E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	4224
Number of Logic Elements/Cells	-
Total RAM Bits	55296
Number of I/O	138
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax250-2fgg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description

The SRAM blocks are arranged in a column on the west side of the tile (Figure 1-6 on page 1-4).

Figure 1-6 • AX Device Architecture (AX1000 shown)

Embedded Memory

As mentioned earlier, each core tile has either three (in a smaller tile) or four (in the regular tile) embedded SRAM blocks along the west side, and each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are: 128x36, 256x18, 512x9, 1kx4, 2kx2 or 4kx1 bits. The individual blocks have separate read and write ports that can be configured with different bit widths on each port. For example, data can be written in by eight and read out by one.

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using core logic modules. The FIFO width and depth are programmable. The FIFO also features programmable ALMOST-EMPTY (AEMPTY) and ALMOST-FULL (AFULL) flags in addition to the normal EMPTY and FULL flags. In addition to the flag logic, the embedded FIFO control unit also contains the counters necessary for the generation of the read and write address pointers as well as control circuitry to prevent metastability and erroneous operation. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

I/O Logic

The Axcelerator family of FPGAs features a flexible I/O structure, supporting a range of mixed voltages with its bank-selectable I/Os: 1.5V, 1.8V, 2.5V, and 3.3V. In all, Axcelerator FPGAs support at least 14 different I/O standards (single-ended, differential, voltage-referenced). The I/Os are organized into banks, with eight banks per device (two per side). The configuration of these banks determines the I/O standards supported (see "User I/Os" on page 2-11 for more information). All I/O standards are available in each bank.

Each I/O module has an input register (InReg), an output register (OutReg), and an enable register (EnReg) (Figure 1-7 on page 1-5). An I/O Cluster includes two I/O modules, four RX modules, two TX modules, and a buffer (B) module.

General Description

Figure 1-8 • AX Routing Structures

Global Resources

Each family member has three types of global signals available to the designer: HCLK, CLK, and GCLR/GPSET. There are four hardwired clocks (HCLK) per device that can directly drive the clock input of each R-cell. Each of the four routed clocks (CLK) can drive the clock, clear, preset, or enable pin of an R-cell or any input of a C-cell (Figure 1-3 on page 1-2).

Global clear (GCLR) and global preset (GPSET) drive the clear and preset inputs of each R-cell as well as each I/O Register on a chip-wide basis at power-up.

Each HCLK and CLK has an associated analog PLL (a total of eight per chip). Each embedded PLL can be used for clock delay minimization, clock delay adjustment, or clock frequency synthesis. The PLL is capable of operating with input frequencies ranging from 14 MHz to 200 MHz and can generate output frequencies between 20 MHz and 1 GHz. The clock can be either divided or multiplied by factors ranging from 1 to 64. Additionally, multiply and divide settings can be used in any combination as long as the resulting clock frequency is between 20 MHz and 1 GHz. Adjacent PLLs can be cascaded to create complex frequency combinations.

The PLL can be used to introduce either a positive or a negative clock delay of up to 3.75 ns in 250 ps increments. The reference clock required to drive the PLL can be derived from three sources: external input pad (either single-ended or differential), internal logic, or the output of an adjacent PLL.

Low Power (LP) Mode

The AX architecture was created for high-performance designs but also includes a low power mode (activated via the LP pin). When the low power mode is activated, I/O banks can be disabled (inputs disabled, outputs tristated), and PLLs can be placed in a power-down mode. All internal register states are maintained in this mode. Furthermore, individual I/O banks can be configured to opt out of the LP mode, thereby giving the designer access to critical signals while the rest of the chip is in low power mode.

The power can be further reduced by providing an external voltage source (V_{PUMP}) to the device to bypass the internal charge pump (See "Low Power Mode" on page 2-106 for more information).

The maximum power dissipation allowed for Military temperature and Mil-Std 883B devices is specified as a function of θ_{ic} .

Package Type	Pin Count	θ_{jc}	$\theta_{\text{ja}}\text{Still}\text{Air}$	θ_{ja} 1.0m/s	θ_{ja} 2.5m/s	Units
Chip Scale Package (CSP)	180	N/A	57.8	51.0	50	°C/W
Plastic Quad Flat Pack (PQFP)	208	8.0	26	23.5	20.9	°C/W
Plastic Ball Grid Array (PBGA)	729	2.2	13.7	10.6	9.6	°C/W
Fine Pitch Ball Grid Array (FBGA)	256	3.0	26.6	22.8	21.5	°C/W
Fine Pitch Ball Grid Array (FBGA)	324	3.0	25.8	22.1	20.9	°C/W
Fine Pitch Ball Grid Array (FBGA)	484	3.2	20.5	17.0	15.9	°C/W
Fine Pitch Ball Grid Array (FBGA)	676	3.2	16.4	13.0	12.0	°C/W
Fine Pitch Ball Grid Array (FBGA)	896	2.4	13.6	10.4	9.4	°C/W
Fine Pitch Ball Grid Array (FBGA)	1152	1.8	12.0	8.9	7.9	°C/W
Ceramic Quad Flat Pack (CQFP) ¹	208	2.0	22	19.8	18.0	°C/W
Ceramic Quad Flat Pack (CQFP) ¹	352	2.0	17.9	16.1	14.7	°C/W
Ceramic Column Grid Array (CCGA) ²	624	6.5	8.9	8.5	8	°C/W

 Table 2-6 • Package Thermal Characteristics

Notes:

1. θ_{jc} for the 208-pin and 352-pin CQFP refers to the thermal resistance between the junction and the bottom of the package.

