.00		0.00	ns
t _{CLR2FF}	Clear-to-flag (EMPTY/FULL)		1.92		2.18		2.57	ns
t _{CLR2AF}	Clear-to-flag (AEMPTY/AFULL)		4.39		5.00		5.88	ns
t _{CK2FF}	Clock-to-flag (EMPTY/FULL)		2.13		2.42		2.85	ns
t _{CK2AF}	Clock-to-flag (AEMPTY/AFULL)		5.04		5.75		6.75	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		2.36		2.69		3.16	ns
t _{RCK2RD2}	RCLK-To-OUT (Nonpipelined)		2.83		3.23		3.79	ns

Note: Timing data for these four cascaded FIFO blocks uses a depth of 16,384. For all other combinations, use Microsemi's timing software.

Microsemi

Package Pin Assignments

FG48	4	FG484			
AX250 Function	Pin Number	AX250 Function	Pin Number		
VCCPLH	T10	VCCIB4	R14		
VCCDA	D14	VCCIB5	AA3		
VCCDA	D5	VCCIB5	AB3		
VCCDA	F16	VCCIB5	R10		
VCCDA	G12	VCCIB5	R11		
VCCDA	L4	VCCIB5	R9		
VCCDA	M18	VCCIB6	M8		
VCCDA	T11	VCCIB6	N8		
VCCDA	T17	VCCIB6	P8		
VCCDA	U7	VCCIB6	Y1		
VCCDA	V14	VCCIB6	Y2		
VCCDA	V8	VCCIB7	C1		
VCCIB0	A3	VCCIB7	C2		
VCCIB0	B3	VCCIB7	J8		
VCCIB0	H10	VCCIB7	K8		
VCCIB0	H11	VCCIB7	L8		
VCCIB0	H9	VCOMPLA	D10		
VCCIB1	A20	VCOMPLB	G10		
VCCIB1	B20	VCOMPLC	E12		
VCCIB1	H12	VCOMPLD	G14		
VCCIB1	H13	VCOMPLE	W13		
VCCIB1	H14	VCOMPLF	T13		
VCCIB2	C21	VCOMPLG	V11		
VCCIB2	C22	VCOMPLH	Т9		
VCCIB2	J15	VPUMP	D17		
VCCIB2	K15				
VCCIB2	L15				
VCCIB3	M15				
VCCIB3	N15				
VCCIB3	P15				
VCCIB3	Y21				
VCCIB3	Y22				
VCCIB4	AA20				
VCCIB4	AB20				
VCCIB4	R12				
VCCIB4	R13				

