

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	4224
Number of Logic Elements/Cells	-
Total RAM Bits	55296
Number of I/O	138
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax250-2fg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Axcelerator Family Device Status

Axcelerator [®] Devices	Status
AX125	Production
AX250	Production
AX500	Production
AX1000	Production
AX2000	Production

Temperature Grade Offerings

Package	AX125	AX250	AX500	AX1000	AX2000
PQ208	_	C, I, M	C, I, M	-	-
CQ208	-	М	М	-	-
CQ256	_	-	-	-	М
FG256	C, I	C, I, M	-	-	-
FG324	C, I	-	-	-	-
CQ352	-	М	М	М	М
FG484	-	C, I, M	C, I, M	C, I, M	-
CG624	_	_	-	М	М
FG676	-	-	C, I, M	C, I, M	-
BG729	-	-	-	C, I, M	-
FG896	_	-	-	C, I, M	C, I, M
FG1152	-	-	-	-	C, I, M

C = Commercial

l = Industrial

M = Military

Speed Grade and Temperature Grade Matrix

Temperature Grade	Std	-1	-2
С	\checkmark	\checkmark	\checkmark
I	\checkmark	\checkmark	\checkmark
Μ	\checkmark	\checkmark	-

C = Commercial

l = Industrial

M = Military

The maximum power dissipation allowed for Military temperature and Mil-Std 883B devices is specified as a function of θ_{ic} .

Package Type	Pin Count	θ_{jc}	$\theta_{\text{ja}}\text{Still}\text{Air}$	θ_{ja} 1.0m/s	θ_{ja} 2.5m/s	Units
Chip Scale Package (CSP)	180	N/A	57.8	51.0	50	°C/W
Plastic Quad Flat Pack (PQFP)	208	8.0	26	23.5	20.9	°C/W
Plastic Ball Grid Array (PBGA)	729	2.2	13.7	10.6	9.6	°C/W
Fine Pitch Ball Grid Array (FBGA)	256	3.0	26.6	22.8	21.5	°C/W
Fine Pitch Ball Grid Array (FBGA)	324	3.0	25.8	22.1	20.9	°C/W
Fine Pitch Ball Grid Array (FBGA)	484	3.2	20.5	17.0	15.9	°C/W
Fine Pitch Ball Grid Array (FBGA)	676	3.2	16.4	13.0	12.0	°C/W
Fine Pitch Ball Grid Array (FBGA)	896	2.4	13.6	10.4	9.4	°C/W
Fine Pitch Ball Grid Array (FBGA)	1152	1.8	12.0	8.9	7.9	°C/W
Ceramic Quad Flat Pack (CQFP) ¹	208	2.0	22	19.8	18.0	°C/W
Ceramic Quad Flat Pack (CQFP) ¹	352	2.0	17.9	16.1	14.7	°C/W
Ceramic Column Grid Array (CCGA) ²	624	6.5	8.9	8.5	8	°C/W

 Table 2-6 • Package Thermal Characteristics

Notes:

1. θ_{jc} for the 208-pin and 352-pin CQFP refers to the thermal resistance between the junction and the bottom of the package.

2. θ_{jc} for the 624-pin CCGA refers to the thermal resistance between the junction and the top surface of the package. Thermal resistance from junction to board (θ_{ib}) for CCGA 624 package is 3.4°C/W.

Timing Characteristics

Axcelerator devices are manufactured in a CMOS process, therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing. The derating factors shown in Table 2-7 should be applied to all timing data contained within this datasheet.

		Junction Temperature						
VCCA	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C	
1.4 V	0.83	0.86	0.91	0.96	1.02	1.05	1.15	
1.425 V	0.82	0.84	0.90	0.94	1.00	1.04	1.13	
1.5 V	0.78	0.80	0.85	0.89	0.95	0.98	1.07	
1.575 V	0.74	0.76	0.81	0.85	0.90	0.94	1.02	
1.6 V	0.73	0.75	0.80	0.84	0.89	0.92	1.01	

Table 2-7 • Temperature and Voltage Timing Derating Factors(Normalized to Worst-Case Commercial, T_J = 70°C, VCCA = 1.425V)

Notes:

1. The user can set the junction temperature in Designer software to be any integer value in the range of – 55°C to 175°C.