2. θ_{jc} for the 624-pin CCGA refers to the thermal resistance between the junction and the top surface of the package. Thermal resistance from junction to board (θ_{ib}) for CCGA 624 package is 3.4°C/W.

Timing Characteristics

Axcelerator devices are manufactured in a CMOS process, therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing. The derating factors shown in Table 2-7 should be applied to all timing data contained within this datasheet.

	Junction Temperature								
VCCA	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C		
1.4 V	0.83	0.86	0.91	0.96	1.02	1.05	1.15		
1.425 V	0.82	0.84	0.90	0.94	1.00	1.04	1.13		
1.5 V	0.78	0.80	0.85	0.89	0.95	0.98	1.07		
1.575 V	0.74	0.76	0.81	0.85	0.90	0.94	1.02		
1.6 V	0.73	0.75	0.80	0.84	0.89	0.92	1.01		

Table 2-7 • Temperature and Voltage Timing Derating Factors(Normalized to Worst-Case Commercial, T_J = 70°C, VCCA = 1.425V)

Notes:

1. The user can set the junction temperature in Designer software to be any integer value in the range of – 55°C to 175°C.

2. The user can set the core voltage in Designer software to be any value between 1.4V and 1.6V.

All timing numbers listed in this datasheet represent sample timing characteristics of Axcelerator devices. Actual timing delay values are design-specific and can be derived from the Timer tool in Microsemi's Designer software after place-and-route.

Table 2-8 • I/O Standards Supported by the Axcelerator Family

I/O Standard	Input/Output Supply Voltage (VCCI)	Input Reference Voltage (VREF)	Board Termination Voltage (VTT)
LVTTL	3.3	N/A	N/A
LVCMOS 2.5 V	2.5	N/A	N/A
LVCMOS 1.8 V	1.8	N/A	N/A
LVCMOS 1.5 V (JDEC8-11)	1.5	N/A	N/A
3.3V PCI/PCI-X	3.3	N/A	N/A
GTL+ 3.3 V	3.3	1.0	1.2
GTL+ 2.5 V [*]	2.5	1.0	1.2
HSTL Class 1	1.5	0.75	0.75
SSTL3 Class 1 and II	3.3	1.5	1.5
SSTL2 Class1 and II	2.5	1.25	1.25
LVDS	2.5	N/A	N/A
LVPECL	3.3	N/A	N/A

Note: *2.5 V GTL+ is not supported across the full military temperature range.

Table 2-9 • Supply Voltages

VCCA	VCCI	Input Tolerance	Output Drive Level
1.5 V	1.5 V	3.3 V	1.5 V
1.5 V	1.8 V	3.3 V	1.8 V
1.5 V	2.5 V	3.3 V	2.5 V
1.5 V	3.3 V	3.3 V	3.3 V

Table 2-10 • I/O Features Comparison

I/O Assignment	Clamp Diode	Hot Insertion	5 V Tolerance	Input Buffer	Output Buffer	
LVTTL	No	Yes	Yes ¹	Enabled/	Disabled	
3.3 V PCI, 3.3 V PCI-X	Yes	No	Yes ^{1, 2}	Enabled/Disabled		
LVCMOS 2.5 V	No	Yes	No	Enabled/Disabled		
LVCMOS 1.8 V	No	Yes	No	Enabled/Disabled		
LVCMOS 1.5 V (JESD8-11)	No	Yes	No	Enabled/	Disabled	
Voltage-Referenced Input Buffer	No	Yes	No	Enabled/Disabled		
Differential, LVDS/LVPECL, Input	No	Yes	No	Enabled Disable		
Differential, LVDS/LVPECL, Output	No	Yes	No	Disabled	Enabled ⁴	

Notes:

1. Can be implemented with an IDT bus switch.

2. Can be implemented with an external resistor.

3. The OE input of the output buffer must be deasserted permanently (handled by software).

4. The OE input of the output buffer must be asserted permanently (handled by software).

Figure 2-10 • Output Buffer Delays

Table 2-36 • 3.3 V PCI-X I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI-X	Output Module Timing							
t _{DP}	Input Buffer		1.57		1.79		2.10	ns
t _{PY}	Output Buffer		2.10		2.40		2.82	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		1.61		1.62		1.63	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		1.59		1.60		1.61	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		2.65		3.02		3.55	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		3.11		3.55		4.17	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{ioclky}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Timing Characteristics