Pin Number F17 D18 E17 E21 D21 E20 D20 G16 G15

> F19 E19 J16 H16 E22 D22 H19 G19 G22 F22 J17 H17 G20 F20 J18 H18 G21 F21 K19 J19 J21 H21 J20 H20 J22

FG484		FG484		FG484
AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function
Bank 0		IO19NB0F1/HCLKAN	E11	IO37PB1F3
IO00NB0F0	E3	IO19PB0F1/HCLKAP	E10	IO38NB1F3
IO00PB0F0	D3	IO20NB0F1/HCLKBN	D12	IO38PB1F3
IO01NB0F0	E7	IO20PB0F1/HCLKBP	D11	IO39NB1F3
IO01PB0F0	E6	Bank 1		IO39PB1F3
IO02NB0F0	C5	IO21NB1F2/HCLKCN	F13	IO40NB1F3
IO02PB0F0	C4	IO21PB1F2/HCLKCP	F12	IO40PB1F3
IO03NB0F0	D7	IO22NB1F2/HCLKDN	E14	IO41NB1F3
IO03PB0F0	D6	IO22PB1F2/HCLKDP	E13	IO41PB1F3
IO04NB0F0	B5	IO24NB1F2	A14	Bank 2
IO04PB0F0	B4	IO24PB1F2	A13	IO42NB2F4
IO05NB0F0	C7	IO25NB1F2	B14	IO42PB2F4
IO05PB0F0	C6	IO25PB1F2	B13	IO43NB2F4
IO06NB0F0	A5	IO26NB1F2	C15	IO43PB2F4
IO06PB0F0	A4	IO27NB1F2	A16	IO44NB2F4
IO07NB0F0	A7	IO27PB1F2	A15	IO44PB2F4
IO07PB0F0	A6	IO28NB1F2	B16	IO45NB2F4
IO08NB0F0	B7	IO28PB1F2	B15	IO45PB2F4
IO08PB0F0	B6	IO29NB1F2	D16	IO46NB2F4
IO10NB0F0	B9	IO29PB1F2	D15	IO46PB2F4
IO10PB0F0	B8	IO30NB1F2	A18	IO47NB2F4
IO11NB0F0	E9	IO30PB1F2	A17	IO47PB2F4
IO11PB0F0	E8	IO31NB1F2	F15	IO48NB2F4
IO12NB0F1	D9	IO31PB1F2	F14	IO48PB2F4
IO12PB0F1	D8	IO32NB1F3	C17	IO49NB2F4
IO13NB0F1	C9	IO32PB1F3	C16	IO49PB2F4
IO13PB0F1	C8	IO33NB1F3	E16	IO50NB2F4
IO14NB0F1	A9	IO33PB1F3	E15	IO50PB2F4
IO14PB0F1	A8	IO34NB1F3	B18	IO51NB2F4
IO15NB0F1	B10	IO34PB1F3	B17	IO51PB2F4
IO15PB0F1	A10	IO35NB1F3	B19	IO52NB2F5
IO16NB0F1	B12	IO35PB1F3	A19	IO52PB2F5
IO16PB0F1	B11	IO36NB1F3	C19	IO53NB2F5
IO18NB0F1	C13	IO36PB1F3	C18	IO53PB2F5
IO18PB0F1	C12	IO37NB1F3	F18	IO54NB2F5

FG676	FG676			FG676	
AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function	Pin Number
NC	J5	VCCA	J10	VCCDA	AD10
NC	J6	VCCA	J11	VCCDA	AD13
NC	P22	VCCA	J12	VCCDA	AD17
NC	R20	VCCA	J13	VCCDA	B1
NC	R21	VCCA	J14	VCCDA	B17
NC	R22	VCCA	J15	VCCDA	D24
NC	R4	VCCA	J16	VCCDA	E14
NC	R5	VCCA	J17	VCCDA	P2
NC	T22	VCCA	K18	VCCDA	P23
NC	T24	VCCA	K9	VCCIB0	G10
NC	U22	VCCA	L18	VCCIB0	G8
NC	U24	VCCA	L9	VCCIB0	G9
NC	V22	VCCA	M18	VCCIB0	H10
NC	V5	VCCA	M9	VCCIB0	H11
NC	W21	VCCA	N18	VCCIB0	H12
NC	W22	VCCA	N9	VCCIB0	H13
NC	W5	VCCA	P18	VCCIB0	H9
NC	W6	VCCA	P9	VCCIB1	G17
NC	Y21	VCCA	R18	VCCIB1	G18
NC	Y4	VCCA	R9	VCCIB1	G19
NC	Y5	VCCA	T18	VCCIB1	H14
NC	Y6	VCCA	Т9	VCCIB1	H15
PRA	E13	VCCA	U18	VCCIB1	H16
PRB	B14	VCCA	U9	VCCIB1	H17
PRC	Y14	VCCA	V10	VCCIB1	H18
PRD	AD14	VCCA	V11	VCCIB2	H20
ТСК	E5	VCCA	V12	VCCIB2	J19
TDI	B3	VCCA	V13	VCCIB2	J20
TDO	G6	VCCA	V14	VCCIB2	K19
TMS	D4	VCCA	V15	VCCIB2	K20
TRST	A2	VCCA	V16	VCCIB2	L19
VCCA	AB4	VCCA	V17	VCCIB2	M19
VCCA	AF24	VCCDA	A3	VCCIB2	N19
VCCA	C1	VCCDA	AB22	VCCIB3	P19
VCCA	C26	VCCDA	AB5	VCCIB3	R19