2. The user can set the core voltage in Designer software to be any value between 1.4V and 1.6V.

All timing numbers listed in this datasheet represent sample timing characteristics of Axcelerator devices. Actual timing delay values are design-specific and can be derived from the Timer tool in Microsemi's Designer software after place-and-route.

Using the Weak Pull-Up and Pull-Down Circuits

Each Axcelerator I/O comes with a weak pull-up/down circuit (on the order of 10 k Ω). These are weak transistors with the gates tied on, so the on resistance of the transistor emulates a resistor. The weak pull-up and pull-down is active only when the device is powered up, and they must be biased to be on. When the rails are coming up, they are not biased fully, so they do not behave as resistors until the voltage is at sufficient levels to bias the transistors. The key is they really are transistors; they are not traces of poly silicon, which is another way to do an on-chip resistor (those take much more room). I/O macros are provided for combinations of pull up/down for LVTTL, LVCMOS (2.5 V, 1.8 V, and 1.5 V) standards. These macros can be instantiated if a keeper circuit for any input buffer is required.

Customizing the I/O

- A five-bit programmable input delay element is associated with each I/O. The value of this delay is
 set on a bank-wide basis (Table 2-14). It is optional for each input buffer within the bank (i.e. the
 user can enable or disable the delay element for the I/O). When the input buffer drives a register
 within the I/O, the delay element is activated by default to ensure a zero hold-time. The default
 setting for this property can be set in Designer. When the input buffer does not drive a register, the
 delay element is deactivated to provide higher performance. Again, this can be overridden by
 changing the default setting for this property in Designer.
- The slew-rate value for the LVTTL output buffer can be programmed and can be set to either slow or fast.
- The drive strength value for LVTTL output buffers can be programmed as well. There are four different drive strength values – 8 mA, 12 mA, 16 mA, or 24 mA – that can be specified in Designer.⁵

Bits Setting	Delay (ns)]	Bits Setting	Delay (ns)
0	0.54]	16	2.01
1	0.65	1	17	2.13
2	0.71	1	18	2.19
3	0.83	1	19	2.3
4	0.9	1	20	2.38
5	1.01	1	21	2.49
6	1.08]	22	2.55
7	1.19	1	23	2.67
8	1.27	1	24	2.75
9	1.39]	25	2.87
10	1.45	1	26	2.93
11	1.56	1	27	3.04
12	1.64	1	28	3.12
13	1.75	1	29	3.23
14	1.81		30	3.29
15	1.93		31	3.41

Table 2-14 • Bank-Wide Delay Values

Note: Delay values are approximate and will vary with process, temperature, and voltage.

^{5.} These values are minimum drive strengths.

Microsemi

Detailed Specifications

Table 2-40 • 3.3 V GTL+ I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	–1 S	peed	Std S	speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V GTL+	I/O Module Timing							
t _{DP}	Input Buffer		1.71		1.95		2.29	ns
t _{PY}	Output Buffer		1.13		1.29		1.52	ns
t _{ICLKQ}	Clock-to-Q for the I/O input register		0.67		0.77		0.90	ns
t _{oclkq}	Clock-to-Q for the I/O output register and the I/O enable register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Class II

Table 2-47 • DC Input and Output Levels

	VIL	VIH		VOL	VOH	IOL	ЮН
Min., V	Max., V	Min., V	Max., V	Max., V	Min,. V	mA	mA
-0.3	VREF – 0.2	VREF + 0.2	3.6	VREF – 0.8	VREF + 0.8	15.2	-15.2

AC Loadings

Figure 2-22 • AC Test Loads

Table 2-48 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ) (V)	C _{load} (pF)
VREF – 0.75	VREF + 0.75	VREF	1.25	30

Note: * Measuring Point = V_{trip}

Timing Characteristics

Table 2-49 • 2.5 V SSTL2 Class II I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 2.3 V, T_J = 70°C

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V SSTL	2 Class II I/O Module Timing							
t _{DP}	Input Buffer		1.89		2.16		2.53	ns
t _{PY}	Output Buffer		2.39		2.72		3.20	ns
t _{ICLKQ}	Clock-to-Q for the I/O input register		0.67		0.77		0.90	ns
t _{oclkq}	Clock-to-Q for the I/O output register and the I/O enable register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

single-ended, or voltage-referenced standard. The [H]CLKxN pad can only be used as a differential pair with [H]CLKxP.

The block marked "/i Delay Match" is a fixed delay equal to that of the i divider. The "/j Delay Match" block has the same function as its j divider counterpart.