Table 2-65 • AX125 Predicted Routing Delays Worst-Case Commercial Conditions VCCA = 1.425 V, T_J = 70°C

		-2 Speed	-1 Speed	Std Speed	
Parameter	Description	Typical	Typical	Typical	Units
Predicted Routing Delays					
t _{DC}	DirectConnect Routing Delay, FO1	0.11	0.12	0.15	ns
t _{FC}	FastConnect Routing Delay, FO1	0.35	0.39	0.46	ns
t _{RD1}	Routing delay for FO1	0.35	0.40	0.47	ns
t _{RD2}	Routing delay for FO2	0.38	0.43	0.51	ns
t _{RD3}	Routing delay for FO3	0.43	0.48	0.57	ns
t _{RD4}	Routing delay for FO4	0.48	0.55	0.64	ns
t _{RD5}	Routing delay for FO5	0.55	0.62	0.73	ns
t _{RD6}	Routing delay for FO6	0.64	0.72	0.85	ns
t _{RD7}	Routing delay for FO7	0.79	0.89	1.05	ns
t _{RD8}	Routing delay for FO8	0.88	0.99	1.17	ns
t _{RD16}	Routing delay for FO16	1.49	1.69	1.99	ns
t _{RD32}	Routing delay for FO32	2.32	2.63	3.10	ns

Table 2-66 • AX250 Predicted Routing Delays

Worst-Case Commercial Conditions VCCA = $1.425 \text{ V}, \text{ T}_{\text{J}} = 70^{\circ}\text{C}$

		-2 Speed	–1 Speed	Std Speed	
Parameter	Description	Typical	Typical	Typical	Units
Predicted Routing Delays					
t _{DC}	DirectConnect Routing Delay, FO1	0.11	0.12	0.15	ns
t _{FC}	FastConnect Routing Delay, FO1	0.35	0.39	0.46	ns
t _{RD1}	Routing delay for FO1	0.39	0.45	0.53	ns
t _{RD2}	Routing delay for FO2	0.41	0.46	0.54	ns
t _{RD3}	Routing delay for FO3	0.48	0.55	0.64	ns
t _{RD4}	Routing delay for FO4	0.56	0.63	0.75	ns
t _{RD5}	Routing delay for FO5	0.60	0.68	0.80	ns
t _{RD6}	Routing delay for FO6	0.84	0.96	1.13	ns
t _{RD7}	Routing delay for FO7	0.90	1.02	1.20	ns
t _{RD8}	Routing delay for FO8	1.00	1.13	1.33	ns
t _{RD16}	Routing delay for FO16	2.17	2.46	2.89	ns
t _{RD32}	Routing delay for FO32	3.55	4.03	4.74	ns

Sample Implementations

Frequency Synthesis

Figure 2-53 illustrates an example where the PLL is used to multiply a 155.5 MHz external clock up to 622 MHz. Note that the same PLL schematic could use an external 350 MHz clock, which is divided down to 155 MHz by the FPGA internal logic.

Figure 2-54 illustrates the PLL using both dividers to synthesize a 133 MHz output clock from a 155 MHz input reference clock. The input frequency of 155 MHz is multiplied by 6 and divided by 7, giving a CLK1 output frequency of 132.86 MHz. When dividers are used, a given ratio can be generated in multiple ways, allowing the user to stay within the operating frequency ranges of the PLL.

Figure 2-53 • Using the PLL 155.5 MHz In, 622 MHz Out

Adjustable Clock Delay

Figure 2-55 illustrates using the PLL to delay the reference clock by employing one of the adjustable delay lines. In this case, the output clock is delayed relative to the reference clock. Delaying the reference clock relative to the output clock is accomplished by using the delay line in the feedback path.

Note that the RAM blocks employ little-endian byte order for read and write operations.

Table 2-88 • RAM Signal Description	Table	2-88 •	RAM	Signal	Description
-------------------------------------	-------	--------	-----	--------	-------------

Signal	Direction	Description
WCLK	Input	Write clock (can be active on either edge).
WA[J:0]	Input	Write address bus. The value J is dependent on the RAM configuration and the number of cascaded memory blocks. The valid range for J is from 6 to15.
WD[M-1:0]	Input	Write data bus. The value M is dependent on the RAM configuration and can be 1, 2, 4, 9, 18, or 36.
RCLK	Input	Read clock (can be active on either edge).
RA[K:0]	Input	Read address bus. The value K is dependent on the RAM configuration and the number of cascaded memory blocks. The valid range for K is from 6 to 15.
RD[N-1:0]	Output	Read data bus. The value N is dependent on the RAM configuration and can be 1, 2, 4, 9, 18, or 36.
REN	Input	Read enable. When this signal is valid on the active edge of the clock, data at location RA will be driven onto RD.
WEN	Input	Write enable. When this signal is valid on the active edge of the clock, WD data will be written at location WA.
RW[2:0]	Input	Width of the read operation dataword.
WW[2:0]	Input	Width of the write operation dataword.
Pipe	Input	Sets the pipe option to be on or off.