Package Pin Assignments

FG676		FG676			
X500 Function	Pin Number	AX500 Function	Pin Number		
VCCIB3	T19	VCCIB7	L8		
VCCIB3	U19	VCCIB7	M8		
VCCIB3	U20	VCCIB7	N8		
VCCIB3	V19	VCCPLA	E12		
VCCIB3	V20	VCCPLB	F13		
VCCIB3	W20	VCCPLC	E15		
VCCIB4	W14	VCCPLD	G14		
VCCIB4	W15	VCCPLE	AF15		
VCCIB4	W16	VCCPLF	AA14		
VCCIB4	W17	VCCPLG	AF12		
VCCIB4	W18	VCCPLH	AB13		
VCCIB4	Y17	VCOMPLA	D12		
VCCIB4	Y18	VCOMPLB	G13		
VCCIB4	Y19	VCOMPLC	D15		
VCCIB5	W10	VCOMPLD	F14		
VCCIB5	W11	VCOMPLE	AD15		
VCCIB5	W12	VCOMPLF	AB14		
VCCIB5	W13	VCOMPLG	AD12		
VCCIB5	W9	VCOMPLH	Y13		
VCCIB5	Y10	VPUMP	E22		
VCCIB5	Y8				
VCCIB5	Y9				
VCCIB6	P8				
VCCIB6	R8				
VCCIB6	Т8				
VCCIB6	U7				
VCCIB6	U8				
VCCIB6	V7				
VCCIB6	V8				
VCCIB6	W7				
VCCIB7	H7				
VCCIB7	J7				
VCCIB7	J8				
VCCIB7	K7				
VCCIB7	K8				

Microsemi

Package Pin Assignments

FG676		FG676		FG676	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
NC	D13	VCCA	Т9	VCCIB0	G10
NC	D14	VCCA	U18	VCCIB0	G8
PRA	E13	VCCA	U9	VCCIB0	G9
PRB	B14	VCCA	V10	VCCIB0	H10
PRC	Y14	VCCA	V11	VCCIB0	H11
PRD	AD14	VCCA	V12	VCCIB0	H12
TCK	E5	VCCA	V13	VCCIB0	H13
TDI	B3	VCCA	V14	VCCIB0	H9
TDO	G6	VCCA	V15	VCCIB1	G17
TMS	D4	VCCA	V16	VCCIB1	G18
TRST	A2	VCCA	V17	VCCIB1	G19
VCCA	AB4	VCCPLA	E12	VCCIB1	H14
VCCA	AF24	VCCPLB	F13	VCCIB1	H15
VCCA	C1	VCCPLC	E15	VCCIB1	H16
VCCA	C26	VCCPLD	G14	VCCIB1	H17
VCCA	J10	VCCPLE	AF15	VCCIB1	H18
VCCA	J11	VCCPLF	AA14	VCCIB2	H20
VCCA	J12	VCCPLG	AF12	VCCIB2	J19
VCCA	J13	VCCPLH	AB13	VCCIB2	J20
VCCA	J14	VCCDA	A11	VCCIB2	K19
VCCA	J15	VCCDA	A3	VCCIB2	K20
VCCA	J16	VCCDA	AB22	VCCIB2	L19
VCCA	J17	VCCDA	AB5	VCCIB2	M19
VCCA	K18	VCCDA	AD10	VCCIB2	N19
VCCA	K9	VCCDA	AD11	VCCIB3	P19
VCCA	L18	VCCDA	AD13	VCCIB3	R19
VCCA	L9	VCCDA	AD16	VCCIB3	T19
VCCA	M18	VCCDA	AD17	VCCIB3	U19
VCCA	M9	VCCDA	B1	VCCIB3	U20
VCCA	N18	VCCDA	B11	VCCIB3	V19
VCCA	N9	VCCDA	B17	VCCIB3	V20
VCCA	P18	VCCDA	C16	VCCIB3	W20
VCCA	P9	VCCDA	D24	VCCIB4	W14
VCCA	R18	VCCDA	E14	VCCIB4	W15
VCCA	R9	VCCDA	P2	VCCIB4	W16
VCCA	T18	VCCDA	P23	VCCIB4	W17