Functional Description

Figure 2-48 on page 2-75 illustrates a block diagram of the PLL. The PLL contains two dividers, i and j, that allow frequency scaling of the clock signal:

- The i divider in the feedback path allows multiplication of the input clock by integer factors ranging from 1 to 64, and the resultant frequency is available at the output of the PLL block.
- The j divider divides the PLL output by integer factors ranging from 1 to 64, and the divided clock is available at CLK1.
- The two dividers together can implement any combination of multiplication and division up to a maximum frequency of 1 GHz on CLK1. Both the CLK1 and CLK2 outputs have a fixed 50/50 duty cycle.
- The output frequencies of the two clocks are given by the following formulas (f_{REF} is the reference clock frequency):

 $f_{CLK1} = f_{REF} * (DividerI) / (DividerJ)$

 $f_{CLK2} = f_{REF} * (DividerI)$

FQ 5

EQ 4

CLK2 provides the PLL output directly—without division

The input and output frequency ranges are selected by LowFreq and Osc(2:0), respectively. These functions and their possible values are detailed in Table 2-80 on page 2-77.

The delay lines shown in Figure 2-48 on page 2-75 are programmable. The feedback clock path can be delayed (using the five DelayLine bits) relative to the reference clock (or vice versa) by up to 3.75 ns in increments of 250 ps. Table 2-80 on page 2-77 describes the usage of these bits. The delay increments are independent of frequency, so this results in phase changes that vary with frequency. The delay value is highly dependent on V_{CC} and the speed grade.

Figure 2-49 is a logical diagram of the various control signals to the PLL and shows how the PLL interfaces with the global and routing networks of the FPGA. Note that not all signals are user-accessible. These non-user-accessible signals are used by the place-and-route tool to control the configuration of the PLL. The user gains access to these control signals either based upon the connections built in the user's design or through the special macros (Table 2-84 on page 2-81) inserted into the design. For example, connecting the macro PLLOUT to CLK2 will control the OUTSEL signal.

Note: Not all signals are available to the user.

Figure 2-49 • PLL Logical Interface

CLK1 and CLK2

Both PLL outputs, CLK1 and CLK2, can be used to drive a global resource, an adjacent PLL RefCLK input, or a net in the FPGA core. Not all drive combinations are possible (Table 2-81).

 Table 2-81 • PLL General Connections Rules

CLK1	CLK2
HCLK	HCLK
CLK	CLK
HCLK	Routed net output
Routed net output	HCLK
HCLK	NONE
NONE	HCLK
CLK	NONE
NONE	CLK

Note: The PLL outputs remain Low when REFCLK is constant (either Low or High).

Restrictions on CLK1 and CLK2

- When both are driving global resources, they must be driving the same *type* of global resource (i.e. either HCLK or CLK).
- Only one can drive a routed net at any given time.

Table 2-82 and Table 2-83 specify all the possible CLK1 and CLK2 connections for the north and south PLLs. HCLK1 and HCLK2 are used to denote the different HCLK networks when two are being driven at the same time by a single PLL (Note that HCLK1 is the primary clock resource associated with the PLL, and HCLK2 is the clock resource associated with the adjacent PLL). Likewise, CLK1 and CLK2 are used to denote the different CLK networks when two are being driven at the same time by a single PLL (Figure 2-48 on page 2-75).

CLK1	CLK2
HCLK1	Routed net
HCLK1	Unused
HCLK2	HCLK1
HCLK2	Routed net
HCLK2	Both HCLK1 and routed net
HCLK2	Unused
Unused	HCLK1
Unused	Routed net
Unused	Both HCLK1 and routed net
Unused	Unused
Routed net	HCLK1
Routed net	Unused
Both HCLK1 and HCLK2	Routed net
Both HCLK1 and HCLK2	Unused
Both HCLK1 and routed net	Unusable
Both HCLK2 and routed net	HCLK1
Both HCLK2 and routed net	Unused
HCLK1, HCLK2, and routed net	Unusable

Table 2-82 • North PLL Connections

Note: Designer software currently does not support all of these connections. Only exclusive connections where one output connects to a single net are supported at this time (e.g.CLK1 driving HCLK1, and HCLK2 is not supported).