Modes of Operation

There are two read modes and one write mode:

- Read Nonpipelined (synchronous one clock edge)
- Read Pipelined (synchronous two clock edges)
- Write (synchronous one clock edge)

In the standard read mode, new data is driven onto the RD bus in the clock cycle immediately following RA and REN valid. The read address is registered on the read-port active-clock edge and data appears at read-data after the RAM access time. Setting the PIPE to OFF enables this mode.

The pipelined mode incurs an additional clock delay from address to data, but enables operation at a much higher frequency. The read-address is registered on the read-port active-clock edge, and the read data is registered and appears at RD after the second read clock edge. Setting the PIPE to ON enables this mode.

On the write active-clock edge, the write data are written into the SRAM at the write address when WEN is high. The setup time of the write address, write enables, and write data are minimal with respect to the write clock.

Write and read transfers are described with timing requirements beginning in the "Timing Characteristics" section on page 2-89.

Table 2-91 • Four RAM Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	–1 S	peed	Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Write Mode								
t _{WDASU}	Write Data Setup vs. WCLK		2.37		2.70		3.17	ns
t _{WDAHD}	Write Data Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WADSU}	Write Address Setup vs. WCLK		2.37		2.70		3.17	ns
t _{WADHD}	Write Address Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WENSU}	Write Enable Setup vs. WCLK		2.37		2.70		3.17	ns
t _{WENHD}	Write Enable Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WCKH}	WCLK Minimum High Pulse Width	0.75		0.75		0.75		ns
t _{WCLK}	WCLK Minimum Low Pulse Width	2.51		2.51		2.51		ns
t _{WCKP}	WCLK Minimum Period	3.26		3.26		3.26		ns
Read Mode								
t _{RADSU}	Read Address Setup vs. RCLK		3.08		3.51		4.13	ns
t _{RADHD}	Read Address Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RENSU}	Read Enable Setup vs. RCLK		3.08		3.51		4.13	ns
t _{RENHD}	Read Enable Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		2.36		2.69		3.16	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		2.83		3.23		3.79	ns
t _{RCLKH}	RCLK Minimum High Pulse Width	0.73		0.73		0.73		ns
t _{RCLKL}	RCLK Minimum Low Pulse Width	2.96		2.96		2.96		ns
t _{RCKP}	RCLK Minimum Period	3.69		3.69		3.69		ns

Note: Timing data for these four cascaded RAM blocks uses a depth of 16,384. For all other combinations, use Microsemi's timing software.

FIFO

Every memory block has its own embedded FIFO controller. Each FIFO block has one read port and one write port. This embedded FIFO controller uses no internal FPGA logic and features:

- Glitch-free FIFO Flags
- · Gray-code address counters/pointers to prevent metastability problems
- Overflow and underflow control

Both ports are configurable in various sizes from 4k x 1 to 128 x 36, similar to the RAM block size. Each port is fully synchronous.

Read and write operations can be completely independent. Data on the appropriate WD pins are written to the FIFO on every active WCLK edge as long as WEN is high. Data is read from the FIFO and output on the appropriate RD pins on every active RCLK edge as long as REN is asserted.

The FIFO block offers programmable almost-empty (AEMPTY) and almost-full (AFULL) flags as well as EMPTY and FULL flags (Figure 2-61):

- The FULL flag is synchronous to WCLK. It allows the FIFO to inhibit writing when full.
- The EMPTY flag is synchronous to RCLK. It allows the FIFO to inhibit reading at the empty condition.

Gray code counters are used to prevent metastability problems associated with flag logic. The depth of the FIFO is dependent on the data width and the number of memory blocks used to create the FIFO. The write operations to the FIFO are synchronous with respect to the WCLK, and the read operations are synchronous with respect to the RCLK.

The FIFO block may be reset to the empty state.

Figure 2-61 • Axcelerator RAM with Embedded FIFO Controller

FIFO Flag Logic

The FIFO is user configurable into various DEPTHs and WIDTHs. Figure 2-62 shows the FIFO address counter details.

- Bits 11 to 5 are active for all modes.
- As the data word size is reduced, more least-significant bits are added to the address.
- As the number of cascaded blocks increases, the number of significant bits in the address increases.

For example, if four blocks are cascaded as a 1kx16 FIFO with each block having a 1kx4 aspect ratio, bits 11 to 2 of the address will be used to specify locations within each RAM block, whereas bits 13 and 12 will be used to specify the RAM block.

Note: Inactive counter bits are set to zero.

Figure 2-62 • FIFO Address Counters

The AFULL and AEMPTY flag threshold values are programmable. The threshold values are AFVAL and AEVAL, respectively. Although the trigger threshold for each flag is defined with eight bits, the effective number of threshold bits in the comparison depends on the configuration. The effective number of threshold bits corresponds to the range of active bits in the FIFO address space (Table 2-94).