CG624		CG624		CG624	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
IO63PB1F5	G18	IO84NB2F7	M20	IO105NB3F9	R23
Bank 2		IO84PB2F7	M21	IO105PB3F9	P23
IO64NB2F6	M17	IO86NB2F8	E25	IO106NB3F9	R19
IO64PB2F6	G22	IO86PB2F8	D25	IO106PB3F9	R20
IO65NB2F6	J21	IO87NB2F8	L24	IO107NB3F10	AB24
IO65PB2F6	J20	IO87PB2F8	K24	IO108NB3F10	R25
IO66NB2F6	L23	IO88NB2F8	G24	IO108PB3F10	P25
IO66PB2F6	K20	IO88PB2F8	F24	IO109NB3F10	U25
IO67NB2F6	F23	IO89NB2F8	J25	IO109PB3F10	T25
IO67PB2F6	E23	IO90NB2F8	G25	IO110NB3F10	U24
IO68NB2F6	L18	IO90PB2F8	F25	IO110PB3F10	U23
IO68PB2F6	K18	IO91NB2F8	L25	IO112NB3F10	T24
IO70NB2F6	E24	IO91PB2F8	K25	IO112PB3F10	R24
IO70PB2F6	D24	IO92NB2F8	J24	IO113NB3F10	Y25
IO71NB2F6	H23	IO92PB2F8	H24	IO113PB3F10	W25
IO71PB2F6	G23	IO93PB2F8	J23	IO114NB3F10	V23
IO72NB2F6	L19	IO94NB2F8	N24	IO114PB3F10	V24
IO72PB2F6	K19	IO94PB2F8	M24	IO116NB3F10	AA24
IO74NB2F7	J22	IO95NB2F8	N25	IO116PB3F10	Y24
IO74PB2F7	H22	IO95PB2F8	M25	IO117NB3F10	AB25
IO75NB2F7	N23	Bank 3		IO117PB3F10	AA25
IO75PB2F7	M23	IO96NB3F9	T18	IO118NB3F11	T20
IO76NB2F7	N17	IO96PB3F9	R18	IO118PB3F11	R21
IO76PB2F7	N16	IO97NB3F9	N20	IO120NB3F11	W22
IO77NB2F7	L22	IO97PB3F9	P24	IO120PB3F11	W23
IO77PB2F7	K22	IO98NB3F9	P20	IO122NB3F11	V22
IO78NB2F7	M19	IO98PB3F9	P19	IO122PB3F11	U22
IO78PB2F7	M18	IO99NB3F9	P21	IO124NB3F11	Y23
IO79NB2F7	N19	IO100NB3F9	T22	IO124PB3F11	AA23
IO79PB2F7	N18	IO100PB3F9	W24	IO126NB3F11	V21
IO80NB2F7	L21	IO101NB3F9	R22	IO126PB3F11	U21
IO80PB2F7	L20	IO101PB3F9	P22	IO128NB3F11	Y22
IO82NB2F7	P18	IO102NB3F9	U19	IO128PB3F11	Y21
IO82PB2F7	P17	IO102PB3F9	T19	Bank 4	-
IO83NB2F7	N22	IO104NB3F9	V20	IO129NB4F12	W20
IO83PB2F7	M22	IO104PB3F9	U20	IO129PB4F12	Y20