CLK1	CLK2
CLK1	Routed net
CLK1	Unused
CLK2	CLK1
CLK2	Routed net
CLK2	Both CLK1 and routed net
CLK2	Unused
Unused	CLK1
Unused	Routed net
Unused	Both CLK1 and routed net
Unused	Unused
Routed net	CLK1
Routed net	Unused
Both CLK1 and CLK2	Routed net
Both CLK1 and CLK2	Unused
Both CLK1 and routed net	Unusable
Both CLK2 and routed net	CLK1
Both CLK2 and routed net	Unused
CLK1, CLK2, and routed net	Unusable

Table 2-83 • South PLL Connections

Note: Designer software currently does not support all of these connections. Only exclusive connections where one output connects to a single net are supported at this time (e.g., CLK1 driving both CLK1 and CLK2 is not supported).

		–2 S	peed	–1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Write Mode								
t _{WDASU}	Write Data Setup vs. WCLK		1.39		1.59		1.87	ns
t _{WDAHD}	Write Data Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WADSU}	Write Address Setup vs. WCLK		1.39		1.59		1.87	ns
t _{WADHD}	Write Address Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WENSU}	Write Enable Setup vs. WCLK		1.39		1.59		1.87	ns
t _{WENHD}	Write Enable Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WCKH}	WCLK Minimum High Pulse Width	0.75		0.75		0.75		ns
t _{WCLK}	WCLK Minimum Low Pulse Width	1.76		1.76		1.76		ns
t _{WCKP}	WCLK Minimum Period	2.51		2.51		2.51		ns
Read Mode								
t _{RADSU}	Read Address Setup vs. RCLK		1.71		1.94		2.28	ns
t _{RADHD}	Read Address Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RENSU}	Read Enable Setup vs. RCLK		1.71		1.94		2.28	ns
t _{RENHD}	Read Enable Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		1.43		1.63		1.92	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		2.26		2.58		3.03	ns
t _{RCLKH}	RCLK Minimum High Pulse Width	0.73		0.73		0.73		ns
t _{RCLKL}	RCLK Minimum Low Pulse Width	1.89		1.89		1.89		ns
t _{RCKP}	RCLK Minimum Period	2.62		2.62		2.62		ns

Table 2-90 • Two RAM Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

Note: Timing data for these two cascaded RAM blocks uses a depth of 8,192. For all other combinations, use Microsemi's timing software.

Detailed Specifications

Table 2-93 • Sixteen RAM Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		–2 S	peed	-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Write Mode								
t _{WDASU}	Write Data Setup vs. WCLK		16.54		18.84		22.15	ns
t _{WDAHD}	Write Data Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WADSU}	Write Address Setup vs. WCLK		16.54		18.84		22.15	ns
t _{WADHD}	Write Address Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WENSU}	Write Enable Setup vs. WCLK		16.54		18.84		22.15	ns
t _{WENHD}	Write Enable Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WCKH}	WCLK Minimum High Pulse Width	0.75		0.75		0.75		ns
t _{WCLK}	WCLK Minimum Low Pulse Width	13.40		13.40		13.40		ns
t _{WCKP}	WCLK Minimum Period	14.15		14.15		14.15		ns
Read Mode								
t _{RADSU}	Read Address Setup vs. RCLK		18.13		20.65		24.27	ns
t _{RADHD}	Read Address Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RENSU}	Read Enable Setup vs. RCLK		18.13		20.65		24.27	ns
t _{RENHD}	Read Enable Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		12.08		13.76		16.17	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		12.83		14.62		17.18	ns
t _{RCLKH}	RCLK Minimum High Pulse Width	0.73		0.73		0.73		ns
t _{RCLKL}	RCLK Minimum Low Pulse Width	14.41		14.41		14.41		ns
t _{RCKP}	RCLK Minimum Period	15.14		15.14		15.14		ns

Note: Timing data for these sixteen cascaded RAM blocks uses a depth of 65,536. For all other combinations, use Microsemi's timing software.

Figure 2-63 illustrates flag generation.

Figure 2-63 • ALMOST-EMPTY and ALMOST-FULL Logic

The Verilog codes for the flags are:

assign AF = (DIFF[15:0] >={AFVAL[7:0],8'b00000000})?1:0; assign AE = ({AEVAL[7:0],8'b00000000}>=DIFF[15:0])?1:0;

The number of DIFF-bits active depends on the configuration depth and width (Table 2-95).