Mode	Inactive AEVAL/AFVAL Bits	Inactive DIFF Bits (set to 0)	DIFF Comparison to AFVAL/AEVAL
Non-cascade	[7:4]	[15:12]	DIFF[11:8] withAE/FVAL[3:0]
Cascade 2 blocks	[7:5]	[15:13]	DIFF[12:8] withAE/FVAL[4:0]
Cascade 4 blocks	[7:6]	[15:14]	DIFF[13:8] withAE/FVAL[5:0]
Cascade 8 blocks	[7]	[15]	DIFF[14:8] withAE/FVAL[6:0]
Cascade 16 blocks	None	None	DIFF[15:8] withAE/FVAL[7:0]

Microsemi

Package Pin Assignments

BG729		BG729		BG729		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number	
IO218PB6F20	V2	IO236PB7F22	L1	IO255NB7F23	F5	
IO219NB6F20	T1	IO237NB7F22	L4	IO255PB7F23	G5	
IO219PB6F20	U1	IO237PB7F22	L3	IO256NB7F23	F3	
IO220NB6F20	R5	IO238NB7F22	L6	IO256PB7F23	F4	
IO220PB6F20	R6	IO238PB7F22	M6	IO257NB7F23	H7	
IO221NB6F20	Т3	IO239NB7F22	M8	IO257PB7F23	J7	
IO221PB6F20	T4	IO239PB7F22	M7	Dedicated I/	0	
IO222NB6F20	R2	IO240NB7F22	K2	GND	A1	
IO222PB6F20	T2	IO240PB7F22	K1	GND	A2	
IO223NB6F20	P8	IO241NB7F22	K4	GND	A25	
IO223PB6F20	P9	IO241PB7F22	K3	GND	A26	
IO224NB6F20	R3	IO242NB7F22	K5	GND	A27	
IO224PB6F20	R4	IO242PB7F22	L5	GND	A3	
Bank 7		IO243NB7F22	J2	GND	AC24	
IO225NB7F21	P1	IO243PB7F22	J1	GND	AE1	
IO225PB7F21	R1	IO244NB7F22	J4	GND	AE2	
IO226NB7F21	P3	IO244PB7F22	J3	GND	AE25	
IO226PB7F21	P2	IO245NB7F22	H2	GND	AE26	
IO227NB7F21	N7	IO245PB7F22	H1	GND	AE27	
IO227PB7F21	P7	IO246NB7F22	H4	GND	AE3	
IO228NB7F21	P5	IO246PB7F22	H3	GND	AE5	
IO228PB7F21	P4	IO247NB7F23	L8	GND	AF1	
IO229NB7F21	N2	IO247PB7F23	L7	GND	AF2	
IO229PB7F21	N1	IO248NB7F23	J6	GND	AF25	
IO230NB7F21	N6	IO248PB7F23	K6	GND	AF26	
IO230PB7F21	P6	IO249NB7F23	H5	GND	AF27	
IO231NB7F21	N9	IO249PB7F23	J5	GND	AF3	
IO231PB7F21	N8	IO250NB7F23	G2	GND	AG1	
IO232NB7F21	N4	IO250PB7F23	G1	GND	AG2	
IO232PB7F21	N3	IO251NB7F23	K8	GND	AG25	
IO233NB7F21	M2	IO251PB7F23	K7	GND	AG26	
IO233PB7F21	M1	IO252NB7F23	G4	GND	AG27	
IO234NB7F21	M4	IO252PB7F23	G3	GND	AG3	
IO234PB7F21	M3	IO253NB7F23	F2	GND	B1	
IO235NB7F21	M5	IO253PB7F23	F1	GND	B2	
IO235PB7F21	N5	IO254NB7F23	G6	GND	B25	
IO236NB7F22	L2	IO254PB7F23	H6	GND	B26	

Package Pin Assignments

FG256-Pin FB	FG256-Pin FBGA		FG256-Pin FBGA			
AX125 Function	Pin Number	AX125 Function	Pin Number			
VCCA	L10	VCCIB4	M11			
VCCA	L7	VCCIB4	M9			
VCCA	L8	VCCIB5	M6			
VCCA	L9	VCCIB5	M7			
VCCA	N3	VCCIB5	M8			
VCCA	P14	VCCIB6	J5			
VCCPLA	C7	VCCIB6	K5			
VCCPLB	D6	VCCIB6	L5			
VCCPLC	A10	VCCIB7	F5			
VCCPLD	D10	VCCIB7	G5			
VCCPLE	P10	VCCIB7	H5			
VCCPLF	N11	VCOMPLA	A7			
VCCPLG	T7	VCOMPLB	D7			
VCCPLH	N7	VCOMPLC	B9			
VCCDA	A2	VCOMPLD	D11			
VCCDA	C13	VCOMPLE	T10			
VCCDA	D9	VCOMPLF	N10			
V _{CCDA}	H1	VCOMPLG	R8			
VCCDA	J15	VCOMPLH	N6			
VCCDA	N14	VPUMP	A14			
VCCDA	N8		•			
VCCDA	P4					
VCCIB0	E6					
VCCIB0	E7					
VCCIB0	E8					
VCCIB1	E10					
VCCIB1	E11					
VCCIB1	E9					
VCCIB2	F12					
VCCIB2	G12					
VCCIB2	H12					
VCCIB3	J12					
VCCIB3	K12					
VCCIB3	L12					
VCCIB4	M10					