Table 2-95 • Number of Available Configuration Bits

Number of Blocks	Block DxW	Number of AEVAL/AFVAL Bits
1	1x1	4
2	1x2	4
2	2x1	5
4	1x4	4
4	2x2	5
4	4x1	6
8	1x8	4
8	2x4	5
8	4x2	6
8	8x1	7
16	1x16	4
16	2x8	5
16	4x4	6
16	8x2	7
16	16x1	8

The active-high CLR pin is used to reset the FIFO to the empty state, which sets FULL and AFULL low, and EMPTY and AEMPTY high.

Assuming that the EMPTY flag is not set, new data is read from the FIFO when REN is valid on the active edge of the clock. Write and read transfers are described with timing requirements in "Timing Characteristics" on page 2-100.

throughout the fabric of the device and may be programmed by the user to thwart attempts to reverse engineer the device by attempting to exploit either the programming or probing interfaces. Both invasive and noninvasive attacks against an Axcelerator device that access or bypass these security fuses will destroy access to the rest of the device. (refer to the *Design Security in Nonvolatile Flash and Antifuse FPGAs* white paper).

Look for this symbol to ensure your valuable IP is protected with highest level of security in the industry.

Figure 2-69 • FuseLock Logo

To ensure maximum security in Axcelerator devices, it is recommended that the user program the device security fuse (SFUS). When programmed, the Silicon Explorer II testing probes are disabled to prevent internal probing, and the programming interface is also disabled. All JTAG public instructions are still accessible by the user.

For more information, refer to the Implementation of Security in Actel Antifuse FPGAs application note.

Global Set Fuse

The Global Set Fuse determines if all R-cells and I/O registers (InReg, OutReg, and EnReg) are either cleared or preset by driving the GCLR and GPSET inputs of all R-cells and I/O Registers (Figure 2-31 on page 2-58). Default setting is to clear all registers (GCLR = 0 and GPSET =1) at device power-up. When the GBSETFUS option is checked during FUSE file generation, all registers are preset (GCLR = 1 and GPSET = 0). A local CLR or PRESET will take precedence over this setting. Both pins are pulled High during normal device operation. For use details, see the Libero IDE online help.

Silicon Explorer II Probe Interface

Silicon Explorer II is an integrated hardware and software solution that, in conjunction with the Designer tools, allows users to examine any of the internal nets (except I/O registers) of the device while it is operating in a prototype or a production system. The user can probe up to four nodes at a time without changing the placement and routing of the design and without using any additional device resources. Highlighted nets in Designer's ChipPlanner can be accessed using Silicon Explorer II in order to observe their real time values.

Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the debug cycle. In addition, Silicon Explorer II does not require relayout or additional MUXes to bring signals out to external pins, which is necessary when using programmable logic devices from other suppliers. By eliminating multiple place-and-route program cycles, the integrity of the design is maintained throughout the debug process.

Each member of the Axcelerator family has four external pads: PRA, PRB, PRC, and PRD. These can be used to bring out four probe signals from the Axcelerator device (note that the AX125 only has two probe signals that can be observed: PRA and PRB). Each core tile has up to two probe signals. To disallow probing, the SFUS security fuse in the silicon signature has to be programmed (see "Special Fuses" on page 2-108).

Silicon Explorer II connects to the host PC using a standard serial port connector. Connections to the circuit board are achieved using a nine-pin D-Sub connector (Figure 1-9 on page 1-7). Once the design has been placed-and-routed, and the Axcelerator device has been programmed, Silicon Explorer II can be connected and the Explorer software can be launched.

Silicon Explorer II comes with an additional optional PC hosted tool that emulates an 18-channel logic analyzer. Four channels are used to monitor four internal nodes, and 14 channels are available to probe external signals. The software included with the tool provides the user with an intuitive interface that allows for easy viewing and editing of signal waveforms.

FG256-Pin FB	GA	FG256-Pin FBGA		
AX125 Function	Pin Number	AX125 Function	Pin Number	
VCCA	L10	VCCIB4	M11	
VCCA	L7	VCCIB4	M9	
VCCA	L8	VCCIB5	M6	
VCCA	L9	VCCIB5	M7	
VCCA	N3	VCCIB5	M8	
VCCA	P14	VCCIB6	J5	
VCCPLA	C7	VCCIB6	K5	
VCCPLB	D6	VCCIB6	L5	
VCCPLC	A10	VCCIB7	F5	
VCCPLD	D10	VCCIB7	G5	
VCCPLE	P10	VCCIB7	H5	
VCCPLF	N11	VCOMPLA	A7	
VCCPLG	T7	VCOMPLB	D7	
VCCPLH	N7	VCOMPLC	B9	
VCCDA	A2	VCOMPLD	D11	
VCCDA	C13	VCOMPLE	T10	
VCCDA	D9	VCOMPLF	N10	
V _{CCDA}	H1	VCOMPLG	R8	
VCCDA	J15	VCOMPLH	N6	
VCCDA	N14	VPUMP	A14	
VCCDA	N8		•	
VCCDA	P4			
VCCIB0	E6			
VCCIB0	E7			
VCCIB0	E8			
VCCIB1	E10			
VCCIB1	E11			
VCCIB1	E9			
VCCIB2	F12			
VCCIB2	G12			
VCCIB2	H12			
VCCIB3	J12			
VCCIB3	K12			
VCCIB3	L12			
VCCIB4	M10			

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

FG896

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

FG896		FG896		FG896	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
IO245PB5F23	AG8	IO263NB6F24	AD3	IO281PB6F26	Y2
IO246NB5F23	AD8	IO263PB6F24	AE3	IO282NB6F26	V5
IO246PB5F23	AD9	IO264NB6F24	AB6	IO282PB6F26	W5
IO247NB5F23	AG7	IO264PB6F24	AC6	IO284NB6F26	V7
IO247PB5F23	AH7	IO265NB6F24	AD1	IO284PB6F26	V6
IO248NB5F23	AK5	IO265PB6F24	AE1	IO285NB6F26	W3
IO249NB5F23	AJ5	IO266NB6F24	AA8	IO285PB6F26	W4
IO249PB5F23	AJ6	IO266PB6F24	AB8	IO286NB6F26	U8
IO250NB5F23	AC8	IO267NB6F25	AB5	IO286PB6F26	U9
IO250PB5F23	AC9	IO267PB6F25	AC5	IO287NB6F26	W1
IO251NB5F23	AH6	IO268NB6F25	AB3	IO287PB6F26	W2
IO251PB5F23	AG6	IO268PB6F25	AC3	IO288NB6F26	U7
IO252NB5F23	AF6	IO269NB6F25	AC2	IO288PB6F26	U6
IO252PB5F23	AF7	IO269PB6F25	AD2	IO290NB6F27	U4
IO253NB5F23	AG2	IO270NB6F25	Y7	IO290PB6F27	V4
IO253PB5F23	AG1	IO270PB6F25	AA7	IO291NB6F27	U3
IO254NB5F23	AE7	IO271NB6F25	AA4	IO291PB6F27	V3
IO254PB5F23	AE8	IO271PB6F25	AB4	IO292NB6F27	T5
IO255NB5F23	AG5	IO272NB6F25	Y6	IO292PB6F27	U5
IO255PB5F23	AH5	IO272PB6F25	AA6	IO293NB6F27	U2
IO256NB5F23	AJ4	IO273NB6F25	AB1*	IO293PB6F27	V2
IO256PB5F23	AK4	IO273PB6F25	AE2*	IO294NB6F27	Т8
Bank 6		IO274NB6F25	W8	IO294PB6F27	Т9
IO257NB6F24	AE4	IO274PB6F25	Y8	IO296NB6F27	T1
IO257PB6F24	AF4	IO275NB6F25	Y5	IO296PB6F27	U1
IO258NB6F24	AB7	IO275PB6F25	AA5	IO298NB6F27	T7
IO258PB6F24	AC7	IO277NB6F25	AA2	IO298PB6F27	Т6
IO259NB6F24	AD5	IO277PB6F25	AA1	IO299NB6F27	R2
IO259PB6F24	AE5	IO278NB6F26	W6	IO299PB6F27	T2
IO260NB6F24	AF1	IO278PB6F26	W7	Bank 7	
IO260PB6F24	AF2	IO279NB6F26	Y3	IO300NB7F28	R8
IO261NB6F24	AF3	IO279PB6F26	Y4	IO300PB7F28	R9
IO261PB6F24	AG3	IO280NB6F26	V8	IO302NB7F28	R4
IO262NB6F24	AC4	IO280PB6F26	V9	IO302PB7F28	R5
IO262PB6F24	AD4	IO281NB6F26	Y1	IO303NB7F28	P1