Package Pin Assignments

FG676		FG676			FG676		
AX500 Function	Pin Number	AX500 Function	Pin Number		AX500 Function	Pin Number	
IO102PB4F9	AB15	IO119PB5F11	AE6	1	IO136PB6F13	U5	
IO103NB4F9/CLKEN	AE16	IO120NB5F11	AE5	1	IO137NB6F13	Т6	
IO103PB4F9/CLKEP	AF16	IO120PB5F11	AF5	1	IO137PB6F13	Τ7	
IO104NB4F9/CLKFN	AE14	IO121NB5F11	AF4	1	IO138NB6F13	Т5	
IO104PB4F9/CLKFP	AE15	IO121PB5F11	AE4	1 [IO138PB6F13	T4	
Bank 5		IO122NB5F11	AC5	1 [IO139NB6F13	R6	
IO105NB5F10/CLKGN	AE12	IO122PB5F11	AC6	1 [IO139PB6F13	R7	
IO105PB5F10/CLKGP	AE13	IO123NB5F11	AD4	1 [IO140NB6F13	Т3	
IO106NB5F10/CLKHN	AE11	IO123PB5F11	AD5	1 [IO140PB6F13	U3	
IO106PB5F10/CLKHP	AF11	IO124NB5F11	AB6	1 [IO141NB6F13	U1	
IO107NB5F10	Y12	IO124PB5F11	AB7	1 [IO141PB6F13	U2	
IO107PB5F10	AA13	IO125NB5F11	AE3	1 [IO142NB6F13	R2	
IO108NB5F10	AC12	IO125PB5F11	AF3	1	IO142PB6F13	T2	
IO108PB5F10	AB12	Bank 6	•	1	IO143NB6F13	P3	
IO109NB5F10	AC10	IO126NB6F12	AB3	1	IO143PB6F13	R3	
IO109PB5F10	AC11	IO126PB6F12	AC3	1 [IO144NB6F13	P5	
IO110NB5F10	AF9	IO127NB6F12	AA2	1	IO144PB6F13	P4	
IO110PB5F10	AF10	IO127PB6F12	AB2	1 [IO145NB6F13	P6	
IO111NB5F10	Y11	IO128NB6F12	AC2	1 [IO145PB6F13	P7	
IO111PB5F10	AA12	IO128PB6F12	AD2	1 [IO146NB6F13	R1	
IO112NB5F10	AE9	IO129NB6F12	Y1	1 [IO146PB6F13	T1	
IO112PB5F10	AE10	IO129PB6F12	AA1	1	Bank 7		
IO113NB5F10	AC9	IO130NB6F12	Y3	1 [IO147NB7F14	N6	
IO113PB5F10	AD9	IO130PB6F12	AA3	1 [IO147PB7F14	N7	
IO114NB5F11	AF6	IO131NB6F12	U6	1	IO148NB7F14	N5	
IO114PB5F11	AF7	IO131PB6F12	V6	1 [IO148PB7F14	N4	
IO115NB5F11	AA10	IO132NB6F12	W2	1 [IO149NB7F14	N2	
IO115PB5F11	AB10	IO132PB6F12	Y2	1 [IO149PB7F14	N3	
IO116NB5F11	AE7	IO133NB6F12	V4	1 [IO150NB7F14	L1	
IO116PB5F11	AE8	IO133PB6F12	W4	1 [IO150PB7F14	M1	
IO117NB5F11	AD7	IO134NB6F12	V3] [IO151NB7F14	M2	
IO117PB5F11	AD8	IO134PB6F12	W3	1	IO151PB7F14	M3	
IO118NB5F11	AC7	IO135NB6F12	V1	1 [IO152NB7F14	M5	
IO118PB5F11	AC8	IO135PB6F12	V2	1	IO152PB7F14	M4	
IO119NB5F11	AD6	IO136NB6F13	U4][IO153NB7F14	M7	