FG896		FG896		
AX2000 Function	Pin Number	AX2000 Function	Pin Number	
VCCIB3	AH30	VCCIB6	W9	
VCCIB3	T21	VCCIB6	Y10	
VCCIB3	U21	VCCIB6	Y9	
VCCIB3	V21	VCCIB7	C1	
VCCIB3	W21	VCCIB7	C2	
VCCIB3	W22	VCCIB7	K9	
VCCIB3	Y21	VCCIB7	L10	
VCCIB3	Y22	VCCIB7	L9	
VCCIB4	AA16	VCCIB7	M10	
VCCIB4	AA17	VCCIB7	M9	
VCCIB4	AA18	VCCIB7	N10	
VCCIB4	AA19	VCCIB7	P10	
VCCIB4	AA20	VCCIB7	R10	
VCCIB4	AB19	VCCPLA	G14	
VCCIB4	AB20	VCCPLB	H15	
VCCIB4	AB21	VCCPLC	G17	
VCCIB4	AJ28	VCCPLD	J16	
VCCIB4	AK28	VCCPLE	AH17	
VCCIB5	AA11	VCCPLF	AC16	
VCCIB5	AA12	VCCPLG	AH14	
VCCIB5	AA13	VCCPLH	AD15	
VCCIB5	AA14	VCOMPLA	F14	
VCCIB5	AA15	VCOMPLB	J15	
VCCIB5	AB10	VCOMPLC	F17	
VCCIB5	AB11	VCOMPLD	H16	
VCCIB5	AB12	VCOMPLE	AF17	
VCCIB5	AJ3	VCOMPLF	AD16	
VCCIB5	AK3	VCOMPLG	AF14	
VCCIB6	AA9	VCOMPLH	AB15	
VCCIB6	AH1	VPUMP	G24	
VCCIB6	AH2		•	
VCCIB6	T10			
VCCIB6	U10			
VCCIB6	V10			
VCCIB6	W10			

PQ208		PQ208	3	PQ208	
AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Number
IO110PB7F7	19	GND	94	VCCPLB	187
IO112NB7F7	16	GND	99	VCCPLC	178
IO112PB7F7	17	GND	113	VCCPLD	176
IO117NB7F7	12	GND	119	VCCPLE	85
IO117PB7F7	13	GND	125	VCCPLF	83
IO119NB7F7	10	GND	136	VCCPLG	74
IO119PB7F7	11	GND	143	VCCPLH	72
IO121PB7F7	7	GND	150	VCCIB0	193
IO122NB7F7	5	GND	155	VCCIB0	200
IO122PB7F7	6	GND	164	VCCIB1	163
IO123NB7F7	3	GND	169	VCCIB1	172
IO123PB7F7	4	GND	173	VCCIB2	135
Dedicated	I/O	GND	194	VCCIB2	149
VCCDA	1	GND	196	VCCIB3	112
VCCDA	26	GND	201	VCCIB3	124
VCCDA	53	GND/LP	208	VCCIB4	89
VCCDA	63	PRA	184	VCCIB4	98
VCCDA	78	PRB	183	VCCIB5	58
VCCDA	95	PRC	80	VCCIB5	68
VCCDA	105	PRD	79	VCCIB6	31
VCCDA	130	ТСК	205	VCCIB6	45
VCCDA	157	TDI	204	VCCIB7	8
VCCDA	167	TDO	203	VCCIB7	20
VCCDA	182	TMS	206	VCOMPLA	190
VCCDA	202	TRST	207	VCOMPLB	188
GND	104	VCCA	2	VCOMPLC	179
GND	9	VCCA	52	VCOMPLD	177
GND	15	VCCA	156	VCOMPLE	86
GND	21	VCCA	14	VCOMPLF	84
GND	32	VCCA	38	VCOMPLG	75
GND	39	VCCA	64	VCOMPLH	73
GND	46	VCCA	93	VPUMP	158
GND	51	VCCA	118		
GND	59	VCCA	142		
GND	65	VCCA	168		
GND	69	VCCA	195		
GND	90	VCCPLA	189		