FG676		FG676		FG676		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number	
GND	A8	GND	L12	GND	R12	
GND	AC23	GND	L13	GND	R13	
GND	AC4	GND	L14	GND	R14	
GND	AD24	GND	L15	GND	R15	
GND	AD3	GND	L16	GND	R16	
GND	AE2	GND	L17	GND	R17	
GND	AE25	GND	M10	GND	T10	
GND	AF1	GND	M11	GND	T11	
GND	AF13	GND	M12	GND	T12	
GND	AF14	GND	M13	GND	T13	
GND	AF19	GND	M14	GND	T14	
GND	AF26	GND	M15	GND	T15	
GND	AF8	GND	M16	GND	T16	
GND	B2	GND	M17	GND	T17	
GND	B25	GND	N1	GND	U10	
GND	B26	GND	N10	GND	U11	
GND	C24	GND	N11	GND	U12	
GND	C3	GND	N12	GND	U13	
GND	G20	GND	N13	GND	U14	
GND	G7	GND	N14	GND	U15	
GND	H1	GND	N15	GND	U16	
GND	H19	GND	N16	GND	U17	
GND	H26	GND	N17	GND	V18	
GND	H8	GND	N26	GND	V9	
GND	J18	GND	P1	GND	W1	
GND	J9	GND	P10	GND	W19	
GND	K10	GND	P11	GND	W26	
GND	K11	GND	P12	GND	W8	
GND	K12	GND	P13	GND	Y20	
GND	K13	GND	P14	GND	Y7	
GND	K14	GND	P15	GND/LP	C2	
GND	K15	GND	P16	NC	A25	
GND	K16	GND	P17	NC	AC13	
GND	K17	GND	P26	NC	AC14	
GND	L10	GND	R10	NC	AF2	
GND	L11	GND	R11	NC	AF25	

FG896		FG896		FG896		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number	
Bank 0		IO17NB0F1	B11	IO34NB1F3	A17	
IO00NB0F0	D6	IO17PB0F1	B10	IO34PB1F3	B17	
IO00PB0F0	E6	IO18NB0F1	D11	IO35NB1F3	D18	
IO01NB0F0	A5	IO18PB0F1	E11	IO35PB1F3	C18	
IO01PB0F0	B5	IO19NB0F1	C12	IO36NB1F3	H17	
IO02NB0F0	G9	IO19PB0F1	C11	IO36PB1F3	J17	
IO02PB0F0	G8	IO20NB0F1	F12	IO37NB1F3	B19	
IO03NB0F0	F8	IO20PB0F1	G12	IO37PB1F3	A19	
IO03PB0F0	F7	IO21NB0F1	D12	IO38NB1F3	H18	
IO04NB0F0	D7	IO21PB0F1	E12	IO38PB1F3	J18	
IO04PB0F0	E7	IO22NB0F2	H13	IO39NB1F3	B20	
IO05NB0F0	C7	IO22PB0F2	J13	IO39PB1F3	A20	
IO05PB0F0	C6	IO23NB0F2	A12	IO40NB1F3	C20	
IO06NB0F0	H9	IO23PB0F2	A11	IO40PB1F3	C19	
IO06PB0F0	H8	IO24NB0F2	F13	IO41NB1F4	E20	
IO07NB0F0	D8	IO24PB0F2	G13	IO41PB1F4	E19	
IO07PB0F0	E8	IO25NB0F2	B13	IO42NB1F4	F18	
IO08NB0F0	E9	IO25PB0F2	B12	IO42PB1F4	G18	
IO08PB0F0	F9	IO26NB0F2	E14	IO43NB1F4	A22	
IO09NB0F0	A7	IO26PB0F2	E13	IO43PB1F4	A21	
IO09PB0F0	B7	IO27NB0F2	B14	IO44NB1F4	F20	
IO10NB0F0	H10	IO27PB0F2	A14	IO44PB1F4	F19	
IO10PB0F0	G10	IO28NB0F2	H14	IO45NB1F4	D21	
IO11NB0F0	C9	IO28PB0F2	J14	IO45PB1F4	D20	
IO11PB0F0	C8	IO29NB0F2	B15	IO46NB1F4	D22	
IO12NB0F1	E10	IO29PB0F2	A15	IO46PB1F4	C22	
IO12PB0F1	F10	IO30NB0F2/HCLKAN	C14	IO47NB1F4	A25	
IO13NB0F1	D10	IO30PB0F2/HCLKAP	D14	IO47PB1F4	A24	
IO13PB0F1	D9	IO31NB0F2/HCLKBN	E15	IO48NB1F4	H19	
IO14NB0F1	F11	IO31PB0F2/HCLKBP	D15	IO48PB1F4	G19	
IO14PB0F1	G11	Bank 1		IO49NB1F4	C24	
IO15NB0F1	A10	IO32NB1F3/HCLKCN	E17	IO49PB1F4	C23	
IO15PB0F1	A9	IO32PB1F3/HCLKCP	E16	IO50NB1F4	G20	
IO16NB0F1	H12	IO33NB1F3/HCLKDN	C17	IO50PB1F4	H20	
IO16PB0F1	H11	IO33PB1F3/HCLKDP	D17	IO51NB1F4	F21	