CQ352		CQ352		CQ352	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
GND	21	GND	240	VCCA	150
GND	27	GND	246	VCCA	162
GND	33	GND	252	VCCA	175
GND	39	GND	258	VCCA	191
GND	45	GND	264	VCCA	209
GND	51	GND	265	VCCA	233
GND	57	GND	274	VCCA	251
GND	63	GND	280	VCCA	263
GND	69	GND	286	VCCA	279
GND	75	GND	292	VCCA	291
GND	81	GND	298	VCCA	329
GND	88	GND	310	VCCA	339
GND	89	GND	322	VCCDA	2
GND	97	GND	330	VCCDA	44
GND	103	GND	334	VCCDA	90
GND	109	GND	340	VCCDA	91
GND	115	GND	345	VCCDA	116
GND	121	GND	352	VCCDA	117
GND	133	PRA	312	VCCDA	130
GND	145	PRB	311	VCCDA	131
GND	151	PRC	135	VCCDA	132
GND	157	PRD	134	VCCDA	148
GND	163	ТСК	349	VCCDA	149
GND	169	TDI	348	VCCDA	174
GND	176	TDO	347	VCCDA	178
GND	177	TMS	350	VCCDA	221
GND	186	TRST	351	VCCDA	266
GND	192	VCCA	3	VCCDA	268
GND	198	VCCA	14	VCCDA	293
GND	204	VCCA	32	VCCDA	294
GND	210	VCCA	56	VCCDA	307
GND	216	VCCA	74	VCCDA	308
GND	222	VCCA	87	VCCDA	309
GND	228	VCCA	102	VCCDA	327
GND	234	VCCA	114	VCCDA	328

CG624		CG624		CG624	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
IO194NB6F18	Y3	IO215PB6F20	V4	IO237NB7F22	N8
IO194PB6F18	AA3	IO216NB6F20	P8	IO237PB7F22	N7
IO195NB6F18	V6	IO216PB6F20	R3	IO238NB7F22	M5
IO195PB6F18	W4	IO217NB6F20	P7	IO239NB7F22	L6
IO197NB6F18	R5	IO217PB6F20	R7	IO239PB7F22	L5
IO197PB6F18	U3	IO219NB6F20	R4	IO240NB7F22	M4
IO198NB6F18	P6	IO219PB6F20	T4	IO241NB7F22	L7
IO199NB6F18	Y5	IO220NB6F20	P2	IO241PB7F22	M7
IO199PB6F18	W5	IO220PB6F20	R2	IO242NB7F22	J3
IO200NB6F18	V3	IO221NB6F20	N4	IO243NB7F22	M9
IO200PB6F18	W3	IO221PB6F20	P4	IO243PB7F22	M8
IO201NB6F18	T7	IO223NB6F20	M2	IO244NB7F22	P9
IO201PB6F18	U7	IO223PB6F20	N2	IO244PB7F22	N6
IO202NB6F18	V2	IO224NB6F20	N3	IO245NB7F22	K8
IO203NB6F19	W2	IO224PB6F20	P3	IO245PB7F22	L8
IO203PB6F19	Y2	Bank 7	Bank 7		F3
IO204NB6F19	AA1	IO225NB7F21	J2	IO246PB7F22	E3
IO204PB6F19	AB1	IO225PB7F21	J1	IO247NB7F23	K7
IO205NB6F19	R6	IO226PB7F21	G2	IO247PB7F23	K6
IO205PB6F19	Т6	IO227NB7F21	H3	IO248NB7F23	D2
IO206NB6F19	W1	IO227PB7F21	H2	IO249NB7F23	G4
IO206PB6F19	Y1	IO229NB7F21	K2	IO249PB7F23	G3
IO207NB6F19	T2	IO229PB7F21	L2	IO251NB7F23	N10
IO207PB6F19	U2	IO230NB7F21	K1	IO251PB7F23	N9
IO208NB6F19	T1	IO230PB7F21	L1	IO253NB7F23	H4
IO208PB6F19	U1	IO231NB7F21	E2	IO253PB7F23	J4
IO209NB6F19	AA2	IO231PB7F21	F2	IO255NB7F23	J6
IO209PB6F19	AB2	IO232NB7F21	F1	IO255PB7F23	J5
IO210NB6F19	P5	IO232PB7F21	G1	IO257NB7F23	H5
IO211NB6F19	M1	IO233NB7F21	L3	IO257PB7F23	H6
IO211PB6F19	N1	IO233PB7F21	M3	Dedicated I/	0
IO212NB6F19	P1	IO234NB7F21	D1	GND	K5
IO212PB6F19	R1	IO234PB7F21	E1	GND	A18
IO213NB6F19	R8	IO235NB7F21	K4	GND	A2
IO213PB6F19	T8	IO235PB7F21	L4	GND	A24
IO215NB6F20	U4	IO236NB7F22	M6	GND	A25