Package Pin Assignments

CG624		CG624		CG624		
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number	
Bank 0		IO27NB0F2	H10	IO51NB1F4	E15	
IO00NB0F0	D7*	IO27PB0F2	H9	IO51PB1F4	F15	
IO00PB0F0	E7*	IO28NB0F2	A9	IO52NB1F4	A17	
IO01NB0F0	G7	IO28PB0F2	B9	IO55NB1F5	G16	
IO01PB0F0	G6	IO30NB0F2	B11	IO55PB1F5	H16	
IO02NB0F0	B5	IO30PB0F2	B10	IO56NB1F5	A20	
IO02PB0F0	B4	IO31NB0F2	E11	IO56PB1F5	A19	
IO04PB0F0	C7	IO31PB0F2	F11	IO57NB1F5	D16	
IO05NB0F0	F8	IO33NB0F2	D12	IO57PB1F5	D15	
IO05PB0F0	F7	IO33PB0F2	D11	IO58NB1F5	A22	
IO06NB0F0	H8	IO34NB0F3	A11	IO58PB1F5	A21	
IO06PB0F0	H7	IO34PB0F3	A10	IO59NB1F5	F16	
IO11NB0F0	J8	IO37NB0F3	J13	IO61NB1F5	G17	
IO11PB0F0	J7	IO37PB0F3	K13	IO61PB1F5	H17	
IO12PB0F1	B6	IO38NB0F3	H11	IO62NB1F5	B17	
IO13NB0F1	E9*	IO38PB0F3	G11	IO62PB1F5	B16	
IO13PB0F1	D8*	IO40PB0F3	B12	IO63NB1F5	H18	
IO15NB0F1	C9	IO41NB0F3/HCLKAN	G13	IO65NB1F6	C17	
IO15PB0F1	C8	IO41PB0F3/HCLKAP	G12	IO66PB1F6	B18	
IO16NB0F1	A5	IO42NB0F3/HCLKBN	C13	IO67NB1F6	J18	
IO16PB0F1	A4	IO42PB0F3/HCLKBP	C12	IO67PB1F6	J19	
IO17NB0F1	D10	Bank 1		IO68NB1F6	B20	
IO17PB0F1	D9	IO43NB1F4/HCLKCN	G15	IO68PB1F6	B19	
IO18NB0F1	A7	IO43PB1F4/HCLKCP	G14	IO69NB1F6	E17	
IO18PB0F1	A6	IO44NB1F4/HCLKDN	B14	IO69PB1F6	F17	
IO19NB0F1	G9	IO44PB1F4/HCLKDP	B13	IO70NB1F6	B22	
IO19PB0F1	G8	IO45NB1F4	H13	IO70PB1F6	B21	
IO20PB0F1	B7	IO47NB1F4	D14	IO71PB1F6	G18	
IO23NB0F2	F10	IO47PB1F4	C14	IO73NB1F6	G19	
IO23PB0F2	F9	IO48NB1F4	A16	IO74NB1F6	C19	
IO26NB0F2	C11*	IO48PB1F4	A15	IO74PB1F6	C18	
IO26PB0F2	B8*	IO49PB1F4	H15	IO75NB1F6	D18	

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O. Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

Datasheet Information

Revision	Changes	Page
Revision 10 (continued)	The "TRST" section was updated.	2-107
	The "Global Set Fuse" section was added.	2-109
	A footnote was added to "FG896" for the AX2000 regarding pins AB1, AE2, G1, and K2.	3-52
	Pinouts for the AX250, AX500, and AX1000 were added for "CQ352".	3-98
	Pinout for the AX1000 was added for "CG624".	3-115
Revision 9	Table 2-79 was updated.	2-69
(v2.1)	The "Low Power Mode" section was updated.	2-106
Revision 8 (v2.0)	Table 1 has been updated.	i
	The "Ordering Information" section has been updated.	ii
	The "Device Resources" section has been updated.	ii
	The "Temperature Grade Offerings" section is new.	iii
	The "Speed Grade and Temperature Grade Matrix" section has been updated.	iii
	Table 2-9 has been updated.	2-12
	Table 2-10 has been updated.	2-12
	Table 2-1 has been updated.	2-1
	Table 2-2 has been updated.	2-1
	Table 2-3 has been updated.	2-2
	Table 2-4 has been updated.	2-3
	Table 2-5 has been updated.	2-4
	The "Power Estimation Example" section has been updated.	2-5
	The "Thermal Characteristics" section has been updated.	2-6
	The "Package Thermal Characteristics" section has been updated.	2-6
	The "Timing Characteristics" section has been updated.	2-7
	The "Pin Descriptions" section has been updated.	2-9
	Timing numbers have been updated from the "3.3 V LVTTL" section to the "Timing Characteristics" section. Many AC Loads were updated as well.	2-25 to 2-59
	Timing characteristics for the "Hardwired Clocks" and "Routed Clocks" sections were updated.	2-66, 2-68
	Table 2-89 to Table 2-92 and Table 2-98 to Table 2-99 were updated.	2-90 to 2-93, 2-102 to 2-103
	The following sections were updated: "Low Power Mode", "Interface", "Data Registers (DRs)", "Security", "Silicon Explorer II Probe Interface", and "Programming"	2-106 to 2-110
	In the "PQ208" (AX500) section, pins 2, 52, and 156 changed from V _{CCDA} to V _{CCA} . For pins 170 and 171, the I/O names refer to pair 23 instead of 24.	3-84

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.